Chapter 2 Lecture Notes: Atoms

Educational Goals

- 1. Describe the subatomic structure of an atom.
- 2. Define the terms **element** and **atomic symbol.**
- 3. Understand how elements are arranged in the periodic table based on the number of protons they contain.
- 4. Understand how atomic number and mass number are used to indicate details of an atom's nucleus.
- 5. Know how **isotopes** of an element differ from one another.
- 6. Define the term **mole** and describe the relationship between **moles** and **molar mass**.
- 7. Given the **molar mass** of an element, convert between number of atoms, number of moles, and mass (grams).

Check your current model: Draw a carbon atom. Atoms are made of particles. There are three types of subatomic particles that will make up our atomic model: 1 2 3 3	An Introduction to Matter (stuff) is made		
Atoms are made of particles. There are three types of subatomic particles that will make up our atomic model: 1	Model of the Atom		
There are <i>three</i> types of subatomic particles that will make up our atomic model: 1 2		Check your current model: Draw a carbon atom.	
2		of subatomic particles that will make up our atomic model:	
Protons and neutrons are compacted together in what we call the of an ato	rotons and neutrons a	2 3	of an atom

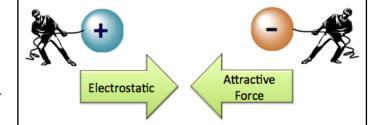
Atoms are mostly empty space.

Electrical Charge

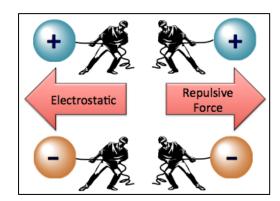
There are a few fundamental properties of nature.

• Examples: Gravity, magnetism, and mass.

Another fundamental property in nature is _______.


Particles *may or may not* have electrical charge.

There are two types of electrical charge; we arbitrarily call one type _____ and the other type


Every thing we discuss in this course ultimately occurs because of the interaction of these two types of charges.

Particles with *opposite charges attract* each other.

The natural attraction is called **force**.

Oppositely charged particles will accelerate **toward** one another if not held apart.

Particles with *like charges repel* each other.

The natural repulsion is called

force.

Like charged particles will accelerate **away** from one another if not held together.

Subatomic Particles

1) Protons

Protons are *charged* particles located in the of an atom.

The number of protons a particular atom contains determines that atom's identity.

• For example, any atom that contains just **one proton** is called *hydrogen*. An atom with **two protons** is called *helium*. An atom with **six protons** is called *carbon*.

Historically, matter with different numbers of protons, such as hydrogen, helium, and carbon were called the ______.

There are 92 elements that occur in nature. About 25 others have been man-made by slamming two atoms together causing their nuclei to combine, however these new atoms do not last long (fractions of a second up to one year), they break apart into smaller atoms.

A modern periodic table of the elements is shown on the next page.

 You can download a copy of this periodic table at: http://www.zovallearning.com/GOBlinks/ch2/periodictablezovalbasic.pdf

VIII Noble Gases	2 He Helium 4.003	10	Ne on Neon 20.1797	18	Ar	Argon 39.948	36	Kr	Krypton 83.80	54	Xe	Xenon 131.29	98	Rn	Radon (222)			71	Lu	Lutetium 174.967	103	Lr Lawrencium	(262)
	VII	6	F Fluorine 18.998403	17	\Box	Chlorine 35.4527	35	Br	Bromine 79.904	53	Ι	Iodine 126.90447	85	At	Astatine (210)			70	Yb	Ytterbium 173.04	102		(259)
	VI	8	Oxygen 15.9994	16	S	Sulfur 32.066	34	Se	Selenium 78.971	52	Te	Tellurium 127.60	84	P_0	Polonium (209)			69	Tm	Thulium 168.93422	101	Md Mendelevium	(258)
	>	7	N Nitrogen 14.0067	15	Ь	Phosphorus 30.973762	33	As	Arsenic 74.92160	51	Sb	Antimony 121.760	83	Bi	Bismuth 208.98038			89	Er	Erbium 167.26	100	\mathbf{Fm}	(257)
	<u>N</u>	9	C Carbon 12.0107	14	Si	Silicon 28.0855	32	ge	Germanium 72.61	50	Sn	Tin 118.710	82	Pb	Lead 207.2			<i>L</i> 9		Holmium 164.93033		Es Einsteinium	(252)
	III	5	B Boron 10.811	13	Al	Aluminum 26.9815	31	Ga	Gallium 69.723	49	In	Indium 114.818	81	П	Thallium 204.3833			99	Dy	Dysprosium 162.50	86	\mathbf{Cf} Californium	(251)
							30	Zn	Zinc 65.39	48	Cq	Cadmium 112.414	80	$_{ m Hg}$	Mercury 200.59			65	qL	Terbium 158.92534	26	Bk Berkelium	(247)
nts							67	Cu	Copper 63.546	47	\mathbf{Ag}	Silver 107.8682	62	Au	Gold 196.96657			64	P5	Gadolinium 157.25	96	\mathbf{Cm}	(247)
leme							28	ï	Nickel 58.6934	46	Pd	Palladium 106.42	78	Pt	Platinum 195.078			63	Eu	Europium 151.964	95	Am Americium	(243)
Table of the Elements							27	ပိ	Cobalt 58.933194	45	Rh	Rhodium 102.90550	77	Ir	Iridium 192.217	109	Meitnerium (266)	62	Sm	Samarium 150.36	94		(244)
le of							76	Fe	Iron 55.845			Ruthenium 101.07		Os	Osmium 190.23	108	Hssium (265)	61	Pm	Promethium (145)	93	$N_{ m p}$	(237)
: Tab							25	Mn	Manganese 54.938044	43		Technetium (98)	75	Re	Rhenium 186.207		Bh Bohrium (262)	09	PN	Ż		\bigcup_{Uranium}	238.0289
Periodic							24	Ç	Chromium 51.9961	42	M_0	Molybdenum 95.95	74	≱	Tungsten 183.84	106	Seaborgium (263)	59	Pr	Praseodymium 140.90766	91	\mathbf{Pa}	231.03588
Pe							23	>	Vanadium 50.9415	41	NP	Niobium 92.90637	73	Та	Tantalum 180.9479	105	Db Dubnium (262)	58	Ce	Cerium 140.116	06		232.0377
							22	Ï	Titanium 47.867	40	Zr	Zirconium 91.224	72		Hafnium 178.49	104	Rf Rutherfordium (261)						
								Sc	Scandium 44.955908	39	Τ	Yttrium 88.90584	57	La	Lanthanum 138.90545	68	Ac Actinium (227)						
	II Alkaline Earth Metals	4	Beryllium 9.012183	12	Mg	Magnesium 24.3050	20	Ca	Calcium 40.078	38	Sr	Strontium 87.62	99		Barium 137.327	88	Radium (226)						
I Alkali Metals	1 H Hydrogen 1.0079	3	Lithium 6.941	11	Na Na	Sodium 22.989770	19	×	Potassium 39.0983	37	Rb	Rubidium 85.4678	55	ပိ	Cesium 132.90545	87	Francium (223)						

Note that each element is abbreviation) and occupie	represented by its atomic s a box in the table.		(a one- or	two-letter name		
, 1	mbol is the	_				
	us the <i>of</i>			f that particular element.		
because an atom wit	arbon, symbol C, atomic nuth six protons is called carbout have an atomic number o	n. If it had				
	be abbreviated using " \mathbf{Z} ." le, with carbon, $\mathbf{Z} = 6$, with	hydrogen, Z	Z=1.			
• Elements are ordered	d in the periodic table by inc	creasing ato	mic number.			
2) Electrons						
Electrons are negatively	charged subatomic particles					
They are light-weight part	ticles that move extremely fa	ast.				
bee hive represent	of chapter 2 we can visualize the nucleus). In chapter 3 e electrons can occupy.					
• Electrons are very	light compared to protons a	nd neutrons				
• Protons and neutro an atom's mass.	ons are about 2000 times hea	avier than el	lectrons and the	erefore compose most of		
3) Neutrons						
Neutrons are located in th	e (with the	he protons).				
Neutrons do not have elec	ctrical charge; we say they a	re <i>electrical</i>	<i>lly</i>			
The names, charges, and s	symbols for the three types of	of subatomic	particles are sl	hown below:		
	SUBATOMIC PARTICLE	SYMBOL	CHARGE	l		
	PROTON p positive (1+)					
NEUTRON n none						
ELECTRON e or e ⁻ negative (1-)						
ı				ı		
How many neutrons are	in an atom?					
We <i>cannot determine</i> the	number of neutrons in an at	om based or	n the number of	f protons.		
• This is because ato	oms of a particular element a	do not all ha	ive the same ni	umber of neutrons.		
Example: Some carbon a	atoms have six neutrons, son	ne have s <i>eve</i>	n neutrons and	d some have <i>eight</i>		

e: Some carbon atoms have six neutrons, some have seven neutrons, and some have eight neutrons.

These three different forms of carbon are called ______ of carbon.

Isotopes are defined as atoms with the same number of protons (same element), but a different number of neutrons.

You learned that an atom's "atomic number (Z)" is the number of protons it contains.

When considering the number of neutrons in an isotope of a particular atom, it is useful to learn a new term called "mass number."

The _____ of an atom is defined as the number of protons plus the number of neutrons.

mass number = number of protons + number of neutrons

Mass number can be abbreviated using "A."

	SYMBOL	DEFINITION			
ATOMIC NUMBER	Z	number of protons			
MASS NUMBER	А	number of protons + number of neutro			

Example: How many neutrons are in a sodium (Na) atom that has a mass number of 23?

Take notes here:	
Understanding Check: How many neutrons are in a carbon (C) atom that has a <i>mass n</i>	<i>umber</i> of 14 ?

You will often see one of two "shorthand notation" methods used to differentiate the various isotopes:

Method 1: Write the *element symbol*, a dash, then the *mass number* (A)

Let's use our three isotopes of carbon for examples:

NUMBER OF NEUTRONS	SHORTHAND
IN THE CARBON ATOM	NOTATION
6	C-12
7	C-13
8	C-14

Method 2: Write the *element symbol*, we superscript the *mass number* (A) to the left of the symbol.

NUMBER OF NEUTRONS	SHORTHAND
IN THE CARBON ATOM	NOTATION
6	¹² C
7	¹³ C
8	¹⁴ C

- Although redundant, sometimes the atomic number (Z) is also subscripted to the left of the symbol.
 - For example:

Understanding Check: Fill in the blanks for the following isotopes:					
a. ¹⁴ N number of protons num	ber of neutrons	atomic number	mass number		
b. ¹⁵ N number of protons num	ber of neutrons	atomic number	mass number		
c. ⁴² Ca number of protons num	nber of neutrons	atomic number	mass number		
d. ¹ H number of protons num	ber of neutrons	atomic number	mass number		

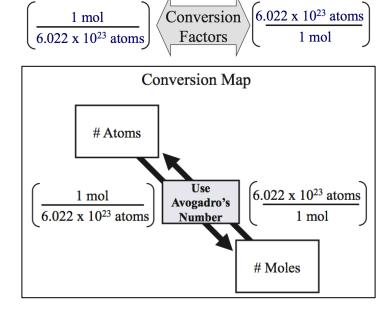
Atoms are *electrically neutral*; their total charge is equal to zero.

• They have the same number of electrons (-) as protons (+), so the positive and negative charges add up to zero (cancel).

The Mole

Atoms are so tiny and small in mass that it is more convenient to do calculations with a large number of atoms

- Just like bakers and chefs use eggs by the dozen, chemists use atoms and molecules by the mole.
 - A ______ is a counting unit used for atoms and molecules.
 - A _____ is any term that refers to a specific number of things.
 - a couple = 2 items (e.g. people)
 - a dozen = 12 items (e.g. eggs, donuts)
 - a mole = 6.022×10^{23} (e.g. atoms, molecules)


The Chemist's Mole

- One mole of anything represents 6.022×10^{23} of the things.
- This is referred to as **Avogadro's number**.
- 1 mole = 6.022×10^{23}

Understanding Check: How many atoms are in *1 mole* of helium (He)?

Because the mole is the standard counting unit used to indicate the number of atoms present in a sample, it is useful to **convert** back and forth from *moles* to *atoms*.

- Use our *conversion factor* method.
- The *relationship* between # of atoms and moles is:
 - 1 mole = 6.022×10^{23}

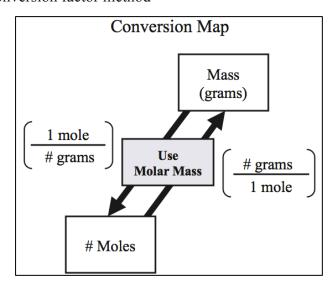
Example: How many carbon atoms are there in 0.100 mole of carbon?

Take notes here:			

You try one: How many moles are 2.9 x 10¹² F atoms?

The Mole and Mass

- The _____ of an element is equivalent to the mass (in grams) of one mole of the element.
- Molar mass is given in the *periodic table* ______ the symbol of the element.
 - Molar mass units: _____
 - Example: Carbon molar mass is _____
 - Another example:
 - 1 mole of argon (Ar) = 39.95 g
 - Molar mass of argon is 39.95 g/mole


Understanding Check:

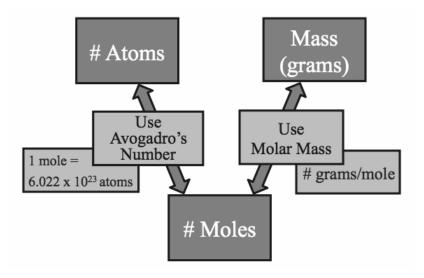
1 mole of C = _____ grams of carbon (C) = _____ atoms of C

1 mole of Al = ____ grams of aluminum (Al) = ____ atoms of Al

Because the molar mass gives us the _______between the number of moles and the mass of an element, it can be used to ______ back and forth between moles and mass (in grams).

- Use our conversion factor method

Example: Carbon


- The relationship between # of moles of carbon and grams of carbon is:
 - 1 mole Carbon = 12.01 g
- This can be written as conversion factors:

$$\left(\frac{1 \text{ mole C}}{12.01 \text{ grams C}}\right) \left(\frac{12.01 \text{ grams C}}{1 \text{ mole C}}\right)$$

Example Problem: What is the mass of 0.770 moles of carbon?

Take notes here:	
You try one: How many moles are there in 50.0 g of lead?	

Converting Between the Number of Atoms and Grams

Example: (atoms to grams) What is the mass of 2.50×10^{21} Lead (Pb) atoms?

Take notes here:
You try one: (grams to atoms) Compute the number atoms in 10.0 g of Aluminum (Al)?

The Periodic Table

As we continue to build our model of atoms and matter in later chapters, we will gain more understanding of why the elements are arranged as they are in the periodic table and how the periodic table can be very useful in predicting the chemical and physical properties of matter.

Classification of Elements Based on Electrical and Heat Conduction

CATEGORY	PROPERTIES
Metals	•Good conductors of heat and electricity •Ductile (can be pulled into wires and pounded flat) •Have a luster
Nonmetals	Poor conductors of heat and electricity Brittle (break or shatter if bent or hammered)
Metalloids (sometimes called Semimetals)	Intermediate conductors of heat and electricity

1			Me	tals		Nonn	netals		Meta	lloids							2
Н		(Green) (Red)												He			
3	4												6	7	8	9	10
Li	Be	В											C	N	O	F	Ne
11	12												14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
87	88	89	104	105	106	107	108	109				•	•	•		•	
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
				90	91	92	93	94	95	96	97	98	99	100	101	102	103
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Elements in the periodic table are arranged in columns called ______ (sometimes, but much less often, called Families).

• Sometimes these groups are shown with **group numbers** in Roman numerals above the column.

	I																	VIII
1	1			s-Bl	lock	p-Block										2		
1	Н	II				•							III	IV	V	VI	VII	He
2	3	4		d-B	lock	f-Block							5	6	7	8	9	10
	Li	Be											В	C	N	O	F	Ne
3	11	12		Transition Metals											15	16	17	18
	Na	Mg												Si	P	S	Cl	Ar
4	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
5	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
6	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
7	87	88	89	104	105	106	107	108	109									
/	Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
	(Inner) Transition Metals										_							
			Lanthanides			59	60	61	62	63	64	65	66	67	68	69	70	71
	6	L				Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	7		Actinides		90	91	92	93	94	95	96	97	98	99	100	101	102	103
	7				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

The elements in **Group I** (also called Group 1A) are called the _____ metals.

• Although it is not a metal_note that hydrogen is in this group for reasons that I will discuss in

• Although it is not a metal, note the chapter 3.	at nydrogen is in this group <i>for re</i>	asons that I will alscuss in
The elements in Group II (also called a	group 2A) are called the	earth metals.
The elements in Group VII (also called	d group 7A) are called the	
The elements in Group VIII (also called	ed group 8A) are called the	•
The elements in Group I and Group I I	I are in what is called theB	lock.
The elements in Groups III - VIII are i	n theBlock.	
Гhe	, located between the s- and p	<i>p-Blocks</i> , are in the -Block .
The Inner Transition Metals, located • They are called <i>lanthanides</i> (top	1	
The <i>rows</i> in the periodic table are called	d .	

• The periods are often numbered to the left of each row.