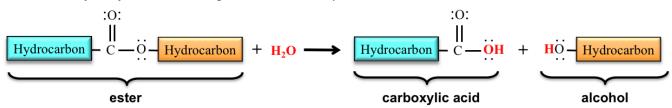
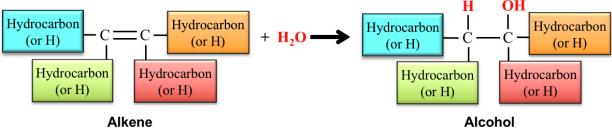

Classes of Organic Reactions

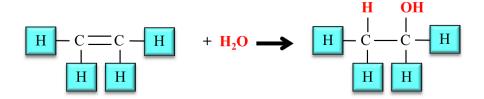
1) Hydrogenation: Reduction of Alkenes


• Alkenes and other unsaturated hydrocarbons undergo a reduction reaction hydrogenation, in which hydrogen gas (H₂) in the presence of a catalyst, acts as a reducing agent.

• Example:

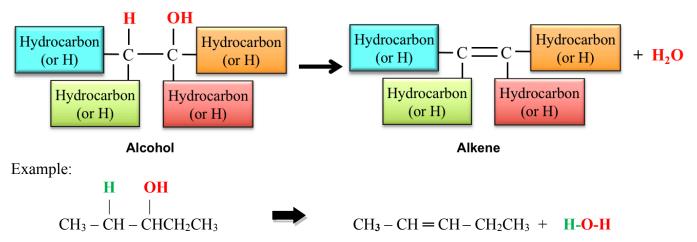

2) Hydrolysis of Esters

• The hydrolysis of an ester produces a *carboxylic acid* and an *alcohol* molecule.



3) Hydration of Alkenes

In a hydration reaction, H₂O is added "across" a double bond in an alkene to produce an alcohol.


Example:

4) Dehydration of Alcohols

Dehydration is the reverse of hydration.

• Water (H₂O) is removed from an alcohol to form an alkene.

Combustion Reactions

• Hydrocarbons undergo combustion (react with oxygen O₂) to produce CO₂ (g) + H₂O (g)

$$C_xH_y + O_2(g) \rightarrow CO_2(g) + H_2O(g)$$

o Example: combustion of methane

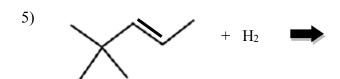
$$CH_4 + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g)$$

Problems

Complete the following reactions:

1)

$$\begin{array}{c}
O \\
\parallel \\
CH_3CH_2 - C - O - CH_3 + H_2O
\end{array}$$


2) Complete and balance

$$C_5H_{12} + O_2$$

3)

4)

Hint: If you are struggling with this one, draw the line bond structure of the reactant first!

Hint: If you are struggling with this one, draw the line bond structure of the reactant first!

6)

7)

8) Dehydration:

9) Dehydration:

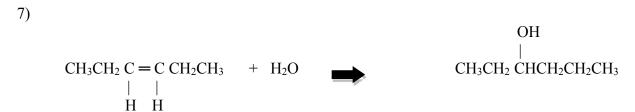
Hint: If you are struggling with this one, draw the line bond structure of the reactant first!

SEE NEXT PAGE FOR KEY

KEY

Complete the following reactions:

1)


O
$$\parallel$$
 CH₃CH₂ - C - O - CH₃ + H₂O \longrightarrow CH₃CH₂ - C - OH + CH₃OH

2) Complete and balance

Hint: If you are struggling with this one, draw the line bond structure of the reactant first!

Hint: If you are struggling with this one, draw the line bond structure of the reactant first!

Note CH_2 = $CHCH_3$ is the exact same molecule as $CH_3CH = CH_2$ so either one is correct here!

8) Dehydration:

OH
$$\begin{array}{c}
|\\
CH_3 CH_2CHCH_2CH_3
\end{array}$$

$$CH_3CH = CHCH_2CH_3 + H_2O$$

9) Dehydration:

Hint: If you are struggling with this one, draw the line bond structure of the reactant first!