Chapter 1 Lecture Notes: Stuff and Energy

Educational Goals

1. Explain, compare, and contrast the terms scientific method, hypothesis, and experiment.
2. Compare and contrast scientific theory and scientific law.
3. Define the terms matter and energy. Describe the three phases (states) of matter and the two forms of energy.
4. Describe and give examples of physical properties and physical change.
5. Perform unit conversion calculations.
6. Express and interpret numbers in scientific (exponential) notation.
7. Explain the difference between the terms accurate and precise.
8. Know and use the rules for significant figures.

- Given a value, determine the number of significant figures.
- Use the correct number of significant figures to report the results of calculations involving measured quantities.

Science is a \qquad for gaining knowledge and understanding of reality.

It produces generalizations with \qquad value.

The Scientific Method

There are two ways to do science: scientific \qquad and scientific \qquad .

- It is important to note that both methods are used to acquire predictive power and both begin with

Scientific Theory

Other words for theory are \qquad or \qquad .

- Scientific theory uses models/explanations to make sense of observables. Often, a first guess at a model is proposed.
- The first guess is called a \qquad .

The hypothesis can usually be tested by experiment or additional observations.
If the hypothesis continues to be validated by experiment or new observations, it becomes \qquad .

In the healthcare field, another word for theory or model is \qquad .

Scientific Law

A scientific law is simply \boldsymbol{a} \qquad about something that generally occurs.

Note that in using scientific law, \qquad explanation (model) is given.

Scientific law can be contrasted with scientific theory that involves proposing a model or explanation for what is observed.

Chemistry

Chemistry is the study of matter and how it interacts with other \qquad and/or \qquad .

Matter and Energy

Matter is anything that has \qquad and occupies \qquad .
We can describe matter in terms of \qquad
\qquad , those characteristics that can be determined without changing it into a different substance.

- Example: Sugar is white, tastes sweet, and can be crushed into powder. Crushing sugar does not change sugar into something else.

Matter can also be described in terms of its \qquad properties. Chemical properties of substances describe how they are converted to new substances in processes called chemical reactions.

- Example: Caramelization of sugar

Matter is typically found in one of three different physical \qquad (sometimes called \qquad).

Changing the phase of matter, converting matter between solid, liquid, and gas is considered a physical change because the identity does not change.

- Examples of phase changes are: melting, boiling water to make steam, and melting an iron rod.

Energy

Energy is commonly defined as the ability to do \qquad .

Energy can be found in two forms, \qquad energy and \qquad energy.
Potential energy is \qquad energy; it has the potential to do work.

- An example of potential energy is water stored in a dam. If a valve is opened, the water will flow downhill and turn a paddle connected to a generator to create electricity.
Kinetic energy is the energy of \qquad .
- Any time matter is moving, it has kinetic energy.

An important law that is central to understanding nature is: matter will exist in the lowest possible energy state. Another way to say this is "if matter can lose energy, it will always do so."

Understanding Check: Kinetic Energy vs. Potential Energy

Which are mainly examples of potential energy and which are mainly examples of kinetic energy?
a) A mountain climber sits at the top of a peak.
b) A mountain climber rappels down a cliff.
c) A hamburger sits on a plate.
d) A nurse inflates a blood pressure cuff.

Units of Measurements

Measurements consist of two parts - a \qquad and a \qquad .

SI Units and Their Symbols

Quantity	SI Unit Name	Symbol
Length	meter	m
Mass	kilogram	kg
Time	second	s
Temperature	Kelvin	K

Commonly Used Units and Their Symbols

Quantity	Unit Name	Symbol			
Length	foot				
	inch	ft			
in			$	$	gram
:---:					
Mass					

Scientific Notation and Metric Prefixes

Scientific Notation

When making measurements, particularly in science and in the health sciences, there are many times when you must deal with very large or very small numbers.

Example: a typical red blood cell has a diameter of about 0.0000075 m .
In \qquad (exponential notation) this diameter is written $7.5 \times 10^{-6} \mathrm{~m}$.
Values expressed in scientific notation are written as a number between \qquad and \qquad multiplied by a power of 10 .

The superscripted number to the right of the ten is called an exponent.

- An exponent with a positive value tells you how many times to multiply a number by 10 .

$$
3.5 \times 10^{4}=3.5 \times 10 \times 10 \times 10 \times 10=35000
$$

- An exponent with a negative value tells you how many times to divide a number by 10 .

$$
3.5 \times 10^{-4}=\frac{3.5}{10 \times 10 \times 10 \times 10}=0.00035
$$

Converting from Regular Notation to Scientific

1) Move the decimal point to the right of the first (right-most) non-zero number

- The exponent will be equal to the number of decimal places moved.

2) When you move the decimal point to the left, the exponent is positive.

$$
\begin{aligned}
35000 & =3.5 \times 10^{4} \\
285.2 & =2.852 \times 10^{2} \\
8300000 & =8.3 \times 10^{6}
\end{aligned}
$$

3) When you move the decimal point to the right, the exponent is negative.

$$
\begin{aligned}
0.00035 & =3.5 \times 10^{-4} \\
0.0445 & =4.45 \times 10^{-2} \\
0.00000003554 & =3.554 \times 10^{-8}
\end{aligned}
$$

Understanding Check: Convert each number into scientific notation.
a) 0.0144
b) 144
c) 36.32
d) 0.0000098

Converting from Scientific Notation to Regular Notation

You just learned how to convert from regular numerical notation to scientific notation. Now let's do the reverse; convert from scientific notation to regular notation.

Step 1: Note the value of the exponent.
Step 2: The value of the exponent will tell you which direction and how many places to move the decimal point.

- If the value of the exponent is positive, remove the power of ten and move the decimal point that value of places to the right.
- If the value of the exponent is negative, remove the power of ten and move the decimal point that value of places to the left.

Example: Convert 3.7×10^{5} into regular notation.
Step 1: Note the value of the exponent: The exponent is positive 5.
Step 2: The value of the exponent will tell you which direction and how many places to move the decimal point.

- If the value of the exponent is positive, remove the power of ten and move the decimal point that value of places to the right.
- We will move the decimal point 5 places to the right.

$$
3.7 \text { un } \longrightarrow 3.70000 \longrightarrow 370000
$$

When the decimal point is not shown in a number, as in our answer, it is assumed to be after the rightmost digit.

Let's do another example: Convert 1.604×10^{-3} into regular notation.
Step 1: Note the value of the exponent: The exponent is negative 3.
Step 2: The value of the exponent will tell you which direction and how many places to move the decimal point.

- If the value of the exponent is negative, remove the power of ten and move the decimal point that value of places to the left.
- We will move the decimal point 3 places to the left.

$$
w^{1,604} \longrightarrow 001,604 \longrightarrow \underset{\text { or } 0.001604}{.001604}
$$

Understanding Check: Convert the following numbers into regular notation.
a) 5.2789×10^{2}
b) 1.78538×10^{-3}
c) 2.34×10^{6}
d) 9.583×10^{-5}

Measurements and Significant Figures

There are three important factors to consider when making measurements:

1) accuracy
2) precision
3) significant figures
\qquad is related to how close a measured value is to a true value.
Example: Suppose that a patient's temperature is taken twice and values of $98^{\circ} \mathrm{F}$ and $102^{\circ} \mathrm{F}$ are obtained. If the patient's true temperature is $103^{\circ} \mathrm{F}$, the second measurement is more accurate.
\qquad is a measure of reproducibility.

Example: Suppose that a patient's temperature is taken three times and values of $98^{\circ} \mathrm{F}, 99^{\circ} \mathrm{F}$, and $97^{\circ} \mathrm{F}$ are obtained. Another set of temperature measurements gives $90^{\circ} \mathrm{F}, 100^{\circ} \mathrm{F}$, and $96^{\circ} \mathrm{F}$.

- The values in the first set of measurements are closer to one another, so they are more precise than the second set.

The quality of the equipment used to make a measurement is one factor in obtaining accurate and precise results. The ability of the human operator to correctly use the measuring device is another factor.

Significant Figures

One way to include information on the \qquad of a measured value (or a value that is calculated using measured values) is to report the value using the correct number of significant figures.

The precision of a measured value can be determined by the \qquad -most decimal place reported.

- The names and precision of the decimal places for the number $\mathbf{8 6 9 . 2 5 7}$ are shown below:

A simple way to understand significant figures is to say that a digit is significant if we are \qquad of its value.

Method for Counting Significant Figures

Measured and calculated values should be reported using significant figures. We can look at a numerical value and determine the number of significant figures as follows:

- If the decimal point is \qquad , starting from the left, count all numbers (including zeros) beginning with the first non zero number.
- If the decimal point is \qquad , starting from the right, count all numbers (including zeros) beginning with the first non zero number.
- When numbers are given in scientific notation, do not consider the power of 10 , only the value before " $\times 10{ }^{\mathbf{n}}$."

Example: If the botanist reported the age of the tree as $\mathbf{5 0 0}$ years, how many significant figures are given?

Note that although the decimal point is implied to be after the right-most zero, it is absent (not shown explicitly), therefore we use the decimal point absent rule shown above; if the decimal point is absent, starting from the right, count all numbers (including zeros) beginning with the first non zero number.

- We will start inspecting each digit from right (to left) as shown by the arrow.
- We will start counting when we get to the first non zero number.

We do not count the first two zeros, but start counting at the 5. Therefore, there is one significant figure present.

Example: If the botanist reported the age of the tree as 500. years (note the decimal point present), how many significant figures are given?

Note that in this case, the decimal point is present (shown), therefore we use the decimal point present rule shown above; if the decimal point is present, starting from the left, count all numbers (including zeros) beginning with the first non zero number. We will start inspecting each digit from left to right as shown by the arrow. We will start counting when we get to the first non zero number.

We begin with the $\mathbf{5}$, then count all numbers including zeros. In this case, the two zeros are also significant. Therefore there are three significant figures present.

Outside of the science fields, " $\mathbf{5 0 0}$ " and " $\mathbf{5 0 0}$." are generally thought of as equivalent, however, the use of significant figures tells us that when we write " $\mathbf{5 0 0}$." (with the decimal point present) we know that number one hundred times more precisely than when we write " 500 " (without the decimal point). We have precision to the "ones" decimal place in " $\mathbf{5 0 0}$." vs. precision to the "hundreds" place in " $\mathbf{5 0 0}$ ".

Here are some other examples:
Example: How many significant figures are contained in 0.00045 ?
Note that in this case, the decimal point is present (shown). We will start inspecting each digit from left to right as shown by the arrow. We will start counting when we get to the first non zero number.

0.00045

We begin with the $\mathbf{4}$, then count all numbers including zeros. Therefore there are two significant figures present.

Example: How many significant figures are contained in 0.0002600 ?
Note that in this case, the decimal point is present (shown). We will start inspecting each digit from left to right as shown by the arrow. We will start counting when we get to the first non zero number.

0.0002600

We begin with the $\mathbf{2}$, then count all numbers including zeros. Therefore there are four significant figures present.

Example: How many significant figures are contained in 7080?
If the decimal point is absent, starting from the right, count all numbers (including zeros) beginning with the first non zero number. We will start inspecting each digit from right (to left) as shown by the arrow. We will start counting when we get to the first non zero number.

7080
We do not count the first zero, but start counting at the 8, and then count all numbers (including zeros). Therefore, there are three significant figures present.

Understanding Check: Specify the number of significant figures in each of the values below.
a) 23.5
b) 0.0073000
c) 6.70
d) 48.50
e) 6200
f) 6200 .
g) 6200.0
h) 0.6200
i) 0.62
j) 930

Significant Figures in Scientific Notation

When numbers are given in scientific notation, do not consider the power of 10 , only the value before "x 10 "."

Examples: How many significant figures are contained in each of the values shown below?
a) 5×10^{2} one significant figure
b) 5.0×10^{2} two significant figures
c) 5.00×10^{2} three significant figures

When converting back and forth from standard numerical notation to scientific notation, the number of significant figures used should not change.

Understanding Check: Write each measured value in scientific notation, being sure to use the correct number of significant figures.
a) 5047
b) 87629.0
c) 0.00008
d) 0.07460

Calculations Involving Significant Figures

When doing \qquad
\qquad with measured values, the answer should have the same number of significant figures as the measured value with the least number of significant figures.

When doing \qquad
\qquad with measured values, the answer should have the same precision as the least precise measurement (value) used in the calculation.

Example for Multiplication or Division:

- When doing multiplication or division with measured values, the answer should have the same number of significant figures as the measured value with the least number of significant figures.
- Example: If an object has a mass of 5.324 grams and a volume of 7.9 ml , what is its density?

Example for Addition or Subtraction:

- When doing addition or subtraction with measured values, the answer should have the same precision as the least precise measurement (number) used in the calculation.
- Example: A book 50.85 mm thick, a box 168.3 mm thick and a piece of paper 0.037 mm thick are stacked on top of each other. What is the height of the stack?

Understanding Check: Each of the numbers below is measured. Solve the calculations and give the correct number of significant figures.
a) 0.12×1.77
b) $690.4 \div 12$
c) $5.444-0.44$
d) $16.5+0.114+3.55$

Unit Conversions

Typical Unit Conversion Problems:

- A package weighs 3.50 kg (kilograms), what is the weight in lbs. (pounds)
- A student is 60.0 inches tall, what is the student's height in cm ?
- The temperature in Cabo San Lucas, Mexico is $30^{\circ} \mathrm{C}$, what is the temperature in ${ }^{\circ} \mathrm{F}$?

To convert from one unit to another, we must know the \qquad between the two units of measure.

- Examples:
- A package weighs 3.50 kg (kilograms), what is the weight in lbs. (pounds)
$-1 \mathrm{~kg}=2.20 \mathrm{lb}$
- A student is 60.0 inches tall, what is the student's height in cm ?
$-\quad 1$ inch $=2.54 \mathrm{~cm}$

Unit Relationships to Know:

- 1 milliliter $(\mathrm{mL})=1$ cubic centimeter $\left(\mathrm{cm}^{3}\right)$
- 1 inch (in) $=2.54$ centimeters (cm)
- 1 kilogram $(\mathrm{kg})=2.20$ pounds (lb)
- $4.184 \operatorname{Joule}(\mathrm{~J})=1$ calorie (cal)

The relationships between units are called \qquad .

Unit Conversion Calculations: The Factor Label Method

A package weighs 3.50 kg (kilograms), what is the weight in lbs. (pounds)?
Equivalence statement: $1 \mathrm{~kg}=2.20 \mathrm{lb}$

Equivalence statements can be written as \qquad .

Take notes here:

\qquad number of significant figures.
\qquad (defined or agreed upon) conversion factors have an infinite number of significant figures.
-Examples of exact/defined conversion factors

- $1 \mathrm{lb}=0.45359237 \mathrm{~kg}$
- 1 inch $=2.54 \mathrm{~cm}$
- $1 \mathrm{cg}=10^{-2} \mathrm{~g}$
- $1 \mathrm{ft}=12$ inches
- $1 \mathrm{ml}=1 \mathrm{~cm}^{3}$

A student is 60.0 inches tall, what is the student's height in cm ?
Equivalence statement: $1 \mathrm{inch}=2.54 \mathrm{~cm}$

Take notes here:

Understanding Check:

1) How many ft. (feet) in 379.3 in. (inches)?

- $1 \mathrm{ft}=12$ inches

2) How many eggs in 7.5 dozen?

- 12 eggs $=1$ dozen

3) How many calories in 514 joules?

- 1 calorie $=4.184$ joules

Sometimes it takes more than one step!

-Example: How many seconds in 33.0 hours?

Take notes here:

Take notes here:

Now you try a two-step conversion: How many inches in 5.5 meters given that:

- 1 inch $=2.54 \mathrm{~cm}$
- $100 \mathrm{~cm}=1 \mathrm{~m}$

Metric Prefixes

Earlier, we used scientific notation to simplify working with very large or very small numbers.
Another way to simplify working with large or small numbers is to use metric \qquad .

Example: The volume of blood required for diabetics to measure blood glucose levels in modern glucometers is about 0.0000005 L .

It is much more practical to use and say:

The metric prefix tells the fraction or multiple of the base unit(s).

- For example, $1 \times 10^{6} \mu \mathrm{~L}=1 \mathrm{~L}$

The base unit can be \qquad metric unit:

- liter (L), gram (g), meter (m), joule (J), second (s), calorie (cal)...etc.

Unit Conversions Within The Metric System

Example: The volume of blood required to measure blood glucose levels in modern glucometers is about 0.0000005 L .

- Question: How can we convert that to $\mu \mathrm{L}$?
- Answer: We need the relationship between L and $\mu \mathrm{L}$ to get the conversion factor.

We will use the "Equality Table":

1 base unit $=$	
10 d (deci-)	0.1 da (deca-)
100 c (centi-)	.01 h (hecto)
1000 m (milli-)	.001 k (kilo)
$1 \times 10^{6} \mu$ (micro-)	$1 \times 10^{-6} \mathrm{M}$ (mega-)
$1 \times 10^{9} \mathrm{n}$ (nano)	$1 \times 10^{-9} \mathrm{G}$ (giga)

All these quantities in the table are equal; any pair can be used as a conversion factor!!!
Example: What is the relationship between L (microliters) and liters (L)?

1 base unit	
10 diters (deci-)	0.1 da (deca-)
100 c (centi-)	.01 h (hecto)
1000 m (milli-)	.001 k (kilo)
$1 \times 10^{6} \mu$ (micro-)	$1 \times 10^{-6} \mathrm{M}$ (mega-)
$1 \times 10^{9} \mathrm{n}$ (nano)	$1 \times 10^{-9} \mathrm{G}$ (giga)

Equivalence statement: $1 \mathrm{~L}=1 \times 10^{6} \mu \mathrm{~L}$
This table works for any units!
The \qquad could be gram (g), meter (m), liter (L), joule (J), second (s), mole (mol), calorie (cal)... etc.

Understanding Check: Find the relationships between the following:
\qquad $\mathrm{L}=$ \qquad mL
\qquad $\mathrm{kg}=$ \qquad mg
\qquad nm = \qquad m
\qquad $\mathrm{cm}=$ \qquad mm

Example: How many $\mu \mathrm{L}$ (microliters) in 0.0000005 L?

$$
\left.\left(\frac{1 \times 10^{6} \mu \mathrm{~L}}{1 \mathrm{~L}}\right)<\begin{array}{c}
\text { Conversion } \\
\text { Factors }
\end{array}\right\rangle\left(\frac{1 \mathrm{~L}}{1 \times 10^{6} \mu \mathrm{~L}}\right)
$$

Equivalence statement: $1 \mathrm{~L}=1 \times 10^{6} \mu \mathrm{~L}$

1 base unit (Liters in this problem) $=$	
10 d (deci-)	0.1 da (deca-)
100 c (centi-)	.01 h (hecto)
1000 m (milli-)	.001 k (kilo)
$1 \times 10^{6} \mu$ (micro-)	$1 \times 10^{-6} \mathrm{M}$ (mega-)
$1 \times 10^{9} \mathrm{n}$ (nano)	$1 \times 10^{-9} \mathrm{G}$ (giga)

Take notes here:

You try one: How many mL (milliliters) in $0.0345(\mathrm{~kL})$ kiloliters?
Equivalence statement: \qquad $\mathrm{mL}=$ \qquad kL

1 base unit (Liters in this problem) $=$	
10 d (deci-)	0.1 da (deca-)
100 c (centi-)	.01 h (hecto)
1000 m (milli-)	001 k (kilo)
$1 \times 10^{6} \mu$ (micro-)	$1 \times 10^{-6} \mathrm{M}$ (mega-)
$1 \times 10^{9} \mathrm{n}$ (nano)	$1 \times 10^{-9} \mathrm{G}$ (giga)

You try another one: A vial contains 9758 mg of blood serum. Convert this into grams (g).
Equivalence statement: \qquad $\mathrm{g}=$ \qquad mg

Temperature Unit Conversions

$$
\begin{aligned}
{ }^{\circ} \mathrm{F} & =\left(1.8 \times{ }^{\circ} \mathrm{C}\right)+32 \\
{ }^{\circ} \mathrm{C} & =\frac{\left({ }^{\circ} \mathrm{F}-32\right)}{1.8} \\
\mathrm{~K} & ={ }^{\circ} \mathrm{C}+273.15
\end{aligned}
$$

- Note: The $273.15,32$, and 1.8 in the temperature conversion equations are exact.

When doing a calculation that involves only multiplication and/or division, you can do the entire calculation then round the answer to the correct number of significant figures at the end. The same is true for a calculation that involves only addition and/or subtraction. But what about a calculation that involves mixed operations: both multiplication or division and addition or subtraction?
When doing calculations that involve both multiplication or division and addition or subtraction, first do a calculation for the operation shown in parenthesis and round that value to the correct number of significant figures, then use the rounded number to carry out the next operation.

Example: On a warm summer day, the temperature reaches $85^{\circ} \mathrm{F}$. What is this temperature in ${ }^{\circ} \mathrm{C}$?
The relationship between ${ }^{\circ} \mathrm{F}$ and ${ }^{\circ} \mathrm{C}$ is:

$$
{ }^{\circ} \mathrm{C}=\frac{\left({ }^{\circ} \mathrm{F}-32\right)}{1.8}
$$

First, we do the subtraction (operation in parenthesis) and round the calculated value to the correct number of significant figures based on the rule for addition/subtraction.

Next, we divide that rounded number by 1.8 (exactly $1.8=1.80000 \ldots$...) then round the calculated value to the correct number of significant figures using the rule for multiplication/division.

Take notes here:

