Educational Goals

1. Given the formula of a diatomic or small molecule, draw the line bond structure.
2. Understand and construct condensed and skeletal structural formulas given the line bond structures and vice versa.
3. Given the structural formula, determine the formal charge of \mathbf{O} and \mathbf{N} atoms.
4. Given the line bond structure of a small molecule, predict the molecular shape and bond angle(s).
5. Given the structure of a large molecule, predict the bond angle(s) around any atom.
6. Define electronegativity and explain its relationship to polar covalent bonds.
7. Give a simple rule that can be used to predict whether or not a covalent bond is polar.
8. Classify diatomic, small, and large molecules as polar or nonpolar.
9. Describe, compare, and contrast the five noncovalent interactions.
10. Describe, compare, and contrast the four classes of hydrocarbons.
11. Given the structural formula of an alkane, alkene, or alkyne, be able to give the name and vice versa.
12. Explain the difference between constitutional isomers, conformations, and the stereoisomers known as geometric isomers. Give examples of two different classes of hydrocarbons that can exist as geometric isomers.
13. Define the term functional group and describe the structural features that distinguish hydrocarbons, alcohols, carboxylic acids, and esters from one another.

Organic chemistry is the chemistry of carbon-containing molecules.

Review: The Octet Rule in the Formation of Molecules

Octet Rule: Chemical compounds tend to form so that each atom, by gaining, losing, or sharing electrons, has an \qquad of electrons in its outermost shell (n).

Exception to the octet rule \qquad and \qquad .

- Hydrogen and helium have filled outer shells with just \qquad electrons.

Covalent bonding results from the sharing of electron pairs between two atoms.

Method for Drawing Line Bond Structures

Step 1: Count the total number of \qquad
\qquad from all the atoms in the molecule.

Example: $\mathrm{H}_{2} \mathrm{O}$
2 Hatoms $2 \times 1 e^{-}=2 e^{-}$
1 O atom $1 \times 6 e^{-}=\underline{6 e^{-}}$
Total number of valence $e-=8 e$ -
The line bond structure of $\mathrm{H}_{2} \mathrm{O}$ will have 8 electrons
Step 2: Draw the "Skeleton Structure"

- Attach the atoms together with \qquad in the most symmetric way possible.

$$
\mathrm{H}-\mathrm{O}-\mathrm{H}
$$

Step 3: Subtract the number of electrons used to make the skeleton structure from the total number of valence electrons.

Total number of valence $e^{-} \quad 8 e^{-}$
Minus electrons used in skeleton $-4 e^{-}$
Electrons remaining to be added $=4 e-$
Step 4: Add the remaining electrons as \qquad as evenly as possible on all atoms except hydrogen.

$$
\mathrm{H}-\ddot{\mathrm{O}}-\mathrm{H}
$$

Step 5: Check for \qquad .

- Are there 8 electrons around all atoms (except hydrogen)?

If YES, you are finished!

Step 6 (if needed): Use lone pairs to make \qquad or \qquad bonds until the octet rule is satisfied for all atoms in the molecule.

- Let's do a couple of examples to see how that works!
- We will do O_{2}, and N_{2}.

Example O_{2}

Step 1: Count the total number of valence electrons from all the atoms in the molecule.

- How many valence electrons in O_{2} ?

2 O atoms $2 \times 6 e^{-}=12 e^{-}$
Total number of valence $e^{-}=12 e^{-}$

Step 2: Draw the "Skeleton Structure"
-Attach the atoms together with single bonds in the most symmetric way possible.

$$
\mathrm{O}-\mathrm{O}
$$

Step 3: Subtract the number of electrons used to make the skeleton structure from the total number of valence electrons.

Total number of valence $e^{-} \quad 12 e^{-}$
Minus electrons used in skeleton $-2 e^{-}$
Electrons remaining to be added $=10 e$ -
Step 4: Add the remaining electrons as lone pairs as evenly as possible on all atoms except hydrogen.

Step 5: Check for Octets

- Are there 8 electrons around all atoms (except hydrogen)?

- If NO, use lone pairs to make double or triple bonds.

Step 6 (if needed): Use lone pairs to make double or triple bonds until the octet rule is satisfied for all atoms in the molecule.

Example \mathbf{N}_{2}

Step 1: Count the total number of valence electrons from all the atoms in the molecule.

- How many valence electrons in N_{2} ?

2 N atoms $2 \times 5 e^{-}=10 e^{-}$
Total number of valence $e^{-}=10 e^{-}$

Step 2: Draw the "Skeleton Structure"
-Attach the atoms together with single bonds in the most symmetric way possible.

$$
N-N
$$

Step 3: Subtract the number of electrons used to make the skeleton structure from the total number of valence electrons.

Total number of valence $e^{-} \quad 10 e^{-}$
Minus electrons used in skeleton $-2 e^{-}$
Electrons remaining to be added $=8 e-$
Step 4: Add the remaining electrons as lone pairs as evenly as possible on all atoms except hydrogen.

Step 5: Check for Octets

- Are there 8 electrons around all atoms (except hydrogen)?
- If NO, use lone pairs to make double or triple bonds.

Step 6 (if needed): Use lone pairs to make double or triple bonds until the octet rule is satisfied for all atoms in the molecule.

Draw the line bond structure for ammonia: $\mathbf{N H}_{\mathbf{3}}$

Step 1: Count the total number of valence electrons from all the atoms in the molecule. Molecular formula of molecule \qquad					Step 2: Draw the "Skeleton Structure" -Attach the atoms together with single bonds in the most symmetric way possible. Central atom is: \qquad Draw skeleton:
Atom	Number of atoms		Number of valence electrons per atom	Totals	
N	1	X		$=$	
H	3	X			
Total \# of electrons in line bond structure $=$					\# of electrons used in skeleton = \qquad (multiply \# of bonds in skeleton by 2)
Step 3: Subtract the number of electrons used to make the skeleton structure from the total number of valence electrons. Total \# of electrons in structure \qquad (from step 1 above) \# of electrons used in skeleton - \qquad (from step 2 above) Remaining \# electrons to be added= \qquad					Step 4: First: Re-draw skeleton here:
					Next, Add the remaining electrons as lone pairs as evenly as possible on all atoms except hydrogen.
Step 5: Check for Octets Check the structure in step 4 for octets of electrons around each atom (except for hydrogen). If the octet rule is satisfied, you are done. If the octet rule is not satisfied, go the Step 6.					Step 6 (if needed): Use lone pairs to make double or triple bonds until the octet rule is satisfied for all atoms in the molecule.

Understanding Check: Draw the line bond structure for sulfur trioxide: $\mathbf{S O}_{\mathbf{3}}$

Step 1: Count the total number of valence electrons from all the atoms in the molecule. Molecular formula of molecule				Step 2: Draw the "Skeleton Structure" -Attach the atoms together with single bonds in the most symmetric way possible. Central atom is: \qquad Draw skeleton:
Atom	Number of atoms	Number of valence electrons per atom	Totals	
			$=$	
			$=$	
Total \# of electrons in line bond structure =				\# of electrons used in skeleton $=$ \qquad (multiply \# of bonds in skeleton by 2)
Step 3: Subtract the number of electrons used to make the skeleton structure from the total number of valence electrons.				Step 4: First: Re-draw skeleton here:
Total \# of electrons in structure \qquad (from step 1 above)				
\# of electrons used in skeleton - \qquad (from step 2 above) Remaining \# electrons to be added= \qquad				Next, Add the remaining electrons as lone pairs as evenly as possible on all atoms except hydrogen.
Step 5: Check for Octets Check the structure in step 4 for octets of electrons around each atom (except for hydrogen).				Step 6 (if needed): Use lone pairs to make double or triple bonds until the octet rule is satisfied for all atoms in the molecule.
If the octet rule is satisfied, you are done. If the octet rule is not satisfied, go the Step 6.				

Structural Formulas

A molecular formula shows us the number and types of atoms contained in a molecule.

- Example of a molecular formula: $\mathrm{H}_{2} \mathrm{O}$

Drawings, such as line bond structures, that show the \qquad of atoms within molecules are called \qquad formulas.

- Example of a structural formula: $\mathrm{H}-\mathrm{O}_{\bullet}^{\bullet}-\mathrm{H}$

Structural Formulas vs. Molecular Formulas

The molecular formula of isopropyl alcohol (often called rubbing alcohol) is $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$.
The structural formula of isopropyl alcohol is:

Which of these two types of formulas, the molecular formula or the structural formula, do you think is more informative?

There are actually three completely different molecules that have this same molecular formula of $\mathbf{C}_{3} \mathbf{H}_{\mathbf{8}} \mathbf{O}$:

isopropyl alcohol

1-propanol

ethyl methyl ether

Line bond structural formulas explicitly show all the information about how the atoms are connected and the presence of all single bonds, double bonds, triple bonds and lone pairs.

In practice, chemists often use one of two short-cut forms of structural formulas:
\qquad structural formulas or

- \qquad structural formulas

Condensed Structural Formulas (Condensed Structures)

When drawing condensed structures:

- Single bonds between carbon and hydrogen are omitted.
- Example: a carbon bonded to three hydrogen atoms is drawn as " $\mathbf{C H}_{3}$ "
- Single bonds between carbons (C-C) can be omitted.
- Single bonds between oxygen or nitrogen and hydrogen can be omitted.
- Example: an oxygen bonded to one hydrogen atom can be drawn as "OH."
- Bonds between all other pairs of atoms must be drawn.
- Lone pairs can be omitted.
- Double and triple bonds are always drawn.

Example: Propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$

The connectivity of the carbon and hydrogen atoms can be seen \qquad in propane's line bond structure:

In condensed structures, \qquad bonds between carbon and hydrogen atoms are omitted. We can draw the condensed structure of propane as:

When drawing condensed structures, carbon-carbon single bonds can be omitted when the carbon atoms are in a \qquad such as the three carbons in propane:

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$

Even though not all of the bonds are drawn in condensed structures, they are \qquad and can be unequivocally known.

Example: Isopentane $\left(\mathrm{C}_{5} \mathrm{H}_{12}\right)$
In isopentane, there are four carbons bonded in a linear sequence.

There is one carbon that " \qquad " from the linear sequence.

In condensed structures, single bonds between carbon and hydrogen atoms are omitted. We can draw the condensed structure of isopentane as:

Further condensation is possible.

- Single bonds between carbon atoms in a linear sequence can be omitted as in the case of the four carbons in a linear sequence in isopentane (as shown below).

Example: Isopropyl bromide $\left(\mathbf{C}_{3} \mathbf{H}_{7} \mathbf{B r}\right)$

The line bond structure of isopropyl bromide is:

In condensed structures, single bonds between atom pairs other than $\mathbf{C - C}, \mathbf{C - H}, \mathbf{O}-\mathbf{H}$, and $\mathbf{N}-\mathbf{H}$ are always drawn.

- Therefore, the $\mathbf{C - B r}$ bond is drawn in the condensed structures:

- Lone pairs can be omitted in condensed structures.

Further condensation is possible.

- Single bonds between carbon atoms in a linear sequence can be omitted as in the case of the three carbons in a linear sequence in isopropyl bromide.

Skeletal Structural Formulas (Skeletal Structures)

Another structural formula that chemists use in order to more easily and quickly draw molecules is called the \qquad structure.

When drawing skeletal structures:

- Carbons are not drawn; they are implied to exist where lines (bonds) \qquad or at the \qquad of a line (bond).
- Hydrogens are omitted if they are bonded to carbon.
- Bonds between oxygen or nitrogen and hydrogen may be omitted.
- Atoms other than carbon and hydrogen are always drawn.
- Lone pairs can be omitted.

Example: Propane $\left(\mathrm{C}_{3} \mathbf{H}_{8}\right)$

Line Bond Structure

Condensed Structure

Skeletal Structure

If the hydrogens bonded to carbon are omitted from skeletal structures, how do we determine how many hydrogens are bonded to each carbon? The answer to this is quite simple and is related to the octet rule:

- We never find lone pairs on carbon in any molecule that contains more than one carbon atom.
- The octet rule requires that carbons will always have four pairs of shared electrons around them, therefore we can deduce the number of hydrogens that are bonded to each carbon in a skeletal structure.

Example: 2-Fluorobutane

Line Bond Structure

Condensed Structure

Skeletal Structure

Example: Ethanol

Understanding Check: Draw condensed and skeletal structure of diethyl ether.

Understanding Check: Draw condensed and skeletal structure of ethylamine.

Understanding Check: The line bond structure of a large hydrocarbon molecule is shown below. Draw the condensed structure and the skeletal structure of this molecule.

Structural Formulas of Cyclic Compounds

Many compounds contain atoms bonded, not in a linear sequence, but in a "ring" pattern.
Molecules that contain rings of atoms are called \qquad compounds.

- An example of a cyclic compound is a molecule called cyclohexane. The three structural formulas for cyclohexane are:

Line Bond Structure

Condensed Structure

Skeletal Structure

Molecular Geometry

Let's define molecular geometry as the \qquad arrangement of a molecule's atoms.

Molecules very rarely take the shapes that are drawn in their structural formulas.
Structural formulas, whether line bond, condensed, or skeletal, are either one- or two-dimensional.
Most molecules are \qquad dimensional.

- Line bond structures are commonly drawn with the lines/bonds at 90° angles, but the bond angles in molecules (the angle between covalent bonds), with rare exceptions, are not at 90°.
- Skeletal and condensed structures often use bond angles of 90° or approximately 120° only for convenience in depicting the bonding pattern connectivity, not necessarily to represent the actual bond angles/geometry of the molecule.

Example: Fentanyl
The skeletal structure of fentanyl is:

The "geometry" of the molecule can be depicted in two types of views:

Definition: a \qquad is the angle between two covalent bonds.

Structural formulas, whether line bond, condensed, or skeletal, do not explicitly show the \qquad bond angles within molecules. However, the actual bond angles can be \qquad from a molecule's structural formula.

To know the exact molecular geometry, we must know all of the bond angles and bond lengths (distance between bonded atoms) within a molecule.

We will ignore variations in bond lengths since these relatively minor deviations in length do not significantly affect the concepts to be discussed.

Therefore, for our purposes, predicting molecular geometry will be equivalent to predicting the bond angles within a molecule.

When discussion molecular geometry and other concepts in this course, we will often use the following molecular size categories:

Molecular Size Category	Description	Example(s)	
Diatomic Molecule	Molecule contains only two atoms	H_{2}	HCl
Small Molecule	Molecule has one central atom with all other atoms bonded to the central atom	CH_{4}	$\mathrm{H}_{2} \mathrm{O}$
Large Molecule	Larger than Small Molecule; there is not just one single, central atom with all the other atoms bonded to it	$\mathrm{C}_{3} \mathrm{H}_{8}$	

For diatomic molecules, the geometry of the molecule is always \qquad ; the two atoms that make up the molecule exist on the same line.

- Examples: H_{2} and HCl

For small and large molecules: bond angles can be predicted from the \qquad formula using a model called Valence Shell Electron Pair Repulsion (VSEPR) Theory.

Valence Shell Electron Pair Repulsion (VSEPR) Theory: Predicting Bond Angles

The bond angles around any particular atom of interest in a molecule can be predicted because the groups of electrons surrounding this atom will \qquad each other.

- These \qquad
\qquad (abbreviated as EG) consist of, as the name implies, groups of electrons that are localized to a certain area.

You can easily recognize an EG by looking for one of the following:
(1) \mathbf{A} \qquad (an atom bonded to the atom of interest).

- Each bonded atom counts as one electron group.
- Whether the bonded atom is connected to the atom of interest with a single, double, or triple bond, all of these shared electrons are localized within a particular region and therefore count as one $\boldsymbol{E G}$.
(2) \mathbf{A} \qquad (on the atom of interest).
- Each lone pair counts as one electron group (EG
- Even though lone pairs are not attached to other atoms, they do occupy a localized area around the atom of interest and therefore repel other electron groups.

Example: 2 Electron Groups

What do you think will happen to these two balloons if they both have a negative charge?

Draw the balloons inside the right-most sphere.

Electrostatic \qquad will cause the balloons to move as far apart from each other as possible.

The same thing happens with \qquad .

Draw the line bond structure for $\mathbf{C O}_{2}$.

The central atom (C) goes in the \qquad of the sphere.

- There are \qquad electron groups around the central atom!
- Each bonded atom counts as \qquad electron group.

The electron groups are placed as \qquad apart from each other as possible!

Both electron groups are on the same \qquad and are at a \qquad angle.

Example: 3 Electron Groups

If 3 negatively charged balloons are placed into a hollow, clear plastic sphere, electrostatic repulsion will cause the balloons to move as far apart from each other as possible.
The same thing happens with electron groups.

Draw the line bond structure for $\mathbf{S O}_{3}$.

The central atom (S) goes in the middle of the sphere.
There are \qquad electron groups around the central atom!

All electron groups are on the same \qquad and are at \qquad angles.

Example: 4 Electron Groups

If 4 negatively charged balloons are placed into a hollow, clear plastic sphere, electrostatic repulsion will cause the balloons to move as far apart from each other as possible.

The same thing happens with electron groups.

Draw the line bond structure for a methane molecule ($\mathbf{C H}_{4}$).

The central atom (C) goes in the middle of the sphere.
How many electron groups are around the central atom?
There are $\underline{4}$ electron groups around the central atom!
The electron groups are placed as far apart from each other as possible!

This arrangement is a 4-sided, 3-dimensional structure with electron groups at about \qquad angles.

Electron Arrangement Review

2 Electron Groups

120°
3 Electron Groups

110°
4 Electron Groups

For three or four electron groups, the angles will deviate slightly from $\mathbf{1 2 0}^{\mathbf{o}}$ and $\mathbf{1 1 0}^{\mathbf{o}}$ when one (or more) of the electron groups is a lone pair.

- In this course, these slight deviations in bond angles can be ignored because their effects are not significant in the chemistry that will be discussed.

The Geometry of Diatomic Molecules

Molecular Size Category	Description	Example(s)	
Diatomic Molecule	Molecule contains only two atoms	H_{2}	HCl

For diatomic molecules, the geometry of the molecule is always linear; the two atoms that make up the molecule exist on the same line.

- Since there is only one bond (whether single, double, or triple), it does not make sense to talk about a bond angle.
- To discuss a bond angle, there must be two bonds originating from the same atom.

The Molecular Shape of Small Molecules

Molecular Size Category	Description	Example(s)	
Small Molecule	Molecule has one central atom with all other atoms bonded to the central atom	CH_{4}	$\mathrm{H}_{2} \mathrm{O}$

For small molecules, there exists one central atom with all other atoms bonded to the central atom, therefore the only bond angles that exist are between bonds \qquad from the central atom.

This simplified geometry allows us to categorize (name) particular molecular \qquad seen in small molecules.

Given the line bond structure, small molecules can be categorized by their molecular shape as follows:

Step 1. Get the Electron Group Arrangement

Find the angle between the electron groups and their arrangement around the central atom.

- Two electron groups: 180° angle, both electron groups are on the same line as the central atom.
- Three electron groups: 120° angles, all electron groups are on the same plane as the central atom.
- Angles will deviate slightly from 120° if one of the electron groups is a lone pair
- Four electron groups: 110° angles, occupies three dimensions in space.
- Angles will deviate slightly from 110° if one or more of the electron groups is a lone pair

Step 2. Determine the Molecular Shape Category Based on the Arrangement of Atoms.
Small molecules are categorized according to the arrangement of the atoms only.
Although lone pairs are also electron groups and are therefore important in determining the electron group arrangement in Step 1, they are treated as being " \qquad " when assigning molecular shape category names.

Draw the line bond structure of CO_{2}
Example: The Molecular Shape of CO_{2}

Step 1. Get the Electron Group Arrangement

How many electron groups are around the central atom? \qquad
What is the bond angle in a 2-electron group arrangement?
Choices: a) 180°
b) 120°
c) 110°

Step 2. Determine the Molecular Shape Category Based on the Arrangement of Atoms.

This molecular shape is called \qquad .

A very helpful tool for determining molecular shape is called the "ABE Method."
"A" represents the central atom (carbon in our $\mathbf{C O}_{2}$ example).
" \mathbf{B} " represents atom(s) bonded to the central atom.
(each oxygen in our CO_{2} example)
" E " represents lone pair(s) on the central atom.
(none seen in CO_{2} since there are no lone pairs on the central atom)

The ABE Method uses a "general notation" that indicates the type and number of
\qquad (B or \mathbf{E}) that surround the central atom (A).

We write the ABE Method notation for CO_{2} and all other small molecules that have $\boldsymbol{t w o}$ bonded atoms and no lone pairs on the central atom as " \qquad ."

- There are two oxygens bonded to the central atom therefore we write " \mathbf{B}_{2}."

All AB_{2} molecules have \qquad bond angles and are in the \qquad molecular shape category.

Molecular Shape Table

Three Electron Groups
Example: Draw the line bond structure of $\mathbf{S O}_{\mathbf{3}}$

Step 1. Get the Electron Group Arrangement

- The number of electron groups around the central atom determines the bond angles.

3 Electron Groups

Step 2. Determine the Molecular Shape Category Based on the Arrangement of Atoms.

This molecular shape is called \qquad .

We write the ABE Method notation for SO_{3} and all other small molecules that have three bonded atoms and no lone pair on the central atom as " \qquad ."

- There are three oxygens bonded to the central atom therefore we write "B3."

All $\mathbf{A B}_{3}$ molecules have \qquad bond angles and are in the trigonal planar molecular shape category.

Example: Draw the line bond structure of ozone gas $\left(\mathrm{O}_{3}\right)$.

Step 1. Get the Electron Group Arrangement

- The number of electron groups around the central atom determines the bond angles.
- Three electron groups: 120° angles, all electron groups are on the same plane as the central atom. Angles will deviate slightly from 120° if one of the electron groups is a lone pair.

Step 2. Determine the Molecular Shape Category Based on the Arrangement of Atoms.

When determining molecular shape, we treat lone pair(s) as if they were invisible!

This molecular shape is called \qquad .

We write the ABE Method notation for O_{3} and all other small molecules that have two bonded atoms and one lone pair on the central atom as " \qquad ."

- There are two oxygens bonded to the central atom therefore we write " \mathbf{B}_{2}."
- There is one lone pair on the central atom therefore we write "E."

All $\mathbf{A B}_{2} \mathbf{E}$ molecules have \qquad bond angles and are in the bent molecular shape category.

Four Electron Groups

Example: Draw the line bond structure of methane gas ($\mathbf{C H}_{4}$).

Step 1. Get the Electron Group Arrangement

- The number of electron groups around the central atom determines the bond angles.
- Four electron groups: 110° angles, occupies three dimensions in space

110°

Step 2. Determine the Molecular Shape Category Based on the Arrangement of Atoms.

This molecular shape is called \qquad .

We often use a \qquad representation in order to illustrate a three-dimensional molecule on a two-dimensional surface such as a page or computer screen.

a wedge and dash representation

a wedge and dash representation

a perspective representation

Solid wedges indicate bonds that would be coming out and above the page (toward the viewer) in the three-dimensional object.
Dashed shapes indicate bonds that would be coming out and behind the page (away from the viewer) in the three-dimensional object.
Regular lines (neither wedge nor dash) indicate bonds that exist on the plane of the page in the three-dimensional object.

We write the ABE Method notation for CH_{4} and all other small molecules that have four bonded atoms and no lone pair on the central atom as " \qquad ."

- There are four hydrogens bonded to the central atom therefore we write "B4."

All $\mathbf{A B}_{4}$ molecules have \qquad bond angles and are in the tetrahedral molecular shape category.

Four Electron Group Example: Consider the line bond structure of ammonia (NH_{3}).

Step 1. Get the Electron Group Arrangement

- The number of electron groups around the central atom determines the bond angles.
- Four electron groups: 110° angles, occupies three dimensions in space. Angles will deviate slightly from 110° if one or more of the electron groups is a lone pair.

Step 2. Determine the Molecular Shape Category Based on the Arrangement of Atoms.

- When determining molecular shape, we treat lone pair(s) as if they were invisible!

This molecular shape is called \qquad .

We write the ABE Method notation for NH_{3} and all other small molecules that have three bonded atoms and one lone pair on the central atom as " \qquad ."

- There are three hydrogens bonded to the central atom therefore we write " \mathbf{B}_{3}."
- There is one lone pair on the central atom therefore we write "E."
$\mathbf{A l l} \mathbf{A B}_{3} \mathbf{E}$ molecules have \qquad bond angles and are in the pyramidal molecular shape category.

Four Electron Group Example: Consider the line bond structure of a water molecule $\left(\mathbf{H}_{2} \mathbf{O}\right)$:

$$
H-\dddot{O}-H
$$

Step 1. Get the Electron Group Arrangement

- The number of electron groups around the central atom determines the bond angles.
- Four electron groups: 110° angles, occupies three dimensions in space. Angles will deviate slightly from 110° if one or more of the electron groups is a lone pair.

Step 2. Determine the Molecular Shape Category Based on the Arrangement of Atoms.

- When determining molecular shape, we treat lone pair(s) as if they were invisible!

This molecular shape is called \qquad .

We write the ABE Method notation for $\mathrm{H}_{2} \mathrm{O}$ and all other small molecules that have two bonded atoms and two lone pairs on the central atom as " \qquad ."

- There are two hydrogens bonded to the central atom therefore we write " \mathbf{B}_{2}."
- There are two lone pairs on the central atom therefore we write " \mathbf{E}_{2}."

All $\mathbf{A B}_{2} \mathbf{E}_{\mathbf{2}}$ molecules have \qquad bond angles and are in the bent molecular shape category.

Molecular Shape Table

Understanding Check: Molecular Shapes for Small Molecules
Determine the bond angles (or approximate bond angles) and the molecular shape category for each of the following small molecules:
a) NF_{3}
b) $\mathrm{H}_{2} \mathrm{~S}$
c) SO_{2}
d) CS_{2}
e) carbon tetrachloride

The Molecular Geometry of Large Molecules

Large Molecule	Larger than Small Molecule; there is not just one single, central atom with all the other atoms bonded to it	$\mathrm{C}_{3} \mathrm{H}_{8}$

The bond angles around any \qquad of interest in a large molecule can be predicted in the same manner that we used for small molecules.

- Simply use the ABE method, but in this case let "A" represent the atom of interest in the large molecule instead of the central atom of a small molecule.
Example: Consider the line bond structure of an ethane molecule:

What are the bond angles around each of the carbon atoms in an ethane molecule?

The illustration on the right shows the significance of lines, wedges, and dashes implied in the wedge and dash representation of the ethane molecule.

You may have noticed that we only discussed molecular geometry (bond angles) for large molecules; we do not categorize large molecules by "molecular shape" as we did for small molecules.

The reason for this is that \qquad bonds can " \qquad $"$ and therefore large molecules are always changing their shape.
It is important to understand that although single bonds are capable of rotation, the bond angles around any particular atom do not change upon rotation.
Only single bonds freely rotate; because of the nature of double and triple bonds, they do not rotate.

Another example for the geometry of large molecules: Consider the line bond structure of an ethanol molecule (shown on the right).
What is the bond angle for the bonds coming from the oxygen atom in an ethanol molecule?

Understanding Check: Predicting Bond Angles in Large Molecules

Consider the line bond structure of an acetone molecule:

a) What are the bond angles around the left-most carbon atom?
b) What are the bond angles around the carbon atom in the middle of the molecule?
c) What are the bond angles around the right-most carbon atom?

Reflection and Looking Forward

You have seen how the connectivity of atoms shown in structural formulas, such as line bond structures, can be used to determine molecular geometries (bond angles).
For example:

The molecular geometries are quite important because the observed (macroscopic) properties of a molecular compound are related to its nanoscopic structure. The nanoscopic structure of molecules includes details such as the kind of atoms, the pattern in which they are bonded to each other, the molecular geometry, and how the electrons are distributed within the molecule.

Throughout the remainder of this course, you will see how the nanoscopic details of a molecule will affect observed, macroscopic properties such as biological effects, melting and boiling temperatures, rates of evaporation, and the ability of one substance to dissolve another substance.

The Distribution of Electrons in Molecules

Molecular geometry plays a major role in how the electrons are distributed in molecules.
The electron distribution is a major factor that determines the chemical and physical of molecular compounds.

- For example, consider two molecules that are quite similar in size - CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. Both molecules contain three atoms, however at room temperature they are in different phases; CO_{2} exists as a gas, whereas $\mathrm{H}_{2} \mathrm{O}$ exists as a liquid (water).

Representations of Methane ($\mathbf{C H}_{4}$)

line bond structure

ball-and-stick
model

space-filling model

Space-filling models are images that show molecular geometry and also indicate the approximate area that electrons oссиру.

Here is a new concept: the electrons are \qquad within molecules.

- Sometimes electrons spend \qquad time in one particular region of the molecule giving that region additional \qquad charge.
- Sometimes a particular region of a molecule is electron \qquad , giving that region of the molecule additional \qquad charge.
The existence of this uneven charge within a molecule is a major factor that makes the properties of molecules such as $\mathrm{CH}_{4}, \mathrm{CO}_{2}$, and $\mathrm{H}_{2} \mathrm{O}$, quite different.

Let's first consider the H_{2} molecule: $\mathrm{H}-\mathrm{H}$
The two electrons in this covalent bond are "shared evenly" by the hydrogens.
The electrons do not spend more time, on average, closer to any one of the two hydrogen atoms.
This is because the bond is between \qquad atoms; the electrons are equally attracted to each of the positively-charged hydrogen nuclei.
When electrons are shared between like atoms, such as in H_{2}, they are, on average, evenly distributed between the atoms.
Next, let's consider the HCl molecule: $\mathrm{H}-\mathrm{C}_{\bullet}^{\bullet} \mathrm{l}^{\bullet}$
The two electrons in the $\mathbf{H - C l}$ bond are not shared equally by the chlorine and hydrogen atoms.
The shared electrons spend, on average, a bit more time nearer the chlorine than the hydrogen.
This is because the bond is between \qquad atoms (chlorine vs. hydrogen).

- The shared electrons happen to be more strongly attracted to the chlorine than they are to the hydrogen.
\qquad —.

When electrons in bonds are not equally shared, as is the case for un-like atoms, we call the bond a \qquad .

Scientists and engineers use the term \qquad to describe this physical state that results when there is a separation of charge over a short distance such as the length of a chemical bond.

Representations of Bond Polarity in HCl

The line bond structure (above, left) uses the Greek lowercase letter delta ($\boldsymbol{\delta}$) to indicate a partial positive charge $\left(\boldsymbol{\delta}^{+}\right)$or a partial negative charge $\left(\boldsymbol{\delta}^{-}\right)$near the appropriate atoms.
Another way to show bond polarity and partial charge is to use the dipole arrow (above, middle).

- When using dipole arrows, the arrow points to the partial negative charged region and a crossed line (looks like + on the end of the arrow) is used to indicate the partial positive charged region.
The space-filling model (above, right) not only shows the region that the molecule's electrons occupy but is also shaded to indicate the electron distribution.
- The area where electrons spend more time and therefore has a partial negative charge is shaded red.
- The area that is electron deficient has a partial positive charge and is shaded blue.

Electronegativity

The relative ability of an atom in a bond to attract electrons is called its \qquad .

- The more electronegative atom in the bonded pair will have a stronger attraction to the shared electrons, the electrons will spend a bit more time in the vicinity of that atom, therefore the atom will have a partial negative charge.
- The less electronegative atom in the bond will have a partial positive charge.

Electronegativity Values

Note that there is a periodic trend in electronegativity values of the \mathbf{s} - and \mathbf{p}-block elements; electronegativity increases going from left to right (in a row) and bottom to top (in a column).

You can determine which atom in a polar bond is partially positive and which is partially negative by comparing the electronegativity values of the two atoms.

Example: Consider the line bond structure of hydrogen monobromide (HBr).

partially positive
partially negative

Understanding Check: Bromine monofluoride (BrF) exists as a brown gas and is used as an algaecide, fungicide, and disinfectant in some industrial applications. Draw the line bond structure of bromine monofluoride.
a) Predict which atom is partially positive and which atom is partially negative.
b) Add the $\boldsymbol{\delta}^{+}$or $\boldsymbol{\delta}^{-}$symbols to the appropriate atom.
c) Add a dipole arrow below the line bond structure to indicate the polarity.

The degree of bond polarization depends on the \qquad in electronegativities between the two bonded atoms.

- Greater differences in the abilities of the bonded atoms to attract the shared electrons results in more polarized bonds.

Example: The electronegativity of hydrogen, fluorine, and bromine are 2.20, 3.98, 2.96, respectively. Which bond is more polarized, the $\mathbf{H - F}$ or $\mathbf{H - B r}$ bond?

H-F: The difference in electronegativity between F and H: 3.98-2.20=1.78
$\mathbf{H - B r}$: The difference in electronegativity between Br and $\mathrm{H}: ~ 2.96-2.20=\mathbf{0 . 7 6}$
Since there is a greater difference in electronegativity between F and H vs. Br and H , the $\mathbf{H}-\mathrm{F}$ bond is \qquad polarized than the $\mathrm{H}-\mathrm{Br}$ bond.

Summary of Bond Polarity

We can classify covalent bonds as being either \qquad or \qquad .

- Polar bonds occur because of unequal sharing of electrons in covalent bonds when two un-like atoms (such as $\mathrm{H}-\mathrm{Br}$ or $\mathrm{H}-\mathrm{Cl}$) are bonded together.
- Nonpolar bonds occur when the electrons are shared evenly between two like atoms (such as H-H or F-F).

The Polarity of Molecules

Similar to the concept of bond polarity, when electrons are not symmetrically distributed in a molecule, it results in a polar \qquad ; a molecule with one end that has a partial negative charge and one end that has a partial positive charge.

The existence and degree of polarity (strength of the dipole) in molecules has implications in many of the chemistry concepts that you will learn throughout this course.

For example, one type of force responsible for attracting molecules to other molecules that is, in part, responsible for whether the molecules exist close to each other in the liquid or solid phase instead of the gas phase is called the dipole-dipole force.

- The partially positive $\left(\boldsymbol{\delta}^{+}\right)$end of one molecule's dipole is attracted to the partially negative $\left(\boldsymbol{\delta}^{-}\right)$ end of another molecule's dipole (and vice versa) by an electrostatic attraction as illustrated below.

In this video, you will learn how to determine if a molecule is polar or nonpolar based on both the existence (or not) of \qquad and its molecular \qquad .

I will show you a method for determining the polarity of a molecules for each of our molecular size categories (diatomic, small, and large molecules).

The Polarity of Diatomic Molecules

Molecular Size Category	Description	Example(s)	
Diatomic Molecule	Molecule contains only two atoms	H_{2}	HCl

Since diatomic molecules contain only one bond, the polarity of the molecule depends only on the polarity of that bond.

- A \qquad diatomic molecule, such as H_{2}, contains like-atoms and a nonpolar bond, therefore the molecule is \qquad .
- A \qquad diatomic molecule, such as HCl , contains two un-like atoms and a polar bond, therefore the molecule is \qquad .

Understanding Check:
Determining the Polarity of Diatomic Molecules
Categorize each of the diatomic molecules listed
below as polar or nonpolar.
a) O_{2}
b) carbon monoxide (CO)
c) N_{2}
d) nitrogen monoxide (NO)

The Polarity of Small Molecules

Molecular Size Category	Description	Example(s)	
Small Molecule	Molecule has one central atom with all other atoms bonded to the central atom	CH_{4}	$\mathrm{H}_{2} \mathrm{O}$

Small molecules contain more than one bond.
The individual bonds within a molecule can be polar and/or nonpolar.
Just because a small molecule contains polar bonds does not necessarily mean that it is a polar molecule.

In order to determine if a small molecule is polar, we must look at what happens when we $\underline{a d d} \boldsymbol{u p}$ all of the dipoles.

Dipoles are physical quantities that not only have a magnitude (amount of charge), but also have a direction.

An analogous physical quantity that you are familiar with is velocity. When you drive your car, to completely describe your path you would use both the speed (miles per hour) and the direction you are traveling.

Another physical quantity with both magnitude and direction is a force. When you pull on an object, how fast and where the object moves depends on how hard you pull and in what direction you pull.

Quantities with both magnitude and direction are called vector quantities.
Covalent bond electric dipoles are vector quantities; they have both magnitude (based on differences in electronegativity of the bonded atoms) and direction (based on bond angles).

Before we discuss "adding up" dipole vectors, let's add up some vector quantities of which you have prior knowledge. We will consider adding a couple of force vectors:

Top: Two equal tensions (represented by the red vector arrows of the same length) are exerted in opposite directions. The blue box does not move because the forces are "balanced" or "cancel"; they add up to zero.

Middle: The two tension forces are in opposite directions, however the force pulling to the right is larger (represented by a larger vector arrow). The blue box moves to the right because the forces are not "balanced" and do not "cancel" they do not add up to zero.

Bottom: The two tension forces are equal but they are not oriented in exactly opposite directions. The blue box moves downward because the forces are not "balanced" and do not "cancel" - they do not add up to zero.

To determine if a small molecule is polar:
We must look at what happens when we \qquad up all the dipoles.

Example: $\mathbf{C O}_{2}$

There are 2 polar bonds in a CO_{2} molecule.
This results in two \qquad .

- The oxygens have a \qquad negative charge.

- The carbon has a partial positive charge.

Since the molecule is \qquad , the dipoles cancel each other and the molecule is \qquad .

- All symmetric small molecules are nonpolar.

Let's look at what happens when we add up all the dipoles in another molecule:
Example: $\mathbf{H}_{\mathbf{2}} \mathrm{O}$
There are 2 polar bonds in an $\mathrm{H}_{2} \mathrm{O}$ molecule.
This results in two dipoles.

- The oxygen has a partially negative charge.

- The hydrogens have a partially positive charge.

Since the molecule is not symmetric, the dipoles do not cancel each other and the molecule is
\qquad .

Since dipoles in nonsymmetric molecules do not cancel each other out, they add up to yield a molecule with a dipole.
Nonsymmetric small molecules with polar bonds are polar molecules.

General Rule to Know if a molecule is Symmetric or Nonsymmetric:
Symmetric molecules have the central atom surrounded by \qquad electron groups. Examples of symmetric and nonsymmetric molecules:

CO_{2}	CH_{4}	$\mathrm{CH}_{3} \mathrm{~F}$	NH_{3}
$: \mathrm{O}=\mathrm{C}=\mathrm{O}:$			
Symmetric (Nonpolar)	Symmetric (Nonpolar)	Nonsymmetric (Polar)	Nonsymmetric (Polar)

Polarity of Small Molecules Summary

Understanding Check:
 Determining the Polarity of Small Molecules

Categorize each of the small molecules listed below as polar or nonpolar. Note that you will need to begin with the line bond structure of a molecule in order to determine its polarity.
a) NF_{3}
b) $\mathrm{H}_{2} \mathrm{~S}$
c) O_{3}
d) CS_{2}
e) CCl_{4}

The Polarity of Large Molecules

Molecular Size Category	Description	Example(s)
Large Molecule	Larger than Small Molecule; there is not just one single, central atom with all the other atoms bonded to it	$\mathrm{C}_{3} \mathrm{H}_{8}$

In this course, we will be working with large molecules (organic and biochemistry).
Large molecules will be considered polar (or have polar regions) if they have \qquad bonds.

- The important highly polar covalent bonds, especially in organic and biochemistry, are those in which either hydrogen or carbon atoms are covalently attached to nitrogen, oxygen, fluorine, or chlorine atoms.

Example:

Cyclohexane

No highly polar bonds
Nonpolar

vs. Cyclohexanol

Two highly polar bonds
(C-O and O-H)
Polar

Understanding Check: Determining the Polarity of Large Molecules

The compound shown below has been used to kill any insect larvae present in cereal and dried fruit.

This molecule is \qquad .
a) polar
b) nonpolar

Formal Charge

There is one more phenomenon that results in the uneven distribution of charge.
We will use the concept of " \qquad
\qquad " to account for electrically-charged regions within molecules (and polyatomic ions).
The formal charge concept involves identifying \qquad in molecules (or in polyatomic ions) that have an excess or deficiency of electrons.

- An excess of electrons on a particular atom means that there are more electrons in the vicinity of an atom than there are protons in the atom. If there is one extra electron in the vicinity of a particular atom, the formal charge of the atom would be 1-.
- Conversely, when we say that an atom is electron deficient, this means that there are fewer electrons in the vicinity of a particular atom than there are protons in the atom. If an atom has a deficiency of one electron (one more proton than electrons), the formal charge of the atom would be $1+$.

What Do You Need to Know About Formal Charge?

We will soon be focusing on organic biomolecules. Biomolecules consist primarily of $\mathrm{C}, \mathrm{H}, \mathrm{O}$, and N .

- In the compounds that you will come across in this course, carbon and hydrogen atoms will never have a formal charge.
- Oxygen and nitrogen may or may not have a formal charge.

I will only need you to be able to determine the formal charge on two elements -
\qquad and \qquad .

1) The Formal Charge on Oxygen:

- Oxygen has a formal charge of $\mathbf{1}$ - when it has just \qquad single bond (three lone pairs).

$$
-\ddot{\mathrm{O}}:-
$$

- In all other cases that we discuss in this course, oxygen will not have a formal charge (formal charge = zero).
- Examples:

2) The Formal Charge on Nitrogen:

- Nitrogen will have no formal charge when it has one or more lone pairs on it.

:N三
- In \qquad other cases, nitrogen has a $1+$ formal charge.

Determination of the formal charge of oxygen and nitrogen is summarized in the thought-map flowchart shown below.

OPTIONAL: If you are interested in learning the details of how formal charges are assigned to oxygen, nitrogen, and other atoms based on their bonding patterns, you can find that information in Appendix 3 of your textbook.

Example: The line bond structure of the nitrate ion $\left(\mathrm{NO}_{3}{ }^{-}\right)$is shown below. Add the formal charge (as a superscript) to the line bond structure next to any oxygen or nitrogen atom that has a non zero formal charge.

The nitrogen has no lone pairs; therefore, it has a formal charge of $\mathbf{1 +}$ (or +).
The oxygens below and to the right of the nitrogen have just one single bond, therefore they have a formal charge of 1- (or -).

The oxygen to the left of the nitrogen does not have just one single bond (it has a double bond), therefore it has no formal charge (formal charge = zero).

Understanding Check: The line bond structure glycine, an amino acid present in many proteins, is shown below. Assign formal charges to the nitrogen and each oxygen atom in this compound.

Understanding Check: Aspartic acid is one of the 20 common amino acids that make up the proteins in our bodies. The condensed structure of the aspartic acid is shown below. Add the formal charge (as a superscript) next to any oxygen or nitrogen atom in the condensed structure that has a non zero formal charge.

Summary

In the last two videos, you learned two ways to predict the distribution of charge:
Molecular Polarity: Because of the unequal sharing of electrons, regions of a molecule can have partial charge. These charged regions have a partial positive charge $\left(\boldsymbol{\delta}^{+}\right)$or partial negative charge ($\boldsymbol{\delta}^{-}$).

Formal Charge: A region in the vicinity of a particular atom in a compound can have formal charge because of an excess or deficiency of electron(s) at that atom.
Both the polarity and presence of formal charges in molecules are important in understanding how compounds interact with each other, and also in understanding the forces within large biomolecules such as DNA, RNA, proteins, and carbohydrates. These forces are crucial for the biological molecules maintaining their shape and biological function.

Noncovalent Interactions

Ionic compounds exist as crystalline solids at room temperature because the ions are held together by ionic chemical bonds.
Molecular compounds can also exist as crystalline solids.

- Example: $\mathrm{H}_{2} \mathrm{O}$ (ice or snow flakes)
$\mathrm{H}_{2} \mathrm{O}$ molecules are not ions, so what forces are responsible for holding $\boldsymbol{H}_{2} \mathrm{O}$
 molecules, or other molecules, together in their solid states?

The answer is that there are electrostatic attractive forces called \qquad L that attract molecules to other molecules.

Noncovalent interactions are quite different from the covalent bonding forces that are present within molecules and polyatomic ions.

- \qquad bonding forces result from shared electrons.
- Noncovalent interactions, as the name implies, do not involve the sharing of electrons; they are strictly electrostatic attractions.

In this video, you will learn about five types of noncovalent interactions.

1) Hydrogen Bonding

Hydrogen bonding is the result of the electrostatic attraction between the partial positive charged end of a particularly strong polar bond $(\mathrm{O}-\mathrm{H}, \mathrm{N}-\mathrm{H}$, or $\mathrm{F}-\mathrm{H})$ and the negative charge of a lone pair of electrons on a very electronegative atom $(\mathrm{O}, \mathrm{N}$, or F$)$.

Example: Hydrogen bonding is the major force responsible for $\mathrm{H}_{2} \mathrm{O}$, a relatively small and light molecule, existing in the liquid phase instead of the gaseous phase at room temperature.

On the Left: Hydrogen bonds (as dashed lines) in a ball and stick model of an ice crystal.

Understanding Check:

The line bond structures of ammonia and acetone are shown below:

ammonia

a. Can hydrogen bonding occur between two ammonia molecules?
b. Can hydrogen bonding occur between two acetone molecules?
c. Can hydrogen bonding occur between an ammonia molecule and an acetone molecule?

2) Dipole-Dipole Forces

Polar molecules are attracted to other polar molecules by a type of noncovalent interaction called the
\qquad force.

The partially positive $\left(\boldsymbol{\delta}^{+}\right)$end of one molecule's dipole is electrostatically attracted to the partially negative ($\boldsymbol{\delta}^{-}$) end of another molecule's dipole (and vice versa).

Example: Diethyl Ether

Understanding Check:

a. Can a dipole-dipole force occur between two $\mathrm{H}_{2} \mathrm{O}$ molecules?
b. Can a dipole-dipole force occur between two methane $\left(\mathrm{CH}_{4}\right)$ molecules?
c. Can a dipole-dipole force occur between two acetone molecules?

It is noncovalent interactions that hold molecules together such that they exist in the solid or liquid phases instead of the gaseous phase.

Whether a substance exists in the gas, liquid, or solid phase is determined by a \qquad between noncovalent interactions (working to keep the particles close to one another) and temperature (kinetic energy working to distribute the particles randomly in their container).

- If the noncovalent interactions are dominant, then the substance will exist in the solid or liquid phase.
- If the temperature/kinetic energy can overcome the noncovalent interactions, then the substance will exist in the gaseous phase.

It was observed that nonpolar molecules such as $\mathrm{CO}_{2}, \mathrm{O}_{2}$, and N_{2}, which are not capable of interacting through dipole-dipole forces or hydrogen bonding, can be cooled to temperatures at which they exist in the liquid and solid phases.
In 1930, Fritz London, along with R. Eisenschitz, came up with a model to explain this observation.

3) London Dispersion Forces

The explanation is based on our third type of noncovalent interaction, which came to be known as London dispersion forces, named in honor of Fritz London.
London dispersion forces are caused by an "instantaneous" dipole in one molecule \qquad the formation of a "temporary" dipole in another molecule.

molecules, polar and nonpolar, contain electrons $\overline{\text { and will therefore be attracted to each other through }}$ London dispersion forces.

The \qquad a molecule is, the easier (lower in energy) it is to polarize its electrons, and therefore, the stronger is its London dispersion force interactions.

- This trend can be observed by noting the boiling
 points of the molecules in the table below:

Effect of Molecular Size on London Dispersion Forces

Molecule Name	Condensed Structure	Boiling Point ($\left.{ }^{\circ} \mathrm{C}\right)$	Phase at Room Temperature
methane	CH_{4}	-164	gas
ethane	$\mathrm{CH}_{3} \mathrm{CH}_{3}$	-89	gas
propane	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$	-42	gas
butane	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	0	gas
pentane	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	36	liquid

Understanding Check:

a. Can London dispersion forces occur between two CBr_{4} molecules?
b. Can London dispersion forces occur between two $\mathrm{H}_{2} \mathrm{O}$ molecules?
c. Which of the following substances is predicted to have the higher boiling point:

$$
\begin{gathered}
\text { decane }\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) \\
\text { or } \\
\text { nonane }\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)
\end{gathered}
$$

4) Ion-Dipole Interactions

An ion-dipole interaction, as the name implies, is the electrostatic attractive interaction between an $\underline{\text { ion }}$ (or formal charge) and the \qquad of a polar molecule.

The attraction could be between an anion (or negative formal charge) and the partially positive end $\left(\boldsymbol{\delta}^{+}\right)$of a dipole, or vice versa, between a cation (or positive formal charge) and the partially negative end $\left(\boldsymbol{\delta}^{-}\right)$of a dipole.

The attraction could be between an anion (or negative formal charge) and the partially positive end $\left(\boldsymbol{\delta}^{+}\right)$of a dipole, or vice versa, between a cation (or positive formal charge) and the partially negative end $\left(\boldsymbol{\delta}^{-}\right)$of a dipole.

Examples: Sodium cations or chloride anions interacting with polar water molecules.

Understanding Check:

a. Can an ion-dipole interaction occur between ammonium $\left(\mathrm{NH}_{4}{ }^{+}\right)$and $\mathrm{H}_{2} \mathrm{O}$?
b. Can an ion-dipole interaction occur between bromide $\left(\mathrm{Br}^{-}\right)$and I_{2} ?

5) Salt Bridge Interactions

A salt bridge is the electrostatic attractive interaction between a negative formal charge and a positive formal charge in protein.

Salt bridges are one of the noncovalent interactions that are responsible for the way a protein folds up onto itself to give it the shape that is necessary for it to perform its biological function.

Summary of Noncovalent Interactions

In this video, you learned about five types of noncovalent interactions.
When these interactions occur between molecules (as opposed to monatomic or polyatomic ions), they are sometimes referred to as intermolecular forces.

Noncovalent interactions cause molecules to be attracted to each other and can result in molecular compounds existing as liquids or solids.

In the case of large molecules or polyatomic ions that can fold back upon themselves, noncovalent interactions can occur between two regions within an individual particle.

Summary of Noncovalent Interactions

Noncovalent Interaction	Interaction Between:
Hydrogen Bonding Electrostatic attractive force between the partially positive charged hydrogen end of an $\mathrm{O}-\mathrm{H}, \mathrm{N}-\mathrm{H}$, or F-H bond and the negative charge of a lone pair on an O, F, or N.	
Dipole-Dipole Electrostatic attractive force between two polar molecules.	
London Dispersion Forces Electrostatic attractive force between any two molecules.	
Ion-Dipole Electrostatic attractive force between a dipole and an ion or formal charge. The partially positive charge of a dipole is attracted to a negatively charged ion or a negative formal charge. The partially negative charge of a dipole is attracted to a positively charged ion or positive formal charge.	
Salt Bridge Electrostatic attractive force between a negative formal charge and a positive formal charge in protein.	Protein Protein Formal Attractive Charge Force Charge

Organic Chemistry

Organic chemistry is the chemistry of \qquad -containing compounds.

Hydrocarbons

Hydrocarbons contain only \qquad and \qquad atoms.
Hydrocarbons are the main source of energy used by humans. Hydrocarbons are burned in a chemical process called combustion in order to do various types of work or to generate heat.

The majority of the hydrocarbons on earth exists as crude oil (or petroleum), a mixture of various hydrocarbon molecules and small amounts of other substances. Crude oil is considered a "fossil fuel" because it is formed from huge amounts of dead organisms, primarily zooplankton and algae, that have been buried under sedimentary rock and exposed to high temperature and pressure. Under those conditions and in the absence of oxygen, the molecules from the dead organisms are converted to petroleum through a series of chemical reactions.
Fossil fuel is called a non-renewable energy source since its process of formation occurs over millions of years. The hydrocarbon molecules in crude oil are further separated (refined) into various materials such as gasoline, petroleum jelly, paraffin wax, diesel fuel, asphalt, and baby oil.
Hydrocarbons can be categorized into the four subcategories, shown in the table below, based on their chemical bonding patterns.

Category	Defining Feature	Saturation	Example
alkane	all single bonds	saturated	ethane $\mathrm{CH}_{3}-\mathrm{CH}_{3}$
alkene	at least one carboncarbon double bond	unsaturated	ethene $\mathrm{CH}_{2}=\mathrm{CH}_{2}$
alkyne	at least one carboncarbon triple bond	unsaturated	ethyne $\mathrm{CH} \equiv \mathrm{CH}$
aromatic	alternating double and single bonds in a cyclic hydrocarbon	unsaturated	benzene

Hydrocarbons are also classified as being either \qquad (all single bonds) or \qquad (contains one or more carbon-carbon double or triple bonds).
Another way that hydrocarbons are classified by their bonding pattern is either as normal, branched, or cyclic.

Example of a branched hydrocarbon:

The line bond, condensed, and skeletal structures for isopentane are shown below.

Line Bond Structure

Condensed Structure

Skeletal Structure

In isopentane, there are four carbons bonded in a linear sequence.
There is one carbon that " \qquad " from the linear sequence, therefore isopentane is classified as a branched hydrocarbon.

Example of a normal hydrocarbon:

The line bond, condensed, and skeletal structures for propane are shown below.

Line Bond Structure

Condensed Structure

Skeletal Structure

In propane, \qquad of the carbons are bonded in a linear sequence, therefore propane is classified as a normal hydrocarbon.
For both normal and branched alkanes, if " \boldsymbol{n} " is the number of carbon atoms in the molecule, then the alkane will have the molecular formula of $\mathrm{C}_{n} \mathrm{H}_{(2 n+2)}$.

$" n "($ the number of carbon atoms $)=5$
The molecular formula is $\mathrm{C}_{5} \mathrm{H}_{(2.5+2)}=\mathbf{C}_{5} \mathbf{H}_{12}$

isopentane

(a branched hydrocarbon)

$" \boldsymbol{n} "=3$
The molecular formula is $\mathrm{C}_{3} \mathrm{H}_{(2.3+2)}=\mathbf{C}_{3} \mathbf{H}_{8}$

Example of a cyclic hydrocarbon:

The line bond, condensed, and skeletal structures for cyclohexane are shown below.

Line Bond Structure

Condensed Structure

Skeletal Structure

When the carbons in a hydrocarbon molecule are bonded together such that they form a \qquad , we call it a cyclic hydrocarbon.

Abstract

Alkanes Alkanes are molecules that consist only of carbon and hydrogen and contain only single bonds. The primary source of alkanes is crude oil and natural gas. Natural gas is formed in the same way as crude oil, except that the original source of organics is from buried plants and animals. It is composed primarily of methane $\left(\mathrm{CH}_{4}\right)$ and ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$, but also has significant amounts of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$, butane $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)$, pentane $\left(\mathrm{C}_{5} \mathrm{H}_{12}\right)$, other hydrocarbons, and some non hydrocarbon gases. Alkanes with $4-12$ carbons are the major component of gasoline. Gasoline that is high in branched alkanes is preferred because the branched molecules reduce engine "knocking." The "octane rating" of gasoline is related to the amounts and types of branched alkanes. Gasoline also contains small amounts of alkenes. Currently in the US, refineries are required to add alcohol (a renewable fuel source) to gasoline at a concentration of 10%. Diesel fuel is composed of alkane molecules with 9-16 carbons (75%) and aromatic hydrocarbons (25%). Alkane molecules with more than sixteen carbon atoms are used for fuel oil (kerosene) and lubricating oil. Paraffin wax is composed primarily of alkane molecules with 20-40 carbon atoms. Paraffin wax is used for candles, electrical insulation, and lubrication.

Naming Alkanes

IUPAC rules, devised by the International Union of Pure and Applied Chemistry, are a widely used method of naming organic compounds.

Using the IUPAC rules involves identifying an alkane's \qquad (the longest continuous chain of carbon atoms in the molecule) and \qquad (atoms or groups of atoms attached to the parent chain).

In alkanes, the substituents, called \qquad , are constructed solely of carbon and hydrogen atoms.

Method for Naming Normal and Branched Alkanes

Step 1. Name the parent chain.

For normal and branched alkanes, the parent chain is the longest, continuous chain of carbons atoms.

The parent chain is named by combining a prefix, that specifies the number of carbon atoms in the parent chain, with the " \qquad " suffix.

Example: If a linear or branched alkane has three carbon atoms in the parent chain, the parent chain name is propane

In a normal (unbranched) alkane, there are no substituents, and the molecule's name is identical to the parent chain name.

Prefixes for Naming Parent Chains

Number of Carbons in Parent Chain	Naming Prefix
1	meth
2	eth
3	prop
4	but
5	pent
6	hex
7	hept
8	oct
9	non
10	dec

- Example: The name for the normal alkane with four carbons is butane.

Step 2. Name any alkyl group substituents.
Alkyl group substituents are comprised of the carbons and hydrogens that "branch" from the parent chain.
In the molecule drawn below (a branched alkane), the parent chain has four carbons and one alkyl group substituent.

Alkyl group substituents are named based on the \qquad of \qquad in the substituent.

If there is one carbon in the substituent, we call it a
\qquad group.

If there are two carbons in the substituent, we call it an
\qquad group.

When three carbons are contained in a substituent, then there are two distinct bonding patterns that are possible.

If a carbon on the end of the substituent is bonded to the parent chain, we call the substituent a \qquad group.

If the carbon in the center of the substituent is bonded to the parent chain, we call the substituent an \qquad group.

There are multiple, correct ways to draw propyl groups in structural formulas.

condensed formula

skeletal formula

There are multiple, correct ways to draw isopropyl groups in structural formulas.

condensed formula

skeletal formula

The condensed structures of alkyl group substituents with 1-4 carbon atoms are shown on the right.

I ask my students to memorize the top four on the list (methyl through butyl).

- Check with your instructor to see which ones you need to memorize.

Step 3. Determine the point of attachment of alkyl group(s) to the parent chain.

In order to uniquely name molecules, the name must indicate to which parent chain-carbon a substituent is attached.

- For example, there are two different molecules that both have a 5-carbon parent chain and one methyl group substituent.

Alkyl Groups

Number of Carbon Atoms	Alkyl Group Name	Condensed Structure
1	methyl	$-\mathrm{CH}_{3}$
2	ethyl	$-\mathrm{CH}_{2} \mathrm{CH}_{3}$
3	propyl	$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
3	isopropyl	
4	butyl	$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
4	isobutyl	
4	sec-butyl	
4	tert-butyl (or t-butyl)	

Since there are two ends of the parent chain, we begin numbering from the end of the parent chain that is \qquad to a substituent.

For example, the parent chain carbons are assigned position numbers for alkane shown below.

In the alkane shown above, note that the point of attachment of the methyl group substituent is to the carbon at position number " 2 " on the parent chain.

Step 4. Construct the name of the alkane by placing the alkyl groups in alphabetical order and specifying their position numbers, followed by the name of the parent chain.
Step 4A: List the alkyl groups along with their position numbers, in \qquad order.

- Write the position number(s) in front of the substituent(s).
- In our example molecule, we write: 2-methyl.

WHEN NEEDED: Add the labels di, tri, or tetra in front of the alkyl group name if two, three, or four (respectively) identical substituents are present. Not needed in this example.

Step 4B: Write the parent chain name behind the list of alkyl groups.

- In our example, we have only one substituent: 2-methyl.
- The parent chain (five carbons) is pentane.

We write the IUPAC name of this molecule as: 2-methylpentane.

Example: Give the IUPAC name for the alkane shown below.

Step 1. Name the parent chain.
The parent chain (seven carbons) is heptane.

Step 3. Determine the point of attachment of alkyl group(s) to the parent chain.

Step 4. Construct the name of the alkane by placing the alkyl groups in alphabetical order and specifying their position numbers, followed by the name of the parent chain.

3-ethyl-2-methylheptane

Example: Give the IUPAC name for the alkane shown below.

Step 1. Name the parent chain.
The parent chain (eight carbons) is octane.

Step 2. Name any alkyl group substituents.

Step 3. Determine the point of attachment of alkyl group(s) to the parent chain.

Step 4. Construct the name of the alkane by placing the alkyl groups in alphabetical order and specifying their position numbers, followed by the name of the parent chain.
WHEN NEEDED: Add the labels di, tri, or tetra in front of the alkyl group name if two, three, or four (respectively) identical substituents are present.
We will use the "di" prefix for the methyl groups (dimethyl) Since one of the methyl groups is on carbon number $\mathbf{2}$ and the
 other is on carbon number $\mathbf{3}$, we write 2,3-dimethyl.
Place a comma between position numbers; note that we used "2,3-"
Place a dash between position numbers and letters.

5-ethyl-2,3-dimethyloctane

Common Errors

Do not assume that the parent chain position numbers always start with carbon number 1 as the left-most parent carbon.

There is often many different ways to draw the same molecule.
For example, 2-methylpentane can be correctly drawn as either of the structures shown below.

There is no molecule called 4-methylpentane.
The parent chain is the longest, continuous chain of carbons atoms, NOT necessarily the carbon chain that is drawn horizontally in a single line.

For the molecule shown below, you may be temped to use octane for the parent chain (shaded blue), and then name the molecule 3-propyloctane.

The correct way to think about naming this molecule is shown below.

The name of this molecule is 4-ethylnonane.

Summary for Naming Normal and Branched Alkanes

Step 1. Name the parent chain.

- For normal and branched alkanes, the parent chain is the longest, continuous chain of carbons atoms.
Step 2. Name any alkyl group substituents.
Step 3. Determine the point of attachment of alkyl group(s) to the parent chain.
- In order to assign "position numbers" to the substituents, the carbons in the parent chain are numbered. Begin numbering from the end of the parent chain that is nearest to a substituent.
Step 4. Construct the name of the alkane by placing the alkyl groups in alphabetical order and specifying their position numbers, followed by the name of the parent chain.
- List the alkyl groups along with their position numbers, in alphabetical order.
- Add the labels di, tri, or tetra in front of the alkyl group name if two, three, or four (respectively) identical substituents are present.
- Alphabetize using the alkyl group name only; disregard the Greek prefixes (di, tri, tetra).
- Place a comma between position numbers, and a dash between position numbers and letters.
- Write the parent chain name behind the list of alkyl groups.

Understanding Check: Give the correct IUPAC name for these molecules.

Understanding Check: Give the correct IUPAC name the alkane shown below.

Drawing the Structure of an Alkane from its Name

Example: Draw the condensed and skeletal structure for 2,2-dimethyl-4-propyloctane.

condensed structure

skeletal structure

Understanding Check: Draw the condensed and skeletal structure for 6-isopropyl-2,3-dimethylnonane.

Cycloalkanes

Some alkanes contain carbon atoms bonded, not in a linear sequence, but in a "ring" pattern.
These alkanes are called \qquad .

- Example of a cycloalkane: cyclohexane (shown below).

Line Bond Structure

Condensed Structure

Skeletal Structure

It is very common to see five- and six-carbon rings that occur in nature. The reason for this is that the bond angles in 5 - and 6 -carbon rings is fairly close to the 110° bond angles expected in molecules with AB_{4} geometry.

In addition to the line bond, condensed, skeletal, and ball-and-stick representations, another structural representation called a " \qquad - \qquad " is also used for cycloalkanes.

- Side-view structures contain information about the three-dimensional arrangement of the atoms. The ball-and-stick model and a side-view structure for cyclohexane are shown below.

ball-and-stick model

side-view structure

Note that in the ball-and-stick model (left), the ring of carbons (carbon atoms shaded black) is oriented horizontally. Each carbon is bonded to two hydrogen atoms. From each ring-carbon, one of these two bonds is oriented in a direction pointing above the ring structure (bonds to the red-shaded hydrogens), and the other bond is oriented in a direction pointing below the ring structure (bonds to the blue-shaded hydrogens).

It is convenient to express this three-dimensional information in the side-view structural formula. The actual bond angles are shown in the ball-and-stick models and are implied in the side-view representation.

In side-view structures, bold lines are used to indicate the perspective when viewing the ring. The ring is depicted as being oriented horizontally with the bold edges toward the viewer. The two bonds that are oriented upwards or downwards from the ring-carbons are drawn vertically. The hydrogen atoms in red font correspond to the hydrogens shown as red spheres in the ball and stick model; likewise the hydrogen atoms in the blue font correspond to the hydrogens shown as blue spheres in the ball-and-stick model.

Structural Representations of Cycloalkane Rings

	Cyclopropane	Cyclobutane	Cyclopentane	Cyclohexane
Line Bond Structure				
Condensed Structure				
Skeletal Structure				\square
Side-View Structure				
Ball-and- Stick Model				

Naming Cycloalkanes

Step 1. Name the parent chain.

For cycloalkanes, the parent chain is the \qquad of carbon atoms.

- The parent chain names for ring structures with 3 to 8 carbon atoms are shown on the right.

Note that these names are based on the names used for the parent chains of branched alkanes, however the term " \qquad $"$ is used as a prefix.

Common Error: A common mistake made by first-semester students is the failure to differentiate cyclic and noncyclic structures.

- For example, see the difference between hexane and cyclohexane below:

Cyclohexane
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$

Hexane

Step 2. Name any alkyl groups substituents.
The alkyl groups are named in the same way as we did for branched alkanes (methyl, ethyl, propyl, isopropyl, etc.).

Step 3. Determine the point of attachment of alkyl group(s) to the parent chain.
We use the following rules for assigning position numbers to the ring-carbons.

- If there is only \qquad substituent, a position number is not used.
- Name the molecule by placing the alkyl group substituent name in front of the parent chain name; no further steps are needed.
- For example, consider the molecule drawn to the right with a single, methyl group substituent attached to a six-carbon ring.

We name this molecule methylcyclohexane.

- If there is more than one substituent, assign position numbers to the alkyl groups.
- For identical substituents, arbitrarily assign one of them to position number one. Then, beginning with carbon number 1, number the other carbons in the direction (clockwise or counterclockwise) that gives the \qquad sum of position numbers.
- Example:

1,3-dimethylcyclohexane vs. 1,5-dimethylcyclohexane (correct)
(incorrect)
- When substituents are non identical, the ring-carbon attached to the substituent that comes first in alphabetical order is assigned position number 1.
- For example, the molecule drawn below has non identical substituents.

We assign the position number 1 to the ring-carbon that is bonded to the ethyl group because ethyl comes before methyl alphabetically.

We number the ring-carbons in the counter-clockwise direction in order to result in the smallest sum of position numbers.

1-ethyl-3-methyl

Step 4. Construct the name of the alkane by placing the alkyl groups in alphabetical order and specifying their position numbers, followed by the name of the parent chain.

- Step 4 is used in the exact same way for cycloalkanes as for branched alkanes.
- Let's name the cycloalkanes from our last two examples.

1,3-dimethylcyclohexane

1-ethyl-3-methylcyclohexane

Understanding Check:

The cycloalkane molecule shown below exists as a colorless gas at room temperature. What is the IUPAC system name for this molecule?

Understanding Check:

Draw the line bond, condensed, and skeletal structures of the following cycloalkanes:
a. 1,1-dimethylcyclobutane
b. 1-methyl-3-propylcyclopentane
c. 1,4-diethylcyclohexane

Isomers

Isomers are molecules that have the \qquad molecular \qquad , but differ in the way the atoms are arranged.

You will learn about two types of isomers:

1) Constitutional Isomers
2) Stereoisomers

Constitutional Isomers

Molecules that have the same molecular formula, but different atomic connections are called
\qquad . \qquad .
Example: Consider the three constitutional isomers that have the molecular formula of $\mathrm{C}_{5} \mathrm{H}_{12}$.

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$		
pentane	2-methylbutane	2,2-dimethylpropane
boiling point $=36^{\circ} \mathrm{C}$	boiling point $=28^{\circ} \mathrm{C}$	boiling point $=10^{\circ} \mathrm{C}$

Understanding Check: Draw the constitutional isomers for $\mathrm{C}_{4} \mathrm{H}_{10}$

Understanding Check: Draw and name the five constitutional isomers of $\mathrm{C}_{6} \mathrm{H}_{14}$

Conformations

The infinite number of shapes that a molecule can take, because of the rotation around bonds, are called
\qquad .
Example: A few of the infinite conformations of butane resulting from rotation about the single bond between carbon number 2 and carbon number 3 .

Common Error Warning: Do not confuse conformations with constitutional isomers! The different conformations of a molecule have the same molecular formula and have the same atomic connections; whereas constitutional isomers have the same molecular formula yet different atomic connections.

Stereoisomers

In cycloalkanes, the free rotation around the carbon-carbon single bonds is \qquad because hydrogens and/or substituents bonded to ring-carbons are too large to rotate through the center of the ring structure.

The restricted rotation results in the existence of a special type of \qquad -

Stereoisomers are molecules that:

- have the same molecular formula
- have the same atomic connections
- have a different 3-dimensional shape

So far the definition of stereoisomers is the same as conformations - but the next item makes them quite different.

- cannot be converted from one to another without breaking and reforming bonds

It is not possible for one stereoisomer to take the shape of another stereoisomer by rotation around a bond.

Geometric Isomers

When stereoisomers exist because of restricted bond rotation, the stereoisomers are called
\qquad isomers.

Examples:

Geometric isomers come in pairs - one is the " \qquad -" and one is the " \qquad $-"$ isomer.

When cycloalkanes have \qquad substituents, each on a different ring-carbon, then there are two geometric isomers.

For cycloalkanes, a cis geometric isomer has both substituents oriented in the same direction (either both pointing above the ring structure or both pointing below the ring structure).
Conversely, a trans geometric isomer has the two substituents oriented in opposite directions (one pointing above the ring structure and the other pointing below the ring structure).
two ways to draw cis cyclic compounds:

two ways to draw trans cyclic compounds:

To visualize the cycloalkane geometric isomers, we must use ball-and-stick representations or draw side view structures; the three-dimensional information in the cis vs. trans geometries cannot be visualized using our standard line bond, condensed, or skeletal structures.
Because alkyl group substituents cannot rotate through the center of the ring, the trans and cis isomers of cycloalkanes are two different molecules; they have slightly different physical properties (density, melting points, vapor pressure, etc.) and different chemical properties.

There are only slight differences in many properties because the isomers are very similar (but not identical).

- One important difference in the properties of some geometric isomers is their bioactivity.

Understanding Check

Using the templates below, complete the side view structures for the cis and trans isomers of 1,2 dimethylcyclopentane.

Understanding Check

Which of the following molecules have cis and trans isomers? There may be more that one correct selection.
a) 1,2-dimethylcyclopentane
b) 1-ethyl-2-propylcyclobutane
c) methylcyclohexane
d) 1,1-dimethylcylcohexane

Unsaturated Hydrocarbons

Review: Hydrocarbons can be categorized into the four subcategories:

Category	Defining Feature	Saturation	Example
alkane	all single bonds	saturated	ethane $\mathrm{CH}_{3}-\mathrm{CH}_{3}$
alkene	at least one carboncarbon double bond	unsaturated	ethene $\mathrm{CH}_{2}=\mathrm{CH}_{2}$
alkyne	at least one carboncarbon triple bond	unsaturated	ethyne $\mathrm{CH} \equiv \mathrm{CH}$
aromatic	alternating double and single bonds in a cyclic hydrocarbon	unsaturated	benzene

Unsaturated hydrocarbons contain one or more carbon-carbon \qquad or \qquad bonds.

Alkenes

\qquad are molecules that consist only of carbon and hydrogen atoms and contain at least one carbon-carbon double bond.

Systemic Method for Naming Alkenes:

Step 1. Find and name the parent chain.

The parent chain is the longest, continuous chain of carbon atoms that \qquad the double bond.

The parent chain is named by combining a numbering prefix that specifies the number of carbon atoms in the parent chain, with the "- \qquad " suffix, which identifies the molecule as an alkene.

This parent chain numbering prefixes are the same as were used for alkanes, however we use the "ene" suffix.

- Example: If an alkene has three carbon atoms in the parent chain, the parent chain name is propene.

For alkenes with more than three carbons, the position of the double bond must be indicated by adding a position number to the parent chain name.

- Position number $\mathbf{1}$ is assigned to the carbon at the end of the parent chain that is closest to the double bond.
$\stackrel{1}{\mathrm{CH}_{2}}=\stackrel{2}{\mathrm{C}} \mathrm{H}-\stackrel{3}{\mathrm{C}} \mathrm{CH}_{2}-\stackrel{4}{\mathrm{C}_{\mathrm{C}}^{2}}-\stackrel{5}{\mathrm{CH}_{3}}$
- If the double bond is between carbons number $\mathbf{1}$ and $\mathbf{2}$, the number " $\mathbf{1}$ " is used as a prefix to the parent chain name. For example, in the molecule below, the parent chain is called 1-pentene.
$\stackrel{1}{\mathrm{CH}_{3}}-\stackrel{2}{\mathrm{C}} \mathrm{H}=\stackrel{3}{\mathrm{C}} \mathrm{H}-\stackrel{4}{\mathrm{CH}_{2}}-\stackrel{5}{\mathrm{CH}_{3}}$
- If the double bond is between carbons number $\mathbf{2}$ and $\mathbf{3}$, the number " $\mathbf{2}$ " is used as a prefix to the parent chain name. For example, in the molecule below, the parent chain is called 2-pentene.
- If the double bond is between carbons number $\mathbf{3}$ and $\mathbf{4}$, the number " 3 " is used as a prefix to the parent chain name...etc.

Note that this is different from the method we used for numbering alkanes; for alkanes we assigned position number $\mathbf{1}$ to the carbon on the end of the parent chain that was closest to a substituent.

Step 2. Name any alkyl group substituents.

- Alkyl group substituents are named in the same way as you did for alkanes.

Step 3. Construct the name of the alkene by placing the alkyl groups in alphabetical order and specifying their position numbers, followed by the name of the parent chain.

- This is done the same way as you did with alkanes.
- Remember to use a dash between position numbers and letters.

Example: What is the name of this alkene:

Step 1. Find and name the parent chain.

The parent chain is the longest, continuous chain of carbon atoms that contains the double bond.

- There are seven carbons in the parent chain.

Position number $\mathbf{1}$ is assigned to the carbon at the end of the
 parent chain that is closest to the double bond.
Since the double bond is between carbons number $\mathbf{3}$ and 4 , the number " 3 " is used as a prefix in the parent chain name.

Parent chain name: 3-heptene

Step 2. Name any alkyl group substituents.

Alkyl group substituents are named in the same way as we did for alkanes.
There is one substituent in this example: ethyl
Step 3. Construct the name of the alkene by placing the alkyl groups in alphabetical order and specifying their position numbers, followed by the name of the parent chain.
The ethyl substituent is attached to carbon number 3, use 3-ethyl.
The name of this molecule is: 3-ethyl-3-heptene

Example: What is the name of this alkene:

Step 1. Find and name the parent chain.
The parent chain is the longest, continuous chain of carbon atoms that contains the double bond.

- There are six carbons in the parent chain.

Position number 1 is assigned to the carbon at the end of the
 parent chain that is closest to the double bond.
Since the double bond is between carbons number $\mathbf{1}$ and $\mathbf{2}$, the number " $\mathbf{1}$ " is used as a prefix in the parent chain name.

Parent chain name: 1-hexene

Step 2. Name any alkyl group substituents.

There is one substituent in this example: methyl
Step 3. Construct the name of the alkene by placing the alkyl groups in alphabetical order and specifying their position numbers, followed by the name of the parent chain.

The methyl substituent is attached to carbon number 5, use 5-methyl.
The name of this molecule is: 5-methyl-1-hexene

Understanding Check: Write the name of this alkene.

Understanding Check: Write the name of this alkene.

Understanding Check

Draw the line bond, condensed, and skeletal structure for each of these alkenes.
a) 2-methyl-1-butene
b) 3-ethyl-4-methyl-3-hexene

Geometric Isomers of Alkenes

Unlike the case for single bonds, there is no rotation around double bonds.
All other bonds to both double-bonded carbon atoms in alkenes are at 120° angles and are on the same
\qquad as the double bond.

- Example: Ethene

\qquad (cis and trans).
- Example: 2-butene

There are two possible geometric arrangements of the two methyl groups attached to the double bonded carbons.

cis-2-butene

We identify the cis and trans isomers by noting the positions of alkyl groups on each of the doublebonded carbons relative to an imaginary line passing along the double bond.

When the alkyl groups are on \qquad sides of the imaginary line, we have the trans geometric isomer.

When both of the alkyl groups are on the \qquad side of the imaginary line, we have the cis geometric isomer.

Since the nature of double bonds does not allow free rotation, it is not possible for a trans isomer to rotate and thereby convert to the cis isomer (and vice versa).

I want to elaborate on the inability for cis and trans isomers to interconvert by contrasting geometric isomers and conformations. Conformations of a molecule arise from rotation around single bonds. An infinite number of conformations are possible for an individual molecule. In contrast, geometric isomers are two, distinct molecules that cannot interconvert by rotation around bonds.

In order to differentiate cis vs. trans when using condensed structures for alkenes, the 120° bond angles around the double-bonded carbons are drawn as shown below.

In skeletal structures, the bonds to the alkyl groups that emanate from the double-bonded carbons are oriented as shown below.

There will be two correct ways to draw each cis and each trans isomer.

- For example, the two condensed structures of trans-2-butene shown below are equivalent and equally correct representations of the isomer.

The two condensed structures of cis-2-butene shown below are equivalent.

- The two skeletal structures of trans-2-butene shown below are equivalent and equally correct representations of the isomer.

both are trans-2-butene
The two skeletal structures of cis-2-butene shown below are equivalent.

both are cis-2-butene

Understanding Check

Draw the condensed and skeletal structures for each of the following molecules.
a) trans-2-pentene
b) cis-2-pentene
c) trans-3-hexene
d) cis-3-hexene

Alkynes

Alkynes are hydrocarbon molecules that contain at least one carbon-carbon \qquad bond.

- Like the alkenes, they are unsaturated hydrocarbons.

Naming Alkynes

Alkynes are named in the same way as you did for alkenes; the only difference is that we use the " \qquad $"$ suffix instead of the "ene" suffix.

- Example:

$$
\underset{\text { 2-pentyne }}{\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3}}
$$

Alkyne Molecular Geometry

Alkynes involve a triple bond and the bond angles around the triple-bonded carbons are 180° as illustrated below.

Each of the triple-bonded carbons can have only one other group single bonded to it (octet rule) and this AB_{2} geometry cannot result in geometric (cis/trans) isomers.

Aromatic Hydrocarbons

Aromatic hydrocarbons have alternating single and double bonds between the carbons that form the ring.
The smallest and simplest aromatic hydrocarbon that occurs is called \qquad .

- The line bond, condensed, and skeletal structures of benzene are shown below.

line bond structure

condensed structure

skeletal structures

Naming Aromatic Hydrocarbons

Aromatic hydrocarbons are named using the same method that you used for cycloalkanes; the ring structure is the parent chain.

In this course, we will limit our naming of aromatic hydrocarbons to benzene and benzene rings with substituents.

- Example: The systemic name for the compound shown below is methylbenzene.

As was the case for cycloalkanes, we do not need to use a position number when there is only one substituent bonded to a ring structure.
methylbenzene
Note that sometimes book and journal authors combine (hybridize) skeletal and condensed structures when drawing cyclic compounds.

Example: Compare the skeletal and the skeletal/condensed structures of methylbenzene:

If you are using an online problem system and the question specifies a particular structure (i.e. line bond, condensed, skeletal), the auto-grader may not accept the hybrid as a correct response.
skeletal
condensed/skeletal hybrid
When cyclic compounds have more than one substituent, position numbers are included (you did so for cycloalkanes). Examples:

1,2-dimethylbenzene (ortho-xylene)

1,3-dimethylbenzene (meta-xylene)

1,4-dimethylbenzene
(para-xylene)

The common names are shown in parenthesis under the systemic names.

- When substituents are at positions number 1 and 2, then "ortho-" is used as a prefix in the common names.
- When substituents are at positions number 1 and 3, then "meta-" is used.
- When substituents are at positions number 1 and 4 , then "para-" is used.

Some cyclic compounds have \qquad rings.

Fused rings occur when neighboring rings share carbon atoms.

- For example, naphthalene, shown on the right, is an aromatic hydrocarbon that consists of two fused rings. The shared carbon atoms are highlighted red.

naphthalene

Aromatic hydrocarbons that contain fused are called polycyclic aromatic hydrocarbons (PAHs).

- Some PAHs are shown in the table on the right.

| Number of |
| :---: | :---: | :---: |
| fused rings |

Functional Groups

A \qquad is an atom, group of atoms, or bond that gives a compound a particular set of physical and chemical properties.

Organic compounds are categorized into various \qquad by the functional group(s) that they contain.

You have already seen a couple examples of organic molecule families defined by the type of carboncarbon bond present.

- When a carbon-carbon double bond (functional group) is present, the molecule is assigned to the alkene family.
- In the case of a carbon-carbon triple bond, we assigned the molecule to the alkyne family.

As an introduction to functional groups and families of organic compounds, in this video, I will introduce you to three organic families:

- Alcohols
- Carboxylic Acids
- Esters

The Alcohol Family

Alcohols contains one or more \qquad (-OH) functional groups attached to a hydrocarbon. The general form of an alcohol is shown below with the hydroxyl group highlighted in yellow.

```
Hydrocarbon -ÖO}-
```

A specific example of an alcohol is ethanol. The condensed structural formula for ethanol is shown below.

$$
\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{OH}
$$

Ethanol is quite well known for being produced when carbohydrates, with the help of enzymes present in yeast, are used to make to beer, wine, and distilled adult beverages.

The Carboxylic Acid Family

Carboxylic acids contain a \qquad functional group attached to a hydrocarbon.
Carboxyl groups contain both a carbonyl group, which is a carbon double bonded to an oxygen ($\mathbf{C = O}$), and a hydroxyl group ($\mathbf{- O H}$) that are connected to each other and the hydrocarbon (alkyl group) part.

A specific example of a carboxylic acid is acetic acid. The condensed structural formula for acetic acid is shown below.

White vinegar is a mixture composed of 95% water and 5% acetic acid.

The Ester Family

Esters contain a \qquad functional group that is bonded between two hydrocarbon parts.

Carboxylate groups contain both a carbonyl group $(\mathrm{C}=\mathrm{O})$, and an oxygen atom.

The boxes that represent hydrocarbons (alkyl groups) are shaded with different colors because the two hydrocarbon parts are not always identical.

Waxes are examples of esters.

- Waxes are produced in plants and animals; they are esters with relatively large hydrocarbon parts.
- The skeletal structural formula for one of the esters found in beeswax is shown below.

When drawing condensed structures of large molecules, such as the ester shown above, neighboring - CH_{2} - groups can be further condensed in parenthesis as shown below:

Summary of Organic Families and their Functional Groups

Organic Family	Functional Group	Description
Alkene	C=C carbon-carbon double bond	Hydrocarbon with one or more carbon-carbon double bonds.
Alkyne	C \equiv C carbon-carbon triple bond	Hydrocarbon with one or more carbon-carbon triple bonds.
Alcohol	-OH hydroxyl group	One or more hydroxyl groups bonded to a hydrocarbon
Carboxylic Acid	:O: II C-Ọ-H carboxyl group	Carboxyl group bonded to a hydrocarbon
Ester	:O: II C-Ö- -	Carboxylate group bonded between two hydrocarbons

