Chapter Review Worksheet

Topics:

- Definition of equilibrium
- $\mathrm{K}_{\text {eq }}$: law of mass action
- Le Chatelier's Principle
- Properties of acids \& bases
- Brønstead-Lowry Acids \& Bases definition
- K_{w} \& calculating $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right],\left[\mathrm{OH}^{-}\right], \mathrm{pH}$

1. If the reaction below is initially at equilibrium, and then each of the following changes are made, predict which direction the reaction rate will be fastest until equilibrium is once again established: forward, reverse, or no change.

$$
\mathrm{H}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightleftarrows 2 \mathrm{HCl}_{(\mathrm{g})}
$$

a. the amount of H_{2} is increased
b. the amount of HCl is decreased
c. the amount of Cl_{2} is decreased
2. If the reaction below is initially at equilibrium, and then more $\mathrm{NH}_{4}{ }^{+}$is added, predict which direction the reaction rate will be fastest until equilibrium is once again established: forward, reverse, or no change.

$$
\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

3. Define (a) reversible reaction and (b) equilibrium.
4. For the reaction below:
$2 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftarrows 2 \mathrm{NO}_{3}(\mathrm{~g})$
a. Write the law of mass action (the equilibrium expression for K_{eq})
b. If gas concentrations are as follows, $2.10 \mathrm{M} \mathrm{NO}_{2}, 1.75 \mathrm{M} \mathrm{O}_{2}$, and $1.00 \mathrm{M} \mathrm{NO}_{3}$, calculate K_{eq}
c. Using K_{eq} from part b , are the reactants or products predominant (predominant means that there is a greater amount present)?
d. Using K_{eq} from part b, calculate $\left[\mathrm{NO}_{3}\right]$ if $\left[\mathrm{NO}_{2}\right]=\left[\mathrm{O}_{2}\right]=4.3 \times 10^{-6} \mathrm{M}$

Acids and Bases

5. For each of the following, write whether it describes acids/acidic (A), bases/basic (B), or both (A \& B):
a. $\mathrm{pH}=9.7$ f. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right]$
k. sour
b. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1 \times 10^{-9} \mathrm{M}$
g. $\mathrm{pH}=2.7$
6. slippery
c. bitter
h. $\mathrm{pH}=13.0$
d. $\mathrm{pH}=1.0$
i. gains/accepts an H^{+}in a reaction
e. $\left[\mathrm{OH}^{-}\right]=6.8 \times 10^{-2} \mathrm{M}$
j. electrolytes
7. For each of the following neutralization reactions, predict the products AND balance the equation:
a. $\mathrm{HCl}+\mathrm{KOH} \rightleftarrows$
b. $\mathrm{HCN}+\mathrm{Ca}(\mathrm{OH})_{2} \rightleftarrows$
8. Identify the acid and the base (for the forward direction) in each of the following reactions:
a. $\mathrm{BH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{BH}_{4}^{+}+\mathrm{OH}^{-}$
b. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
c. $\mathrm{HCO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}_{3}^{-2}+\mathrm{H}_{3} \mathrm{O}^{+}$
d. $\mathrm{HCN}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CN}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
e. $\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NO}_{3}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
9. What is the conjugate acid of...
a. NH_{3}
b. HCO_{3}^{-}
c. $\mathrm{H}_{2} \mathrm{O}$
10. What is the conjugate base of...
a. $\mathrm{H}_{2} \mathrm{O}$
b. HF
c. HPO_{4}^{-2}
11. a. In a neutral solution, what is the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$?
b. In a neutral solution, what is the concentration of OH^{-}?
12. Solutions in which the...
a. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is greater than $1 \times 10^{-7} \mathrm{M}$ are \qquad [Choose one: acidic, basic, or neutral]
b. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is less than $1 \times 10^{-7} \mathrm{M}$ are \qquad [Choose one: acidic, basic, or neutral]
c. $\left[\mathrm{OH}^{-}\right]$is greater than $1 \times 10^{-7} \mathrm{M}$ are \qquad [Choose one: acidic, basic, or neutral]
d. $\left[\mathrm{OH}^{-}\right]$is less than $1 \times 10^{-7} \mathrm{M}$ are \qquad [Choose one: acidic, basic, or neutral]
e. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is equal to $1 \times 10^{-7} \mathrm{M}$ are ___ [Choose one: acidic, basic, or neutral]
13. What is the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}for each of the following conditions?
a. $\mathrm{pH}=8.0$
b. $\mathrm{pH}=6.50$
c. $\mathrm{pH}=10.60$
14. If the $\mathrm{pH}>\mathrm{pK}_{\mathrm{a}}$ in a buffer solution, which is larger, the concentration of the acid form or the concentration of base form.
15. If the reaction below is initially at equilibrium, and then each of the following changes are made, predict which direction the reaction rate will be fastest until equilibrium is once again established: forward, reverse, or no change.

$$
\mathrm{H}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightleftarrows 2 \mathrm{HCl}_{(\mathrm{g})}
$$

a. If the amount of H_{2} is increased, then the forward reaction will be fastest until equilibrium is reestablished.
b. If the amount of HCl is decreased, then the forward reaction will be fastest until equilibrium is reestablished.
c. If the amount of Cl_{2} is decreased, then the reverse reaction will be fastest until equilibrium is reestablished.
2. If the reaction below is initially at equilibrium, and then more $\mathrm{NH}_{4}{ }^{+}$is added, predict which direction the reaction rate will be fastest until equilibrium is once again established: forward, reverse, or no change.

$$
\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

Answer: If more $\mathrm{NH}_{4}{ }^{+}$is added, then the forward reaction will be fastest until equilibrium is reestablished.
3. Define (a) reversible reaction and (b) equilibrium:

SEE YOUR LECTURE NOTES

4. For the reaction below:

$$
2 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftarrows 2 \mathrm{NO}_{3(\mathrm{~g})}
$$

a. Write the law of mass action (the equilibrium expression for K_{eq})
$\mathrm{K}_{\mathrm{eq}}=\frac{\left[\mathrm{NO}_{3}\right]^{2}}{\left[\mathrm{O}_{2}\right]\left[\mathrm{NO}_{2}\right]^{2}}$
b. If gas concentrations are as follows, $2.10 \mathrm{M} \mathrm{NO}_{2}, 1.75 \mathrm{M} \mathrm{O}_{2}$, and $1.00 \mathrm{M} \mathrm{NO}_{3}$, calculate K_{eq}
$\mathrm{K}_{\mathrm{eq}}=\frac{[1.00 \mathrm{M}]^{2}}{[1.75 \mathrm{M}][2.10 \mathrm{M}]^{2}} \quad=\mathbf{0 . 1 3 0} \mathbf{M}^{-1}$ (NOTE: " \mathbf{M}^{-1} " is another way to write " $1 / \mathrm{M}^{\prime}$)
c. Using K_{eq} from part b , are the reactants or products predominant?

REACTANTS: K_{eq} is much less than 1
d. Using K_{eq} from part b, calculate $\left[\mathrm{NO}_{3}\right]$ if $\left[\mathrm{NO}_{2}\right]=\left[\mathrm{O}_{2}\right]=4.3 \times 10^{-6}$
$\mathrm{K}_{\mathrm{eq}}=\frac{\left[\mathrm{NO}_{3}\right]^{2}}{\left(4.3 \times 10^{-6} \mathrm{M}\right)\left(4.3 \times 10^{-6} \mathrm{M}\right)^{2}} \quad=\mathbf{0 . 1 3 0} \mathbf{M}^{-1}$

SOLVING THIS EQUATION FOR [$\mathbf{N O}_{3}$] GIVES:

$\left[\mathbf{N O}_{3}\right]=\sqrt{\left(0.130 \mathrm{M}^{-1}\right)\left(4.3 \times 10^{-6} \mathrm{M}\right)\left(4.3 \times 10^{-6} \mathrm{M}\right)^{2}}=\mathbf{3 . 2 \times 1 0 ^ { - 9 } \mathbf { M } , ~}$
5. For each of the following, write whether it describes acids/acidic (A), bases/basic (B), or both (A \& B):
a. B
f. A
k. A
b. B
g. A

1. B
c. B
h. B
d. A
i. B
e. B
j. A \& B
2. For each of the following neutralization reactions, predict the products \& balance the equation:
a. $\mathbf{H C l}+\mathrm{KOH} \rightleftarrows \mathbf{K C l}+\mathbf{H}_{\mathbf{2}} \mathbf{O}$
b. $\mathbf{2} \mathrm{HCN}+\mathrm{Ca}(\mathrm{OH})_{2} \rightleftarrows \mathbf{C a}(\mathbf{C N})_{2}+\mathbf{2} \mathbf{H}_{\mathbf{2}} \mathbf{O}$
3. Identify the acid and the base (for the forward direction) in each of the following reactions:
a. $\mathrm{BH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{BH}_{4}^{+}+\mathrm{OH}^{-}$

Base Acid
b. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$

Acid Base
c. $\mathrm{HCO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}_{3}^{-2}+\mathrm{H}_{3} \mathrm{O}^{+}$

Acid Base
d. $\mathrm{HCN}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CN}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$

Acid Base
e. $\mathrm{HNO}_{3}+\underset{\text { Bas }}{\mathrm{H}_{2} \mathrm{O}} \rightarrow \mathrm{NO}_{3}{ }^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$

Acid Base
8. What is the conjugate acid of...
a. NH_{3} Conjugate acid $=\mathbf{N H}_{4}{ }^{+}$
b. $\mathrm{HCO}_{3}{ }^{-}$Conjugate acid $=\mathbf{H}_{\mathbf{2}} \mathbf{C O}_{3}$
c. $\mathrm{H}_{2} \mathrm{O}$ Conjugate acid $=\mathbf{H}_{3} \mathbf{O}^{+}$
9. What is the conjugate base of...
a. $\mathrm{H}_{2} \mathrm{O}$ Conjugate base $=\mathbf{O H}^{-}$
b. HF Conjugate base $=\mathbf{F}^{-}$
c. HPO_{4}^{-2} Conjugate base $=\mathbf{P O}_{4}{ }^{-3}$
10. a. In a neutral solution, what is the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$?
$1.0 \times 10^{-7} \mathrm{M}$
b. In a neutral solution, what is the concentration of OH^{-}?
$1.0 \times 10^{-7} \mathrm{M}$
11. Solutions in which the...
a. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is greater than $1 \times 10^{-7} \mathrm{M}$ are acidic
b. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is less than $1 \times 10^{-7} \mathrm{M}$ are basic
c. $\left[\mathrm{OH}^{-}\right]$is greater than $1 \times 10^{-7} \mathrm{M}$ are basic
d. $\left[\mathrm{OH}^{-}\right]$is less than $1 \times 10^{-7} \mathrm{M}$ are acidic
e. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is equal to $1 \times 10^{-7} \mathrm{M}$ are neutral
12. What is the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}for each of the following conditions?
a. $\mathrm{pH}=8.0 \quad \mathbf{H}_{\mathbf{3}} \mathrm{O}^{+}=\mathbf{1} \times \mathbf{1 0}^{-\mathbf{8}} \mathbf{M} \quad \mathbf{O H}=\mathbf{1} \times \mathbf{1 0}^{-\mathbf{6}} \mathbf{M}$
b. $\mathrm{pH}=6.50 \mathbf{H}_{\mathbf{3}} \mathrm{O}^{+}=\mathbf{3 . 2} \times \mathbf{1 0}^{-7} \mathbf{M} \quad \mathbf{O H}=\mathbf{3 . 1} \times \mathbf{1 0}^{-\mathbf{8}} \mathbf{M}$
c. $\mathrm{pH}=10.60 \mathbf{H}_{\mathbf{3}} \mathrm{O}^{+}=\mathbf{2 . 5} \times \mathbf{1 0}^{-\mathbf{1 1}} \mathbf{M} \mathbf{O H}=\mathbf{4 . 0} \times \mathbf{1 0}^{-4} \mathbf{M}$
13. If the $\mathrm{pH}>\mathrm{pK}_{\mathrm{a}}$, for a buffer, which is larger, the concentration of the acid [HA] or the concentration of the base [A^{-}].
Base form [A]

