Chapter 7 Lecture Notes: Solutions, Colloids, and Suspensions

Educational Goals

1. Compare and contrast mixtures and pure substances.
2. Understand, compare, and contrast the terms homogeneous mixture and heterogeneous mixture. For a homogeneous mixture, explain the difference between solute(s) and solvent.
3. Predict the effect of temperature and pressure on the solubility of gases in water and the effect of temperature on the solubility of solids in water.
4. Be able to use the Solubility Rules Table to determine if an ionic compound will significantly dissolve in water.
5. Predict whether a precipitation reaction will occur when two specified aqueous solutions of ionic compounds are mixed; if a precipitation reaction will occur, write a balanced chemical equation for the reaction.
6. Compare the relative solubilities of organic molecules based on the functional groups or the relative sizes of the hydrocarbon (nonpolar) regions.
7. Explain, compare, and contrast the terms hydrophilic, hydrophobic, and amphipathic, and give examples of compounds that belong to each category.
8. Be able to calculate the concentration of a solution using various concentration units of measurements (\%, parts per thousand, ppm, ppb, molarity, molality, osmolality, osmolarity, and Eq/L).
9. Given the concentration, be able to convert from the volume of solution to the amount of solute (and vice versa).
10. Given a solution's initial concentration, be able to use the dilution equation to determine the concentration of the solution after dilution.
11. Compare and contrast solutions, suspensions, and colloids.
12. Describe the processes of diffusion and osmosis. Define osmotic pressure and predict the effect of solute concentration on the osmotic pressure.

Most matter on earth is not composed of just one pure substance.
When two or more pure substances are combined, we refer to the combination as a \qquad . In this chapter, you will learn about three types of mixtures:

1) solutions
2) colloids
3) suspensions

Macro-Scale Classification of Mixtures: Homogeneity

One way in which mixtures are classified is by their macro-scale, visually observed homogeneity. A \qquad mixture appears to be the same throughout the entire sample/object.

- Example: Sugar dissolved in water

A \qquad mixture has visible regions of varying composition.
a. Example: A chocolate chip cookie

Introduction to Solutions

\qquad are mixtures of pure substances in which the pure substance particles (molecules, ions, or noble gas atoms) are \qquad distributed throughout the entire volume of the mixture.

The pure substance that is in the greatest abundance is referred to as the \qquad .

- Typically, especially in biological systems, the solvent is water.

The other pure substance components of a solution are called \qquad .
With very few exceptions, the solution takes the same physical phase (gas, liquid, or solid) as the solvent.
The solutes are said to be " \qquad " in the solvent.

Solutions can be gas-phase, liquid-phase, or solid-phase.
An example of a gas-phase solution is air.

- Air is a mixture of several gases, mostly nitrogen, oxygen, and carbon dioxide.

An example of a solid-phase solution is brass.

- Brass is a mixture of copper and zinc. When one solid (such as zinc) is evenly dispersed in another solid (such as copper), the solid solution is called an \qquad .

We will focus on liquid-phase solutions for the remainder of this course.

- There are 3 types of liquid-phase solutions:
- Gas dissolved in a liquid solvent
- An example of a gas dissolved in a liquid solvent is CO_{2} dissolved in water; this is how beverages are carbonated. Another example of a gaseous solute dissolved in liquid is O_{2} dissolved in water; fish extract the O_{2} from water using their gills. Whenever a gas is present above a liquid, some of the gas will dissolve in the liquid.
- Liquid dissolved in a liquid solvent
- An example of a liquid dissolved in a liquid solvent is ethyl alcohol dissolved in water; this is the basis of adult beverages.
- Solid dissolved in a liquid solvent
- An example of a solid dissolved in a liquid solvent is table salt (NaCl) or table sugar (sucrose molecules) in water.

Almost all of the solutions used in biological applications, such as in biomedical analytical labs and research labs, are liquid-phase solutions.

For the remainder of this course, I will use the term solution to mean liquid-phase solution.

Understanding Check

If the following pairs of pure substances are mixed in the ratios given to form solutions, identify each substance as either solvent or solute:
a) 5 grams of sodium chloride and 100 grams of water
b) 10 mL of ethyl alcohol and 250 mL of water
c) 100 mL of acetone and 10 mL of water

Another term for "dissolving" is \qquad .
In liquid and solid phase solutions, the solute and solvent particles are \qquad to each other by one or more of the five types of noncovalent interactions.
The stronger the solute-solvent interactions, the more solute that can be dissolved.

The Dissolution of Ionic Compounds

Example: The dissolution of sodium chloride in water.
When ionic compounds dissolve, the ions \qquad (become separated from each other) and enter the liquid phase solution.

The water molecules and ions are attracted to each other through ion-dipole forces.

The partially negatively-charged ends of several water molecule dipoles are attracted to the positive charge of each sodium.

Likewise, the partially positively-charged ends of several water molecule dipoles are attracted to the negative charge of each chloride ion.

We use the term \qquad to describe a solute particle becoming surrounded by solvent molecules.

Solvation causes dissolution of the solute.

The Dissolution of Molecules

Molecules will dissolve in a particular solvent when the solute-solvent noncovalent interactions are strong enough to overcome the solute-solute interactions.

Unlike ionic compounds that dissociate, when molecules dissolve, the \qquad become solvated.

Example: The dissolution of ethyl alcohol in water.
Ethyl alcohol dissolves in water because it has significantly strong noncovalent interactions with water.
These solute-solvent intermolecular forces enable the solvation of ethyl alcohol molecules by water molecules as illustrated in below.

All three of the intermolecular forces (hydrogen bonding, dipole-dipole forces, and London forces) occur between ethyl alcohol and water.

Since water molecules are relatively small, the London forces between water and ethyl alcohol are not very strong; if they were the only intermolecular forces present, ethyl alcohol would not dissolve in water.

Since ethyl alcohol and water are polar molecules, they can also interact through dipole-dipole forces.

- The dipoles of ethyl alcohol's highly-polar bonds are indicated by arrows on top of the ethanol structure, and water's molecular dipoles are indicated by dipole arrows behind the water molecules.

Because of the relatively small size of solvated molecules and ions, the forces imparted upon them from collisions with solvent molecules are much greater than the force of gravity.

It is for this reason that solvated ions and molecules do not settle to the bottom of a mixture, but instead, move in random directions in-between collisions.

This type of random, chaotic movement is called Brownian motion and results in the solute being evenly dispersed within the solvent.

Since ions and molecules are evenly dispersed within the solvent, solutions are \qquad .

Solutes that are polar are capable of dissolving in polar solvents. Solutes that are nonpolar are capable of dissolving in nonpolar solvents. This phenomenon is summarized in the easily-remembered phrase, "like dissolves like."

Understanding Check

If you dissolved one mole of the following substances in water, how many moles of solvated ions would be present (include both cations and anions in the number of moles of solvated ions)?
a. NaCl
b. BaCl_{2}

Understanding Check

List all of the noncovalent interactions that can occur between solute and solvent for each of the following solutions:
a. oxygen gas dissolved in water
b. carbon dioxide gas dissolved in water
c. potassium iodide dissolved in water
d. pentane dissolved in octane

Solubility

Solubility is a term that refers to the \qquad of solute that can be dissolved.

Some liquid-in-liquid solutions can be made at \qquad ratio of the liquids.

- For example, water and ethyl alcohol will mix no matter what the ratio is of water to ethyl alcohol. When two liquids mix with each other in any ratio, we say that the substances are " \qquad ."

Some pairs of liquids will not mix with each other at all.

- For example, oil will not significantly dissolve in water.
- This is why we see oil floating on the top of water when oil spills occur.

When two liquids will not mix with each other we say that the substances are " \qquad ."

For most solute/solvent pairs, there is a limit on how much solute can dissolve in a particular solvent.
a) For example, you can only dissolve so much salt or sugar in water.

At some point, the solution becomes \qquad and the amount of dissolved solute cannot increase.

If you continue to add a solid solute to a saturated solution, the excess solute will exist as a solid in the container.

The Solubility of Gases in Water

The solubility of a dissolved gas depends on both \qquad and \qquad .

Whenever a gas is present above a liquid, some of the gas will dissolve in the liquid.
The higher the partial pressure of a particular gas above a liquid, the more of that gas will dissolve in the liquid.

William Henry was first to report that the amount of gas dissolved in a liquid is directly proportional to the partial pressure of the gas.

This relationship between the amount of gas dissolved and pressure is known as "Henry's Law."

William Henry

The lower the \qquad of the aqueous solutions, the greater the solubility of gases.

- For example, cold water can dissolve more oxygen than warm water.

The Solubility of Solids in Water

The solubility of a \qquad solute depends on \qquad .

- As the temperature of water increases to its normal boiling point $\left(100^{\circ} \mathrm{C}\right)$, the solubility of most solid solutes \qquad .

Notice that this is the \qquad of the behavior of gaseous solutes.

The Solubility of Ionic Compounds in Water

Some ionic compounds dissolve to a significant extent in water; some do not.
Ionic compounds that do not significantly dissolve are categorized as "water \qquad ."

- Water insoluble compounds exist in their crystal/solid form when placed in water. Ionic compounds that dissolve to a significant extent are classified as "water \qquad .$"$

It is convenient to use "solubility rules" in order to know which ionic compounds are water soluble and which ones are water insoluble.

In this table, ionic compounds are first classified as water soluble or water insoluble based on their
\qquad , and then exceptions are listed.

Solubility Rules Table

Water Soluble			
Compound	Example	Exceptions	Exception Example
Nitrates	NaNO_{3}	None	None
Chlorides, Bromides, and Iodides	NaCl	Compounds containing Ag^{+}, Pb^{2+}, or Hg^{+}, and HgI_{2}	AgCl
Sulfates	$\mathrm{K}_{2} \mathrm{SO}_{4}$	Compounds containing Pb^{2+}, $\mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}$, or Hg^{+}	PbSO_{4}
Water Insoluble			
Compound	Example	Exceptions	Exception Example(s)
Hydroxides	$\mathrm{Mg}(\mathrm{OH})_{2}$	Compounds containing alkali (Group I) metals or $\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}$, $\mathrm{Ba}^{2+}, \mathrm{NH}_{4}{ }^{+}$	NaOH
Phosphates, Carbonates, and Chromates	FePO_{4}	Compounds containing alkali (Group I) metals or $\mathrm{NH}_{4}{ }^{+}$	$\begin{gathered} \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Li}_{3} \mathrm{PO}_{4}, \\ \mathrm{Na}_{2} \mathrm{CrO}_{4} \end{gathered}$

Example: Is KNO_{3} water soluble?

Solution:

STEP 1: Find the solubility classification in the table based on the identity of the anion.

- We see that nitrates are in the water soluble class.

STEP 2: Check to see if the compound's cation causes the compound to be an exception for the solubility class.

- There are no exceptions for nitrates.

This means that all nitrates are water soluble, therefore KNO_{3} is water soluble.

Example: Is $\mathrm{Cu}(\mathrm{OH})_{2}$ water soluble?

Solution:

STEP 1: Find the solubility classification in the based on the identity of the anion.

- We see that hydroxides are in the water insoluble class.

STEP 2: Check to see if the cation causes the compound to be an exception for the solubility class.

- There are exceptions for hydroxides, however Cu^{2+} is not one of them.

Therefore $\mathrm{Cu}(\mathrm{OH})_{2}$ is not water soluble.

- If $\mathrm{Cu}(\mathrm{OH})_{2}$ were mixed with water, it would exist as solid crystals submerged in water.

Example: Is BaSO_{4} water soluble?

Solution:

STEP 1: Find the solubility classification in the table based on the identity of the anion.

- We see that sulfates are in the water soluble class.

STEP 2: Check to see if the cation causes the compound to be an exception for the solubility class.

- There are some exceptions for sulfates and Ba^{2+} is one of them.

Therefore BaSO_{4} is not water soluble.

Example: Is KOH water soluble?

Solution:

STEP 1: Find the solubility classification in the table based on the identity of the anion.

- We see that hydroxides are in the water insoluble class.

STEP 2: Check to see if the cation causes the compound to be an exception for the solubility class.

- There are exceptions for hydroxides, and K^{+} is one of them; it's an alkali (Group I) metal.

Therefore KOH is water soluble.

Understanding Check

Determine which of the following compounds is water soluble.
a. potassium iodide
b. iron(II) nitrate
c. copper(II) hydroxide
d. silver bromide
e. sodium sulfate
f. potassium hydroxide
g. lead(II) chromate
h. ammonium hydroxide

Solubility Rules Table			
Water Soluble			
Compound	Example	Exceptions	Exception Example
Nitrates	NaNO_{3}	None	None
Chlorides, Bromides, and lodides	NaCl	Compounds containing Ag^{+}, $\mathrm{Pb}^{2+} \text {, or } \mathrm{Hg}^{+} \text {, and } \mathrm{HgI}_{2}$	AgCl
Sulfates	$\mathrm{K}_{2} \mathrm{SO}_{4}$	Compounds containing Pb^{2+}, $\mathrm{Sr}^{2+}, \mathrm{Ba}^{2+} \text {, or } \mathrm{Hg}^{+}$	PbSO_{4}
Water Insoluble			
Compound	Example	Exceptions	Exception Example(s)
Hydroxides	$\mathrm{Mg}(\mathrm{OH})_{2}$	Compounds containing alkali (Group I) metals or $\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}$, $\mathrm{Ba}^{2+}, \mathrm{NH}_{4}{ }^{+}$	NaOH
Phosphates, Carbonates, and Chromates	FePO_{4}	Compounds containing alkali (Group I) metals or $\mathrm{NH}_{4}{ }^{+}$	$\begin{gathered} \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Li}_{3} \mathrm{PO}_{4}, \\ \mathrm{Na}_{2} \mathrm{CrO}_{4} \end{gathered}$

Electrolytes

Solutions that contain dissolved ions are capable of conducting electricity and are sometimes referred to as \qquad solutions.

- Dissolved ionic compounds are called electrolytes.

Electrolyte solutions are required in biological functions such as the transmission of nerve impulse signals and muscle actuation.

Our bodies obtain electrolytes from food and drink.

Reactions of Ions in Aqueous Solutions

In a double replacement reaction, two substances "switch partners."
The general form of a double replacement reaction, where compounds $\mathbf{A X}$ and $\mathbf{B Y}$ switch partners, is:

$$
A X+B Y \rightarrow A Y+B X
$$

There are two types of double replacement reactions:

1) Precipitation Reactions
2) Gas Producing Reactions

1) Precipitation Reactions

Precipitation reactions may occur when two solutions that contain \qquad ions are mixed.
In a precipitation reaction, two compounds in aqueous solution appear to exchange \qquad .

If one of the new pairs formed is \qquad a new substance (solid/precipitate) is formed.

For a precipitation reaction to occur, at least one of the \qquad formed is insoluble in water.

- Therefore, a solid is always formed in a precipitation reaction.
- Often, many tiny crystals are formed and this gives the mixture a cloudy appearance. The cloudy appearance may be white, black, or some other color, depending on the identity of the particular solid that is formed.
- We say the solid "precipitated" from the solution.
- The appearance of the solid precipitate indicates the formation of new ionic bonds and that a
\qquad has occurred.

The educational goals for precipitation reactions are:
Predict if a precipitation reaction will occur when two aqueous ionic compounds are combined.
Write the balanced chemical equation for the reaction.
Method for Predicting if a Precipitation Reaction will Occur and Writing the Balanced Chemical Equation for Precipitation Reactions.

Example: The reaction that was just demonstrated; the reaction of lead(II) nitrate and potassium chromate.
Step 1: Write reactants' names and arrow for the chemical equation using word form (not formulas):
lead(II) nitrate + potassium chromate \rightarrow
Step 2: Add the "possible" products to the word equation by switching anions:
lead(II) nitrate + potassium chromate \rightarrow lead(II) chromate + potassium nitrate

Step 3: Convert the word equation to a formula equation:
lead(II) nitrate + potassium chromate \rightarrow lead(II) chromate + potassium nitrate

$$
\mathbf{P b}\left(\mathrm{NO}_{3}\right)_{2}+\mathbf{K}_{2} \mathrm{CrO}_{4} \rightarrow \mathrm{PbCrO}_{4}+\mathrm{KNO}_{3}
$$

- Note: Students often need to review the section in chapter 3 that discusses naming ionic compounds in order to perform Step 3.
Step 4: Balance the equation:

$$
\mathbf{P b}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{K}_{2} \mathrm{CrO}_{4} \rightarrow \mathbf{P b C r O} \mathbf{O}_{4}+2 \mathbf{K N O}_{3}
$$

Step 5: Add the phase of each of the reactants and "possible" products to the chemical equation.

- In all precipitation reactions, the reactants are always aqueous.
- Use the Solubility Rules Table to determine the phase of the "possible" products.
- If a compound is water soluble, it remains dissolved and we write "(aq)."
- If a compound is water insoluble, it precipitates as a solid and we write " (s)."

$$
\mathbf{P b}\left(\mathbf{N O}_{3}\right)_{2}(a q)+\mathbf{K}_{2} \mathrm{CrO}_{4}(a q) \rightarrow \mathbf{P b C r O}_{4}(s)+2 \mathbf{K N O}_{3}(a q)
$$

Example: The reaction of sodium chloride and silver nitrate.
Step 1: Write reactants' names and arrow for the chemical equation using word form (not the chemical formula).

```
sodium chloride + silver nitrate }
```

Step 2: Add the "possible" products to the word equation by switching anions.

Step 3: Convert the word equation to a formula equation.

$$
\mathbf{N a C l}+\mathrm{AgNO}_{3} \rightarrow \mathrm{NaNO}_{3}+\mathbf{A g C l}
$$

Step 4: Balance the equation:

- In this example, the equation is already balanced; each of the coefficients is " 1. ."

$$
\mathbf{N a C l}+\mathrm{AgNO}_{3} \rightarrow \mathrm{NaNO}_{3}+\mathbf{A g C l}
$$

Step 5: Add the phase of each of the reactants and "possible" products to the chemical equation.

$$
\mathbf{N a C l}(a q)+\mathbf{A g N O}_{3}(a q) \rightarrow \mathbf{N a N O}_{3}(a q)+\mathbf{A g C l}(s)
$$

Example: Determine if a precipitation reaction would occur when a sodium chloride solution is mixed with a potassium nitrate solution.

Step 1: Write reactants' names and arrow for the chemical equation using word form (not formula): sodium chloride + potassium nitrate \rightarrow

Step 2: Add the "possible" products to the word equation by switching anions:

$$
\text { sodium chloride }+ \text { potassium nitrate } \rightarrow \text { sodium nitrate }+ \text { potassium chloride }
$$

Step 3: Convert the word equation to a formula equation:

$$
\mathbf{N a C l}+\mathbf{K N O}_{3} \rightarrow \mathbf{N a N O}_{3}+\mathbf{K C l}
$$

Step 4: Balance the equation:

- In this example, the equation is already balanced; each of the coefficients is " 1 ".

$$
\mathbf{N a C l}+\mathrm{KNO}_{3} \rightarrow \mathrm{NaNO}_{3}+\mathbf{K C l}
$$

Step 5: Add the phase of each of the reactants and "possible" products to the chemical equation.

$$
\mathbf{N a C l}(a q)+\mathrm{KNO}_{3}(a q) \rightarrow \mathbf{N a N O}_{3}(a q)+\mathbf{K C l}(a q)
$$

IMPORTANT: If both of the "possible" products are water soluble, then no reaction occurred.

- There were solvated cations and anions in each the two solutions before mixing, then the solutions were mixed and the cations and anions remained solvated in the mixture.
- No new chemical bonds were made, therefore no chemical reaction occurred.
- When no reaction occurs in precipitation reaction problems such as this example, you can write "No Reaction" instead of the "possible" products:

$$
\mathbf{N a C l}(a q)+\mathbf{K N O}_{3}(a q) \rightarrow \text { No Reaction }
$$

You try one: Determine if a precipitation reaction would occur when a silver nitrate solution is mixed with a barium chloride solution and, if a reaction does occur, write the balanced chemical equation.

2) Gas Producing Double Replacement Reactions

A gas producing double replacement reaction is a special type of double replacement in which a gas is produced.

The gas producing double replacement reaction that is typically encountered in the health sciences field and, therefore the only gas producing reaction which I would like you to be familiar, is the reaction of aqueous hydrogen monochloride ($\mathbf{H C l}$, also know as hydrochloric acid) and aqueous sodium bicarbonate $\left(\mathrm{NaHCO}_{3}\right)$.

$\mathrm{HCl}+\mathrm{NaHCO}_{3} \rightarrow \mathrm{HHCO}_{3}+\mathrm{NaCl}$

In this reaction, the bicarbonate and chloride anions switch partners to form aqueous carbonic acid $\left(\mathrm{HHCO}_{3}\right)$ and sodium chloride.

- In the chemical equation above, I wrote the formula of carbonic acid as $\mathbf{H H C O}_{3}$ in order to help you see how Cl^{-}and $\mathbf{H C O}_{3}$ " "switched partners"; however the correct way to write the formula for carbonic acid is $\mathbf{H}_{2} \mathrm{CO}_{3}$, as described below.

The overall gas producing double replacement reaction equation is written in the grey box on the right.

Carbonic acid_ to $\mathrm{H}_{2} \mathrm{O}(l)$ and $\mathrm{CO}_{2}(g)$

This particular gas producing reaction is important in medicine because sodium bicarbonate is used as an over-the-counter therapeutic agent to treat acid indigestion (heartburn).

- Sodium bicarbonate is the primary active ingredient in many antacids, such as alka-seltzer.
- Sodium bicarbonate "neutralizes" acid in the stomach to produce water, carbon dioxide gas, and salt.

You will learn much more about acids in later chapters.

The Solubility of Organic Molecules

Molecules will dissolve in a particular solvent when the solute-solvent noncovalent interactions are strong enough to \qquad the solute-solute interactions.

The more solute-solvent noncovalent attractive interactions that can occur, the more solute that can be dissolved.

It is for this reason that polar solutes are capable of dissolving in polar solvents, and nonpolar solutes are capable of dissolving in nonpolar solvents, as summarized by the phrase "like dissolves like."

For an organic molecule to have significant water solubility, it must be \qquad and/or capable of \qquad
\qquad with water.

Hydrogen Bonding

Electrostatic attractive force between the partially positive charged hydrogen end of an $\mathrm{O}-\mathrm{H}, \mathrm{N}-\mathrm{H}$, or $\mathrm{F}-\mathrm{H}$ bond and the negative charge of a lone pair on an O, F, or N .

We can use the general rule of "like dissolves like" to predict the relative water solubilities of various organic solute molecules.

Let's consider the water solubility of the organic molecule families that I introduced you to in chapter 4: hydrocarbons, alcohols, carboxylic acids, and esters.

Water Solubility of Hydrocarbons

Hydrocarbons are \qquad molecules.

They are not capable of hydrogen bonding or dipole-dipole interactions, therefore they are \qquad significantly soluble in water.

Water Solubility of Alcohols, Carboxylic Acids, and Esters

Alcohols and many other families of organic molecules are attracted to water through hydrogen bonding and/or dipole-dipole interactions.

The general form of an alcohol molecule is:

As the \qquad of various alcohol molecules gets larger, the water solubility \qquad .

This trend of decreasing solubility as the hydrocarbon part of organic molecules gets larger is also seen in carboxylic acids, esters, and all of the other types of organic molecules that you will be introduced to in later chapters.

general form of a carboxylic acid

general form of an ester

As the hydrocarbon part of a molecule gets \qquad , London forces become more important (stronger), the molecule becomes \qquad polar, and the organic molecules are more attracted to each other than they are to water molecules.

- When this occurs, it is lower in energy for the organic molecules to be surrounded by other organic molecules and therefore the water solubility drastically decreases.

The table below shows the trend in decreasing water solubility for some alcohol molecules as their hydrocarbon part gets larger.

Molecule Name	Condensed Structure	Solubility in Water
methanol	$\mathrm{CH}_{3} \mathrm{OH}$	miscible in any ratio with water
ethanol	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	miscible in any ratio with water
1-propanol	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	miscible in any ratio with water
1-butanol	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	slightly soluble
1-pentanol	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	insoluble

The Solubility of Organic Molecules in Non Aqueous Solutions

Not all solutions involve water as the solvent.
Non water polar solvents behave quite like water in regard to their ability to dissolve polar solutes better than nonpolar solutes.

On the other hand, nonpolar solvents dissolve nonpolar \qquad more readily than polar solutes; like dissolves like.

- For example, pentane cannot be significantly dissolved in water, however it can be dissolved in hexane.
pentane

hexane

Understanding Check

a. List the following carboxylic acids in order of increasing solubility in water (least soluble to most soluble).

hexanoic acid

ethanoic acid

butanoic acid

- List the following esters in order of increasing solubility in water.

ethyl hexanoate

ethyl ethanoate

ethyl butanoate

Concentration of Solutions

The term " \qquad " refers to the amount of a solute in a solution.

Other qualitative (non numeric) descriptions of the amount of solute are sometimes used:

- A solution with a relatively large amount of solute is said to be " \qquad ."
- A solution with a relatively small amount of solute is said to be " \qquad ."

In this video you will see how to quantitatively (with numeric values) describe the amount of solute that is present in a solution.

The concentration of a solution is the \qquad of solute that is dissolved in a particular quantity of solution (or solvent).

Various Units Used for Concentration

Percent (\%) Concentration

There are three different percent (\%) concentration units that are commonly used:
percent weight to weight: \% (w/w)
percent volume to volume: \% (v/v)
percent weight to volume: \% (w/v)

Percent Weight to Weight

Percent weight to weight $-\%(\mathrm{w} / \mathrm{w})$ - is defined as the ratio of the mass of the solute to the mass of the
\qquad , multiplied by 100 :

$$
\%(\mathrm{w} / \mathrm{w})=\left(\frac{\text { mass of solute }}{\text { mass of solution }}\right) \times 100
$$

Example: A $\mathbf{1 0 \%}(\mathbf{w} / \mathbf{w})$ sodium chloride solution contains 10 grams of dissolved sodium chloride in every $\mathbf{1 0 0}$ grams of solution.
Percent weight to weight is also referred to as "mass percent" or "gram percent."

Percent Volume to Volume

Percent volume to volume - $\%(\mathrm{v} / \mathrm{v})$ - is defined as the ratio of the volume of the solute to the volume of the entire solution, multiplied by 100 :

$$
\%(\mathrm{v} / \mathrm{v})=\left(\frac{\text { volume of solute }}{\text { volume of solution }}\right) \times 100
$$

Example: Percent volume to volume is commonly used to indicate the concentration of alcohol in adult beverages where $\%(\mathrm{v} / \mathrm{v})$ is referred to as "alcohol by volume (ABV)" or "alcohol percent by volume."

In this beer, there are $\mathbf{7 . 2} \mathbf{~ m L}$ of alcohol for every $\mathbf{1 0 0} \mathbf{~ m L}$ of beer

Percent Weight to Volume

Percent weight to volume - $\%(\mathrm{w} / \mathrm{v})$ - is defined as the number of grams of solute contained in $\mathbf{1 0 0} \mathbf{m L}$ of solution.
$\%(\mathrm{w} / \mathrm{v})$ is calculated by multiplying the ratio of the grams of the solute to the volume (mL) of the entire solution, by 100 .

$$
\%(\mathrm{w} / \mathrm{v})=\left(\frac{\text { grams of } \text { solute }}{\mathrm{mL} \text { of solution }}\right) \times 100
$$

Example: Potassium iodide (KI) is used to treat iodine deficiencies.
What is the $\%(\mathrm{w} / \mathrm{v})$ of a 75 mL solution containing 2.0 g of KI ?

$$
\begin{aligned}
\%(\text { Weight } / \mathrm{Vol}) & =\left(\frac{\text { grams of Solute }}{\mathrm{mL} \text { of Solution }}\right) \times 100 \\
\%(\text { Weight } / \mathrm{Vol}) & =\left(\frac{2.0 \mathrm{~g} \text { of KI }}{75 \mathrm{~mL} \text { of Solution }}\right) \times 100 \\
& =\mathbf{2 . 7 \% (w / v)}
\end{aligned}
$$

Percent Weight to Weight Example

What is the $\%(\mathrm{w} / \mathrm{w})$ concentration of a sodium chloride solution prepared by adding 5.0 grams of sodium chloride to 130.0 g of water?
Solution: Calculate the concentration using the equation/definition of $\%(\mathrm{w} / \mathrm{w})$:

$$
\%(\mathrm{w} / \mathrm{w})=\left(\frac{\text { mass of solute }}{\text { mass of solution }}\right) \times 100
$$

a. The mass of the solute (sodium chloride) was given: 5.0 g
b. The mass of the solution is equal to the mass of the solute $(\mathrm{NaCl}, 5.0 \mathrm{~g})$ plus the mass of the solvent $($ water, 130.0 g$)=135.0 \mathrm{~g}$

$$
\%(\mathrm{w} / \mathrm{w})=\left(\frac{5.0 \mathrm{~g}}{135.0 \mathrm{~g}}\right) \times 100=3.7 \%(\mathrm{w} / \mathrm{w})
$$

In a $3.7 \%(\mathrm{w} / \mathrm{w})$ solution, there are 3.7 g of solute contained in every 100 g of solution.
Note that in this $\%(\mathrm{w} / \mathrm{w})$ problem, the mass units cancel, therefore we can use any mass units as long as we use the same unit for the mass of solute and mass of solution.

Understanding Check: What is the $\mathbf{\%}(\mathbf{v} / \mathbf{v})$ concentration of a solution prepared by adding 27 mL of alcohol to enough water to make 552 mL of solution?

Concentration in Parts per Thousand, Parts per Million, Parts per Billion, Parts per Trillion

Parts per thousand, parts per million (ppm), parts per billion (ppb), and parts per trillion (ppt) are defined in a similar way as percent concentration however, \qquad of multiplying the ratios of solute to solution by 100, they are multiplied by a thousand, million, billion, or trillion, respectively.

Just like percent (\%) concentration, parts per thousand, ppm, ppb, and ppt units can be (w/w), (v/v), or (w/v). For example, the definitions or percent, parts per thousand, ppm, ppb, and ppt, in (w/w), are:

$$
\begin{aligned}
\%(\mathrm{w} / \mathrm{w}) & =\left(\frac{\text { mass of solute }}{\text { mass of solution }}\right) \times 100 \\
\text { parts per thousand }(\mathrm{w} / \mathrm{w}) & =\left(\frac{\text { mass of solute }}{\text { mass of solution }}\right) \times 1000 \\
\mathrm{ppm}(\mathrm{w} / \mathrm{w}) & =\left(\frac{\text { mass of solute }}{\text { mass of solution }}\right) \times\left(1 \times 10^{6}\right) \\
\mathrm{ppb}(\mathrm{w} / \mathrm{w}) & =\left(\frac{\text { mass of solute }}{\text { mass of solution }}\right) \times\left(1 \times 10^{9}\right) \\
\mathrm{ppt}(\mathrm{w} / \mathrm{w}) & =\left(\frac{\text { mass of solute }}{\text { mass of solution }}\right) \times\left(1 \times 10^{12}\right)
\end{aligned}
$$

The ppm , ppb , and ppt units are often used for very dilute solutions.
If you were to mix one drop of alcohol into an Olympic-size pool such as the one shown here, the alcohol concentration would be about 20 part per trillion (ppt).
The volume of an Olympic-size swimming pool is about $2.5 \times 10^{9} \mathrm{~mL}$. The volume of one drop of ethyl alcohol is about 0.050 mL . What is the ppt (v / v) concentration of alcohol if $0.050 \mathrm{~mL}(\sim 1$ drop) is mixed into a pool with a volume of $2.5 \times 10^{9} \mathrm{~mL}$?

$$
\operatorname{ppt}(\mathrm{v} / \mathrm{v})=\left(\frac{\text { volume of solute }}{\text { volume of solution }}\right) \times\left(1 \times 10^{12}\right)
$$

- Volume of the solute (alcohol in this example) was given: $\mathbf{0 . 0 5 0} \mathbf{~ m L}$
- The volume of the solution is equal to the volume of the solute (alcohol, 0.050 mL) plus the volume of the solvent (water, $2.5 \times 10^{9} \mathrm{~mL}$) $=\mathbf{2 . 5} \times \mathbf{1 0}^{\mathbf{9}} \mathbf{~ m L}$
Insert the volume of the solute and the volume of the solution into the equation for $\mathrm{ppt}(\mathrm{v} / \mathrm{v})$:

$$
\operatorname{ppt}(\mathrm{v} / \mathrm{v})=\left(\frac{0.050 \mathrm{~mL}}{2.5 \times 10^{9} \mathrm{~mL}}\right) \times\left(1 \times 10^{12}\right)=20 . \mathrm{ppt}(\mathrm{v} / \mathrm{v})
$$

Understanding Check: The legal limit of blood alcohol concentration while driving in most states corresponds to about 0.080 grams of alcohol per 100.0 grams of blood (solution).

What is the parts per thousand (w/w) blood alcohol concentration at this legal limit?

Concentration in Molarity

Chemists often use a concentration unit of measure called \qquad .
Molarity is defined as the number of \qquad of solute per \qquad of solution.
It can be calculated by taking the ratio of moles of solute to the volume (in liters) of solution:

$$
\text { Molarity }=\left(\frac{\text { moles of solute }}{\text { liters (L) of solution }}\right)
$$

Calculating a solution's molarity using this equation/definition results in units of moles/L.
The mole/L unit is often referred to as \qquad and abbreviated as " \qquad ."

Keep in mind, the "M" can be interchanged with "mole/L."

- For example, 0.030 moles $/ \mathbf{L}=0.030 \mathbf{M}$ (molar)

Example: A solution is prepared by dissolving 0.10 moles of the amino acid alanine in enough water to give a final volume of 0.075 L . What is the molarity of the solution?

$$
\begin{aligned}
\operatorname{Molarity}(\mathrm{M}) & =\left(\frac{\text { moles of solute }}{\text { liters of solution }}\right) \\
\text { Molarity }(\mathrm{M}) & =\left(\frac{0.10 \mathrm{moles}}{0.075 \mathrm{~L}}\right) \\
& =1.3 \mathrm{M} \text { or } 1.3 \mathrm{moles} / \mathrm{L}
\end{aligned}
$$

Understanding Check: A solution is prepared by dissolving 0.057 moles of adrenaline in enough water to give a final volume of 1.80 L . What is the molarity of the solution?

In some molarity calculations, since mass (grams) is the parameter that is directly measurable, you will begin with the number of grams of solute.

When this is the case, use the solute's molar mass to convert from grams to moles.

You will need to do this in the following Understanding Check problem.
Understanding Check: What is the molarity of a solution that is prepared by dissolving 3.83 grams of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ in enough water to make 5.00 L of solution?

Concentration in Osmolarity

The osmole (osmol) unit is used to indicate the number of moles of dissolved \qquad .
The concentration unit of measure called \qquad is commonly defined as the number of moles of dissolved particles (osmoles) per liter of solution.
Osmolarity can be calculated by taking the ratio of osmoles of solute to the volume (in liters) of solution:

$$
\text { Osmolarity }=\left(\frac{\text { osmoles of solute }}{\text { liter (L) of solution }}\right)
$$

Calculating a solution's osmolarity using this equation results in units of \qquad .
The osmoles/L unit is often referred to as \qquad and abbreviated as "osM."

What is the difference between a solution's osmolarity and molarity?

$$
\text { Osmolarity }=\left(\frac{\text { Osmoles of solute }}{\text { liter (L) of solution }}\right) \quad \text { Molarity }=\left(\frac{\text { moles of solute }}{\text { liters (L) of solution }}\right)
$$

Sometimes it is the same, and sometimes it is different.
Ionic compound solutes dissociate (break apart into ions) into individual ions when solvated.

- For every mole of an ionic compound that is dissolved, the solution contains two or more moles of dissolved particles (osmoles), therefore the solution's molarity and osmolarity have different values.

Molecular compound solutes do not dissociate when solvated.

- For every mole of a dissolved molecular compound, the solution contains one mole of dissolved particles (one osmole), therefore the solution's molarity and osmolarity have the same value.

Example: Osmolarity for a Molecular Compound

If 0.50 moles of glucose (a molecular compound) is dissolved in enough water to make 2.00 L of solution, what is the osmolarity of the solution?

$$
\text { Osmolarity }=\left(\frac{\text { osmoles of solute }}{\text { liter (L) of solution }}\right)
$$

To calculate the osmolarity, we need to know two quantities: the number of osmoles of the solute AND the volume (\mathbf{L}) of the solution.

- osmoles of the solute (glucose): since glucose is a covalent compound, it does not dissociate into ions when dissolved. For every mole of a molecular compound that is dissolved, the solution will contain one mole of dissolved particles (one osmole).
- 0.50 moles of glucose were dissolved, therefore the solution contains $\mathbf{0 . 5 0}$ osmoles of glucose.
- liters (L) of solution was given: 2.00 L

Insert the osmoles of the solute and liters (L) of solution into the equation for osmolarity:

$$
\text { Osmolarity }=\left(\frac{0.50 \text { osmoles }}{2.00 \mathrm{~L}}\right)=0.25 \text { osmoles } / \mathrm{L} \text { or } 0.25 \text { osmolar }
$$

Note that in this example, since glucose is a molecular (non dissociation) compound, the molarity and the osmolarity have the same value.

Example: Osmolarity for an Ionic Compound

If 0.50 moles of sodium chloride (an ionic compound) are dissolved in enough water to make 2.00 L of solution, what is the osmolarity of the solution?

$$
\text { Osmolarity }=\left(\frac{\text { osmoles of solute }}{\text { liter (L) of solution }}\right)
$$

- osmoles of the solute $\mathbf{(N a C l})$: Sodium chloride dissociates when dissolved, so for every mole of sodium chloride, the solution will contain one mole of dissolved sodium ions plus one mole of dissolved chloride ions.

Multiply the number of moles of sodium chloride by a factor of 2 to convert moles of sodium chloride to osmoles:

$$
0.50 \text { moles } \mathrm{NaCl}\left(\frac{2 \text { osmoles }}{\text { mole } \mathbf{N a C l}}\right)=\mathbf{1 . 0} \text { osmoles }
$$

- liters (L) of solution was given: 2.00 L

Insert the osmoles of the solute and liters (L) of solution into the equation for osmolarity:

$$
\text { Osmolarity }=\left(\frac{1.0 \text { osmoles }}{2.00 \mathrm{~L}}\right)=0.50 \text { osmoles/L or } 0.50 \text { osmolar }
$$

Even though we started with the same number of moles of solute and the same volume of solution in this example as we did in the previous example for a glucose solution, the osmolarity values are different because of the difference in the number of particles (osmoles) that are formed upon dissolution of molecular vs. ionic solutes.

In the Understanding Check problem that follows, I will ask you to calculate the osmolarity of a BaCl_{2} solution.
Keep in mind that for every one mole of BaCl_{2} that dissolves, $\mathbf{3}$ osmoles are formed.

Understanding Check: If 0.50 moles of BaCl_{2} (an ionic compound) is dissolved in enough water to make 2.00 L of solution, what is the osmolarity of the solution?

Converting between Molarity and Osmolarity

Knowing the number of \qquad (osmoles) that are formed upon dissolution of a solute will enable you to easily convert between molarity and osmolarity.

The number of osmoles formed per mole of solute dissolved can be used as a \qquad .
Example for an Ionic Compound Solute: If the molarity of a NaCl solution is $\mathbf{1 . 2} \mathbf{M}$, what is the osmolarity?

Converting between molarity and osmolarity for molecular solutes is simple!
The molarity is \qquad to osmolarity for molecular solutes because they do not dissociate.

Example for a Molecular Compound Solute:

- Glucose is a molecular compound; if the molarity of a glucose solution is 1.2 M , then the osmolarity is $\mathbf{1 . 2}$ osmoles/L.

Understanding Check: If the molarity of an FeCl_{3} (an ionic compound) solution is 0.010 M , what is the osmolarity?

HINT: Think about how many osmoles are produced when one mole of FeCl_{3} dissociates.

Concentration in Molality

\qquad is defined as the number of moles of solute per kg of solvent.
Molality can be calculated by taking the ratio of moles of solute to the mass (in kilograms) of the \qquad \therefore

$$
\text { Molality }=\left(\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}\right)
$$

Calculating a solution's molality using this equation/definition results in units of moles/kg.
The moles/kg unit is often referred to as molal and abbreviated as " \boldsymbol{m}."

- The " \boldsymbol{m} " unit can be interchanged with "moles/kg."

Calculation of Molality Example

What is the molality of a solution that is prepared by dissolving 0.125 moles of sodium chloride in 1.60 kg of water?

$$
\text { Molality }=\left(\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}\right)
$$

- The moles of the solute (NaCl) was given: $\mathbf{0 . 1 2 5}$ moles
- The mass of the solvent (water) was given: $1.60 \mathbf{~ k g}$

Insert the moles of the solute and kg of solvent into the equation for molality:

$$
\text { Molality }=\left(\frac{0.125 \mathrm{moles}}{1.60 \mathrm{~kg}}\right)=0.0781 \mathrm{moles} / \mathrm{kg} \text { or } 0.0781 \mathrm{~m}
$$

In a 0.0781 molal (\boldsymbol{m}) solution, there are $\mathbf{0 . 0 7 8 1}$ moles of solute contained in every $\boldsymbol{k g}$ of solvent.
Understanding Check: What is the molality of a solution that is prepared by dissolving 1.34 moles of ethyl alcohol in 0.75 kg of water?

Concentration in Osmolality

Osmolality is defined as the number of \qquad per \qquad of solvent.

It can be calculated taking the ratio of osmoles (moles of dissolved particles) to the mass (in kilograms) of the solvent:

$$
\text { Osmolality }=\left(\frac{\text { osmoles of solute }}{\mathrm{kg} \text { of solvent }}\right)
$$

Calculating a solution's osmolality using this equation/definition results in units of osmoles/kg.

- The osmoles/kg unit is often referred to as osmolal

Concentration in Equivalents per Liter (Eq/L)

Some properties of solutions depend on the total charge of the \qquad in solution.

- For example, the ability of a solution to conduct electricity depends on the total charge of the ions in solution. In cells, membrane potentials that generated nerve signals depend on the total charge of ions in solution.

An equivalent $(\mathbf{E q})$ is defined as a mole of \qquad .

The concentration unit of measure called equivalents per liter $(\mathbf{E q} / \mathbf{L})$ is defined as the number of equivalents (Eq) of solute (moles of charge) per liter of solution:

$$
\mathrm{Eq} / \mathrm{L}=\left(\frac{\mathrm{Eq} \text { of solute }}{\operatorname{liter}(\mathrm{L}) \text { of solution }}\right)
$$

At first glance, an equivalent (Eq) may appear to be the same as an osmole, however this is not always the case.

An equivalent is a mole of charge; an osmole is a mole of dissolved particles.
I will elaborate by comparing the number of osmoles vs. the number of equivalents present when one mole of BaCl_{2} is dissolved.

When one mole of BaCl_{2} is dissolved, 3 osmoles are formed.

When one mole of BaCl_{2} is dissolved, 4 equivalents ($\mathbf{E q}$) are formed.

- Since barium ions have a " $2+$ " charge, one mole of barium ions contains two moles of charge (two equivalents).
- The two moles of chloride ions contain a total of two equivalents (two moles of a " $1-$-" charge).

Understanding Check

When one mole of $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is dissolved in water:
a. How many equivalents are present?
b. How many equivalents of sulfate are present (equivalents from sulfate only)?
c. How many equivalents of iron(III) are present (equivalents from Fe^{3+} only)?

Example for Calculating $\mathbf{E q} / \mathbf{L}$

If 0.50 moles of BaCl_{2} is dissolved in enough water to make 2.00 L of solution, what is the $\mathbf{E q} / \mathbf{L}$ concentration of the solution?

$$
\mathrm{Eq} / \mathrm{L}=\left(\frac{\mathrm{Eq} \text { of solute }}{\operatorname{liter}(\mathrm{L}) \text { of solution }}\right)
$$

Eq present:

- For every one mole of BaCl_{2} dissolved, $\mathbf{4} \mathbf{E q}$ are formed (two $\mathbf{E q}$ of $\mathbf{B a}^{\mathbf{2 +}}$ and two $\mathbf{E q}$ of $\mathbf{C l}^{-}$).

$$
\mathrm{BaCl}_{2}(s) \rightarrow \underbrace{\mathrm{Ba}^{2+}(a q)}_{\begin{array}{c}
\text { Two Eq } \\
\text { of } \mathrm{Ba}^{2+}
\end{array}}+\underbrace{\mathrm{Cl}^{-}(a q)}_{\begin{array}{c}
\text { Two Eq } \\
\text { of } \mathrm{Cl}^{-}
\end{array}}=\mathbf{4} \mathbf{~ E q}
$$

- Multiply the number of moles of BaCl_{2} by a factor of $\mathbf{4}$ to convert moles of BaCl_{2} to $\mathbf{E q}$:

$$
0.50 \text { moles } \mathrm{BaCl}_{2}\left(\frac{\mathbf{4} \mathbf{~ E q}}{{\mathrm{~mole} \mathrm{BaCl}_{2}}^{2}}\right)=\mathbf{2 . 0} \mathbf{~ E q}
$$

liters (L) of solution was given: 2.00 L
Insert the $\mathbf{E q}$ present and liters (L) of solution into the equation for $\mathbf{E q} / \mathbf{L}$ concentration:

$$
\mathrm{Eq} / \mathrm{L}=\left(\frac{2.0 \mathrm{Eq}}{2.00 \mathrm{~L}}\right)=1.0 \mathrm{Eq} / \mathrm{L}
$$

Understanding Check

If 0.015 moles of $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is dissolved in enough water to make 2.5 L of solution, what is the $\mathbf{E q} / \mathbf{L}$ concentration of the solution?

Calculations for Solutions

In this section, you will learn how do calculations to find how much solute is contained in a specified amount of solution and how much solution contains a specified amount of solute.

The key to mastering these calculations is to be aware of the following two statements:

- The \qquad between the amount of solute and the amount of solution is the concentration.
- You can convert between the amount of \qquad and the amount of \qquad by using the \qquad as a \qquad .

Molarity Concentration Calculations for Solutions

The molarity (\qquad) of a solution gives us the relationship between the amount (moles) of solute and the volume (L) of solution.

We use the molarity as a conversion factor when converting between the moles of solute in a given volume (L) of solution, or the volume (L) of solution that will contain a given amount (moles) of solute.

Volume of Solution to Amount of Solute Example

Suppose you know that a patient received $3.50 \mathbf{L}$ of a $0.278 \mathbf{M}$ glucose IV solution, how many moles of glucose were administered to the patient?

STEP 1) Set up the equation using the given quantity:

STEP 2) Use the molarity as a conversion factor to find the number of moles:

3.50 L of a $\mathbf{0 . 2 7 8} \mathrm{M}$ glucose solution will contain $\mathbf{0 . 9 7 3}$ moles of glucose.

Moles of Solute to Volume (L) of Solution Example

Suppose you wished to administer 0.200 moles of glucose from a 0.278 M glucose IV solution to a patient, what volume (in liters) of the solution would need to be dispensed?

STEP 1) Set up the equation using the given quantity:

STEP 2) Use the molarity as a conversion factor to find the volume (L) of solution:

0.719 L of a $0.278 \mathbf{M}$ glucose solution would be given to the patient in order to provide 0.200 moles of glucose.

Another Molarity Concentration Calculation Example

Next, I want to show you an example problem that combines the concepts of the previous two videos (calculating a solution's concentration) and the concepts of this section (calculations of how much solute is contained in a certain amount of solution or how much solution contains a certain amount of solute).

If 1.25 g of acetone $\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right)$ is dissolved in enough water to make 0.550 L of solution;
a) What is the molarity (\mathbf{M}) of the solution?
b) How many moles of acetone are contained in 0.0679 L of this acetone solution?
c) What volume (\mathbf{L}) of this acetone solution would contain 0.0079 moles of acetone?
a) What is the molarity (\mathbf{M}) of the solution?

$$
\text { Molarity }=\left(\frac{\text { moles of solute }}{\text { liters (L) of solution }}\right)
$$

- moles of the solute (acetone)

We were not given the number of moles directly, however, we were given the grams of acetone $(1.25 \mathrm{~g})$. Use the molar mass of acetone $(58.09 \mathrm{~g} / \mathbf{m o l e})$ to convert from grams to moles.

1.25 grams $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$	1 mole $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$
	$58.09 \overline{\text { grams } \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}}$

- L of solution was given: $\mathbf{0 . 5 5 0} \mathbf{L}$

Insert the moles of the solute and liters (L) of solution into the equation for molarity:

$$
\text { Molarity }=\left(\frac{0.0215 \text { moles }}{0.550 \mathrm{~L}}\right)=0.0391 \mathrm{moles} / \mathrm{L} \text { or } 0.0391 \mathrm{M}
$$

b) How many moles of acetone are contained in 0.0679 L of this acetone solution?

STEP 1) Set up the equation using the given quantity:

STEP 2) Use the molarity as a conversion factor to find the number of moles:

c) What volume (\mathbf{L}) of this acetone solution would contain 0.0079 moles of acetone?

STEP 1) Set up the equation using the given quantity:

STEP 2) Use the molarity as a conversion factor to find the volume (L) of solution:

Understanding Check: If a particular wine has an ethyl alcohol molarity concentration of 2.8 M , what volume (in liters) of wine contains 10.4 moles of ethyl alcohol (the lethal dosage)?

Understanding Check: How many grams of silver nitrate $\left(\mathrm{AgNO}_{3}\right)$ are contained in 0.384 L of a 0.200 M silver nitrate solution?

Percent (\%) Concentration Calculations for Solutions

Percent (\%) concentration gives the relationship between the amount of solute and the amount of solution:

Example: Using \% (w/v) to Convert From Volume (mL) of Solution to Grams of Solute
Normal saline intravenous (IV) drips are composed of sterile, $0.90 \%(\mathrm{w} / \mathrm{v})$ aqueous sodium chloride (NaCl) solutions. They are used to treat or prevent dehydration and hypovolemia.
If a patient received 2475 mL of a normal saline solution, how many grams of sodium chloride were delivered?

If a patient received 2475 mL of a normal saline solution, then $\mathbf{2 2}$ grams of sodium chloride were delivered.
Example: Using \%(w/v) to Convert From Grams of Solute to Volume (mL) of Solution
What volume (mL) of a normal saline solution $(0.90 \%(\mathrm{w} / \mathrm{v}))$ contains 12.5 grams of sodium chloride?

$\mathbf{1 4 0 0} \mathbf{~ m L}$ of a normal saline solution contain 12.5 grams of sodium chloride.

Understanding Check

The label of the medication vial tells you that the concentration of morphine sulfate for an intravenous injection is $1.0 \%(\mathrm{w} / \mathrm{v})$. If you wish to administer 0.0025 grams of morphine sulfate, what volume (mL) would you inject?

The method for converting between the amount of solute and the amount of solution can also be used for $\%(\mathbf{w} / \mathbf{w})$ and $\%(\mathbf{v} / \mathbf{v})$.
$\mathbf{\%}(\mathbf{w} / \mathbf{w})$ is used to convert between the mass of solute and the mass of solution:

$\%(\mathbf{v} / \mathbf{v})$ is be used to convert between the volume of a liquid solute and the volume of the solution:

Osmolarity Concentration Calculations for Solutions

Osmolarity concentration is a relationship between the amount of solute and the amount of solution:

The osmolarity ($\mathbf{0} \boldsymbol{s} m o l e s / \mathbf{L}$) of a solution gives us the number of osmoles of solute contained in $\mathbf{1} \boldsymbol{L}$ of solution.

- It can therefore be used to convert between \qquad of solute and \qquad of solution.

Example: Using Osmolarity to convert between L of Solution and Osmoles of Solute
How many osmoles of solute are contained in 2.75 L of a solution that has a concentration of 0.0750 osmole/L?

$\mathbf{0 . 2 0 6}$ osmoles are contained in 2.75 L of a 0.0750 osmole/L solution.

Equivalents per Liter (Eq/L) Concentration Calculations for Solutions

$\boldsymbol{E q} / \mathbf{L}$ concentration is a relationship between the amount of solute and the amount of solution:

The $\mathbf{E q} / \mathbf{L}$ of a solution gives us the number of equivalents of solute contained in $\mathbf{1} \mathbf{L}$ of solution.

- It can therefore be used to convert between \qquad of solute and L of solution.

Example: Using $\mathbf{E q} / \mathbf{L}$ to convert between L of Solution and Equivalents of Solute
How many equivalents of solute are contained in 0.830 L of a $0.0100 \mathrm{M} \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ solution?
Solution:

We are given the solution concentration in molarity $(M=$ mole/L), but we need to get $(\mathrm{Eq} / \mathrm{L})$ in order to solve the problem. First (Step 1) we will convert molarity (mole/L) to (Eq/L), and then (Step 2) we will use the Eq / L concentration as a conversion factor to convert from liters of solution to equivalents of solute.

0.0996 Eq of solute are contained in $\mathbf{0 . 8 3 0} \mathbf{L}$ of a $\mathbf{0 . 0 1 0 0} \mathrm{M} \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ solution.

Example: Using $\mathbf{E q} / \mathbf{L}$ to convert between L of Solution and Equivalents of Solute
How many equivalents of sulfate (not total equivalents) are contained in 0.830 L of a 0.0100 M $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ solution?

Solution:

We will do this problem in the same way as we did for the previous example problem, with one exception: we will convert the given molarity $(0.0100 \mathbf{M})$ to $\mathbf{E q}$ of $\mathbf{S O}_{4}{ }^{2-/} \mathbf{L}$.

Step 2:

Molality and Osmolality Concentration Calculations for Solutions

Molality is used to covert between moles of solute and $\boldsymbol{k g}$ of \qquad :

Osmolality is used to covert between osmoles of solute and kg of solvent:

In practice, it is more useful to know how much solute is contained in a particular amount of solution (not solvent) or how much solution (not solvent) contains a particular amount of solute.

In order to work with the amount of solution instead of the amount of solvent, a very useful approximation can be made for dilute aqueous solutions.
In the case of dilute aqueous solutions, the solution is almost entirely solvent.
Since 1 kg of water has a volume of 1 L , it is a reasonable approximation to equate the amount of solution to the amount of solvent; 1 kg of solvent is assumed to be the same as 1 L of solution.

Using this approximation, the molality is \qquad to the molarity.

For the same reason, using this approximation, the osmolality is equal to the osmolarity.
$\left.\begin{array}{|c|}\hline \text { For Dilute Aqueous Solutions: } \\ \text { Osmolality Units Can Be Replaced by Osmolarity Units: } \\ \left(\frac{\text { \# osmoles of solute }}{1 \text { kg of solvent }}\right)\end{array}>\left(\frac{\text { \# osmoles of solute }}{1 \mathrm{~L} \text { solution }}\right)\right)$
osmolality
osmolarity

Summary of Conversion Factors for Solution Calculations

Amount of Solute	When converting Between Use One of the Following Concentrations as the Conversion Factor:	Amount of Solution
moles of solute		liters (L) of solution
osmoles of solute		liters (L) of solution
equivalents (Eq) of solute		liters (L) of solution
mass of solute (typically grams)		mass of solution (typically grams)
volume of solute (typically mL)		volume of solution (typically mL)
grams of solute		mL of solution

Understanding Check

Before Watching the Next Video: Do the Problems in the Calculations for Solutions Worksheet

The Solubility of Biological Compounds

Biological compounds are the \qquad that occur in biological organisms.

Examples of biological compounds that you will learn about in this book are: steroids, fatty acids, bile salts, phospholipids, glycolipids, cholesterol, triglycerides (animal fat and vegetable oil), proteins, carbohydrates, RNA, and DNA.

Biological compounds can be put into one of three categories based on their \qquad .

1) Hydrophilic

2) Hydrophobic
3) Amphipathic

1) Hydrophilic Compounds

Hydrophilic compounds \qquad in water.

- The word hydrophilic is derived from an ancient Greek word that is translated as "loving water."

Compounds that are significantly \qquad and/or can \qquad with water tend to be water soluble.

As a general rule, molecules that have at least \qquad polar functional group for every \qquad carbon atoms are water soluble, and therefore classified as hydrophilic.

- You saw four polar functional groups in chapter 4: the hydroxyl group (-OH), the carbonyl group $(\mathrm{C}=\mathrm{O})$, the carboxyl group (-COOH), and the carboxylate group (COO).
- There are a few other polar functional groups that you will see in later chapters.
- The presence of \qquad will also help a biological compound to dissolve in water because of the attraction of water molecules' dipoles to the charged region of the compound (ion-dipole interactions).

Examples of Hydrophilic Compounds: Monosaccharides

The Structural Formulas of Three Monosaccharides

D-Glucose
(makes up starch and cellulose; source of energy)

D-Ribose (occurs in ATP, RNA, and coenzymes)

D-Fructose
(sweeter than table sugar, a component of corn syrup, occurs in fruit)

2) Hydrophobic Compounds

Hydrophobic compounds \qquad dissolve in water.

- The word hydrophobic is derived from an ancient Greek word that is translated as "having a horror/fear of water."

As a general rule, molecules that have less than one polar functional group for every five carbon atoms do not dissolve in water and are therefore hydrophobic.

An Example of a Hydrophobic Compound: Cholesterol

Note that cholesterol does have one polar hydroxyl (-OH) functional group, however the nonpolar part of the molecule is so large that the ratio of polar functional group to total carbons is much less than 1:5 and therefore cholesterol does not dissolve in water.

3) Amphipathic Compounds

Amphipathic compounds have \qquad a large nonpolar region, which is not strongly attracted to water, and an extremely polar and/or formally-charged region, which is quite strongly attracted to water.

An Example of an Amphipathic Compound: A Glycolipid

The particular glycolipid shown in the structure below is one of the most prevalent of the glycolipids that make up cell membranes within the brain.

Amphipathic compounds are often illustrated using a \qquad for the polar head that is attached to one or more long tubular structures that represent the carbon chains in the nonpolar tail.

In some amphipathic compounds, such as the glycolipid shown above, there are $t w o$ carbon chains that make up the nonpolar tail; in other amphipathic compounds, the tail is composed of only one carbon chain.

An example of an amphipathic compound that has a single carbon chain tail is palmitate.
Palmitate

When amphipathic molecules are put into water they do not dissolve; they exist as monolayers and/or micelles.

- As \qquad , amphipathic compounds form a single (mono) layer of individual particles oriented with their polar heads toward the water and their nonpolar tails pointing upward.

Amphipathic compounds can also exist in water as
\qquad arrangements called \qquad .

The amphipathic compounds making up micelles are oriented with their polar heads outward, toward the water, and their nonpolar tails inward, away from the water.

Soap consists of palmitate and/or similar amphipathic compounds.

As you know, soap and water are much more effective at removing oil from skin than is just water alone. This is because there is no strong attraction between the nonpolar oil molecules and water; however, soap forms micelles that encapsulate the oil within their nonpolar tail interiors. Micelles containing the oil can move into the rinse water and away from the skin.

When a liquid contains compounds that are encapsulated by amphipathic compounds in micelles, the mixture is called an \qquad .

Understanding Check
Predict whether each of the following biological compounds is hydrophobic or amphipathic?
a.

b.

Understanding Check

Predict whether each of the following biological compounds is hydrophilic or hydrophobic?
a.

vitamin C
b.

retinol (a molecule in the vitamin A group)

Understanding Check

The ion shown below is called laurel sulfate. Laurel sulfate is amphipathic and is often used in shampoo.Is the polar head located on the right-hand or left-hand end of the molecule as it is illustrated below?

laurel sulfate

Dilutions

Dilution is the process of adding more solvent to a solution.

A series of dilutions (left to right) of an aqueous solution containing a colored solute.
Image Source: Wikimedia Commons, Author: A. Markov, CC-BY, http://creativecommons.org/licenses/by/2.0/legalcode
When considering dilutions, the concentration of the solution is inversely proportional to the volume of the solution.

- For example, if enough solvent is added to double the volume, then the concentration is decreased by a factor of $1 / 2$.
As you saw in chapter 5 with Boyle's gas law, when properties are inversely proportional, the product of the initial and final properties are equal.
In the case of dilution, the product of the initial (un-diluted) concentration $\left(\mathrm{C}_{1}\right)$ and the volume before dilution $\left(\mathrm{V}_{1}\right)$ is equal to the product of the final (diluted) concentration $\left(\mathrm{C}_{2}\right)$ and the final volume $\left(\mathrm{V}_{2}\right)$:

$$
\mathrm{C}_{1} \cdot \mathrm{~V}_{1}=\mathrm{C}_{2} \cdot \mathrm{~V}_{2}
$$

This equation is called the " \qquad
\qquad " and it can be used with any of the concentration units of measure that include the volume of solution (molarity, osmolarity, \% (w/v), \% (v/v), or Eq/L).

- For example, the dilution equation can be written using molarity (\mathbf{M}) concentration:

$$
\mathrm{M}_{1} \cdot \mathrm{~V}_{1}=\mathrm{M}_{2} \cdot \mathrm{~V}_{2}
$$

Example: You begin with 25 mL of a 1.8 M aqueous LiCl solution and add enough water to give a final volume of 35 mL . What is the new concentration?

$$
\begin{gathered}
\text { Strategy: } \mathrm{M}_{1} \cdot \mathrm{~V}_{1}=\mathrm{M}_{2} \cdot \mathrm{~V}_{2} \\
\frac{\mathrm{M}_{1} \mathrm{~V}_{1}}{\mathrm{~V}_{2}}=\frac{\mathrm{M}_{2} \mathrm{~V}_{2}}{\mathrm{~V}_{2}} \\
\begin{array}{l}
\mathrm{M}_{1}=1.8 \mathrm{M} \\
\mathrm{~V}_{1}=25 \mathrm{~mL}
\end{array} \mathrm{M}_{2}=? \\
\mathrm{M}_{2}=\frac{\mathrm{V}_{2}=35 \mathrm{~mL}}{} \\
\mathrm{M}_{1} \mathrm{~V}_{1} \\
\mathrm{~V}_{2}
\end{gathered}=\frac{(1.8 \mathrm{M})(25 \mathrm{~mL})}{(35 \mathrm{~mL})}=\mathbf{1 . 3 ~ \mathbf { M }} .
$$

Understanding Check
If 1.70 L of a 1.50 M solution is diluted to a final volume of 3.50 L , what is the final concentration?

Colloids and Suspensions

When particles that are larger than typical molecules or ions are put into another medium, typically water, the resulting mixture is classified as either a colloid or a suspension depending on the \qquad
\qquad .

In \qquad , the dispersed particles (colloidal particles) are small enough that they do not settle to the bottom of their container.

Conversely, in \qquad , the solid particles are large enough that gravity causes them to settle to the bottom of their container unless the mixture is repeatedly or constantly stirred or shaken.

Colloids

Colloidal particles are typically in the size range of 1 nanometer up to 1 micrometer.
Because of their relatively small size, the kinetic energy from collisions with the particles making up the medium, typically water molecules, overcomes the force of gravity and the particles remain evenly dispersed in the medium.
If the particles are very small, the colloid will not "scatter" light and it will therefore appear clear or colored (but not cloudy). As the particle size gets larger, a colloid mixture will appear cloudy since the light entering the medium is scattered in many different directions by particles.
The micelles that you learned about in this chapter are examples of colloids.
Another example of a colloid is milk.

- Milk contains small agglomerations of many individual protein molecules (these particles are called "casein") as well as particles composed of emulsified fat (triglyceride) molecules. It is these fat particles that are separated from milk to make butter. Milk is classified as a colloid rather than a suspension because the colloidal particles do not settle to the bottom. Note that milk containers do not say "shake well before using" because the particles are small enough to remain evenly dispersed.
Other examples of colloids are mayonnaise and hand lotion.

Suspensions

The solid particles contained in suspensions are typically larger than 1 micrometer.
Because of their relatively large size compared to colloidal particles, the force of gravity causes the particles to settle to the bottom of the container. The settling process may take seconds or several hours. When stirred or shaken, the suspension will appear cloudy since the particles are large enough to scatter light.
An example of a suspension is muddy water.

- If muddy water is constantly stirred, the clay/dirt particles are evenly distributed throughout the container; however, if the stirring is discontinued, the particles will settle to the bottom of the container.

Another example of a suspension is orange juice.
If a liquid contains solid particles and is labeled " \qquad before using," then it is a suspension.

Understanding Check

If sand is added to a glass of water, is the resulting mixture a colloid or suspension?

Diffusion and Osmosis

Diffusion

Just like gases, solute and solvent particles in liquid phase solutions travel in random directions until they collide with other particles or the container wall.

This type of random movement is called Brownian motion and results in a process called \qquad .

Diffusion is defined as the net transport of a substance, due to Brownian motion, from a region of
\qquad concentration of the substance to a region of \qquad concentration of the substance.

It is the random movement of particles that causes them to be evenly mixed.

```
(e) H2O Molecule
Food Coloring Molecule
```

In the diffusion process, substances will spontaneously move from an area of greater concentration (of the particular substance) to lesser concentration until it is evenly distributed.

Before Diffusion of Food Coloring Molecules Occurs

When a substance is not evenly distributed and has a greater concentration in one region and a lesser concentration in another region, we say that there is a " \qquad ." $\ldots \ldots$ a concentration gradient is present, and there is not a physical barrier preventing transport, diffusion will occur.

- We say that the diffusing species move " \qquad the concentration gradient."

There can only be a net movement of dissolved particles from areas of lesser concentration to areas of greater concentration (against the concentration gradient) when external \qquad is supplied.

Osmosis

A \qquad is any type of physical barrier through which only certain substances can pass.

- For example, many membranes, both natural and synthetic, are permeable to water (allow water to pass) but are impermeable to ions (do not allow ions to pass).

As a general rule, biological membranes in cells, are permeable to nonpolar molecules and small polar molecules, and are impermeable to ions and large polar molecules.

Water molecules pass through holes (pores) in biological membranes called aquaporins.

Osmosis is the net transport of \qquad from a solution with a lesser solute particle concentration through a semipermeable membrane to a solution with a greater solute particle concentration.

Note that a semipermeable membrane allows solvent to continuously move back and forth between both sides of a membrane; however, in osmosis, there is a greater amount of solvent transported in the direction from the side of the membrane with lesser solute particle concentration to the side of the membrane with greater solute particle concentration, resulting in a net (overall) transport of solvent in that direction.

We will only discuss osmosis for aqueous solutions, therefore for our purposes, osmosis is the net transport of \qquad from a solution with a lesser solute particle concentration through a semipermeable membrane to a solution with a greater solute particle concentration.

Osmosis is very important in biology because cell membranes are semipermeable.

The difference in solute particle concentration (osmolarity) between the
\qquad of the cell and the \qquad solution has important
implications in maintaining the viability of the cell.

Consider the three different cases for the solution that surrounds a cell:

Hypertonic, Isotonic, and Hypotonic Solutions

Image Source: Wikimedia Commons, Author: Zephryis CC-BY-SA, http://creativecommons.org/licenses/by-sa/3.0/legalcode

1. In a \qquad solution, there is a greater solute particle concentration outside the cell than inside of the cell, so there is a net flow of water from the inside to the outside of the cell. This results in the shrinking of the cell.
2. In an \qquad solution, the concentration of solute particles is the same on the inside and outside of the cell, therefore the flow of water in and out of the cell are equal and the cell maintains it natural and healthy (viable) shape.
3. In a \qquad solution, there is a lesser solute particle concentration outside the cell than inside the cell, and there is a net flow of water from the outside to the inside of the cell. This results in the swelling and possible bursting of the cell.

The pressure associated with the transport of water in the osmosis process is called \qquad .

Final State:

Water molecules moved from the chamber with pure water (right side) to the side with greater solute concentration (left side):

For membranes that form a continuous enclosure around a solution, such as those of biological cells, the osmotic pressure is the pressure required to stop the net transport of water into or out of cells.

Hypotonic

When the solution around a cell becomes hypotonic, there is a lesser solute particle concentration outside the cell than inside the cell, and therefore there is a net flow of water from the outside to the inside of the cell.
As water flows into the cell, the pressure on the inside of the cell increases (imagine inflating a balloon).
The pressure in the cell will continue to increase until either (1) the osmotic pressure is reached and osmosis stops, or (2) the cell bursts. The bursting of red blood cells is called hemolysis and is evidenced by the appearance of red color in the blood plasma.

Understanding Check: Which of the following systems (\#1 or \#2) would have a greater osmotic pressure:
System \#1: 1.00 M sodium chloride on one side of a semipermeable membrane and pure water on the other side.
or
System \#2: 0.500 M sodium chloride on one side of a semipermeable membrane and pure water on the other side.
HINT: The greater the difference in osmolarity between each side of the semipermeable membrane, the greater the osmotic pressure.

Understanding Check:

Which of the following systems (\#1 or \#2) would have a greater osmotic pressure:
System \#1: 1.00 M NaCl on one side of a semipermeable membrane and pure water on the other side. or
System \#2: $1.00 \mathrm{M} \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ on one side of a semipermeable membrane and pure water on the other side.

