Significant Figures, Scientific Notation, and Rounding

1) Determine the number of significant figures in the following values:

Value	\# of sig. figures	Value	\# of sig. figures
140.74		4	
0.0041		3.70×10^{14}	
31.00		1.05×10^{12}	
1300		7.0400×10^{3}	
847.040		2495	

2) Round the following values to 3 significant figures.

$3.76411 \rightarrow$	$0.0411984 \rightarrow$
$3.76811 \rightarrow$	$150.6142 \rightarrow$
$3.76511 \rightarrow$	$0.013877 \rightarrow$
$11.048176 \rightarrow$	$4.88223 \times 10^{9} \rightarrow$
$8.75510 \rightarrow$	$2.0097 \times 10^{-12} \rightarrow$

3) Perform the following calculations and round the final answer to the correct number of significant figures.

Calculation	Rounded Answer	Calculation	Rounded Answer
$18.7644-3.472+0.4101$	$=$	$0.87+4.061+10.4$	$=$
$17.441 \div 3$	$=$	$16 \times 841.1 \div 16.300$	$=$
$14.044+8.11+3.4$	$=$	21.01×2.0	$=$
$3.41-0.086652$	$=$	$18.4+12.99+13.772+9.704$	$=$

4. Convert the following into scientific notation or standard notation

Standard notation	Scientific notation
47,000	
0.0008	
$675,000,000$	
$157,000,000,000,000,000,000,000$	
0.0000003407	
	7.66×10^{-2}
	7.8×10^{5}
	4.75×10^{-4}
	6×10^{-3}
	9×10^{8}

Conversions Within the Metric System:
Perform the following metric conversions. Show your conversion factors. Use correct number of significant figures. If you need more room, do calculations on separate page(s.

$0.50 \mathrm{~m}=\ldots \mathrm{mm}$	$2.00 \mathrm{~km}=\ldots \mathrm{m}$	$0.4000 \mathrm{~L}=\ldots \mathrm{mL}$
$1.00 \mathrm{~g}=\ldots \mathrm{kg}$	$01.00 \mathrm{~cm}=\ldots \mathrm{m}$	$8.00 \mathrm{~mm}=\ldots \mathrm{cm}$
$22.4 \mathrm{~L}=\ldots \mathrm{mL}$	$5.00 \mathrm{~g}=\ldots \mathrm{kg}$	$4.245 \mathrm{~L}=\ldots \mathrm{mL}$
$345 \mathrm{~g}=\ldots \mathrm{kg}$	$10.0 \mathrm{~nm}=$ \qquad m	$3.22 \mathrm{Gg}=$ \qquad kg
$3.001 \mathrm{cg}=\ldots \mathrm{mg}$	$1.2 \mathrm{~m}=\ldots \quad \mu \mathrm{m}$	$455 \mathrm{~nm}=$ \qquad m

English-Metric Conversions (show your work)

$10.0 \mathrm{~cm}=\ldots$ in	$15.0 \mathrm{lb}=\ldots \mathrm{kg}(1 \mathrm{~kg}=2.205 \mathrm{lb})$
$\begin{aligned} & 1.00 \mathrm{yd}=\overline{\text { exactly } 36 \mathrm{in})} \mathrm{cm} \\ & (1 \text { yard } \end{aligned}$	$\begin{aligned} & 16.9 \mathrm{fl} . \mathrm{oz}= \\ & (0.0338 \mathrm{fl} \mathrm{oz} .=1 \mathrm{~mL}) \end{aligned}$
$1.00 \mathrm{qt}=\ldots \mathrm{L}(1 \mathrm{qt}=946 \mathrm{~mL})$	$6.00 \text { in }=\ldots \mathrm{cm}$
$\begin{aligned} & 0.800 \mathrm{~kg}= \\ & (16 \mathrm{oz}=\text { exactly } 1 \mathrm{lb} \text { and } \mathrm{oz} \\ & 1 \mathrm{~kg}=2.205 \mathrm{lb}) \end{aligned}$	$\begin{aligned} & 1.83 \mathrm{~kg}= \\ & (1 \mathrm{~kg}=2.205 \mathrm{lb}) \end{aligned}$
$25.00 \mathrm{~mL}=\ldots \ldots \mathrm{qt}(1 \mathrm{qt}=.946 \mathrm{~L})$	$\begin{aligned} & 1.40 \mathrm{~L}= \\ & \text { note: } 1 \mathrm{~mL}=\mathrm{cm}^{3} \text { exactly } 1 \mathrm{~cm}^{3} \end{aligned}$

Temperature Conversions

Recall the Temperature Conversions from Chapter 1 lecture notes:

- ${ }^{\circ} \mathrm{F}=\left(1.8 \mathrm{x}^{\circ} \mathrm{C}\right)+32$
- ${ }^{\circ} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right) / 1.8$
- $\mathrm{K}={ }^{\circ} \mathrm{C}+273.15$

NOTE: In temperature conversion equations, the $273.15,32$ and 1.8 are exact.

IMPORTANT: When doing a calculation that involves only multiplication and/or division, you can do the entire calculation then round the answer to the correct number of significant figures at the end. The same is true for a calculation that involves only addition and/or subtraction.

But what about a calculation that involves mixed operations: both multiplication or division and addition or subtraction?

When doing calculations that involve both multiplication or division and addition or subtraction, first do a calculation for the operation shown in parenthesis and round that value to the correct number of significant figures, then use the rounded number to carry out the next operation.

Perform the following temperature conversions (show your calculation)

$75^{\circ} \mathrm{C}=\ldots \mathrm{K}$	
$-15^{\circ} \mathrm{C}=$ \qquad K	
$0.00 \mathrm{~K} \quad=\quad{ }^{\circ} \mathrm{C}=$	${ }^{0} \mathrm{~F}$
$25^{\circ} \mathrm{C}($ room temperature $)=$	_ K
$98.6^{\circ} \mathrm{F}($ body temperature $)=$	${ }^{\circ} \mathrm{C}$
$25^{\circ} \mathrm{C}=$ \qquad ${ }^{\circ} \mathrm{F}$	
$-40.0^{\circ} \mathrm{C}=$ \qquad ${ }^{\circ} \mathrm{F}$	
$412 \mathrm{~K}=\ldots{ }^{\circ} \mathrm{F}$	

Significant Figures, Scientific Notation, and Rounding

1) Determine the number of significant figures in the following values:

Value	\# of sig. figures	Value	\# of sig. figures
140.74	5	4	1
0.0041	2	3.70×10^{14}	3
31.00	4	1.05×10^{12}	3
1300	2	7.0400×10^{3}	5
847.040	6	2495	4

2) Round the following values to 3 significant figures.

$3.76411 \rightarrow 3.76$	$0.0411984 \rightarrow 0.0412$
$3.76811 \rightarrow 3.77$	$150.6142 \rightarrow 151$
$3.76511 \rightarrow 3.77$	$0.013877 \rightarrow 0.0139$
$11.048176 \rightarrow 11.0$	$4.88223 \times 10^{9} \rightarrow 4.88 \times 10^{9}$
$8.75510 \rightarrow 8.76$	$2.0097 \times 10^{-12} \rightarrow 2.01 \times 10^{-12}$

3) Perform the following calculations and round the final answer to the correct number of significant figures.

Calculation	Rounded Answer	Calculation	Rounded Answer
$18.7644-3.472+0.4101$	$=15.703$	$0.87+4.061+10.4$	$=15.3$
$17.441 \div 3$	$=6$	$16 \times 841.1 \div 16.300$	$=830$
$14.044+8.11+3.4$	$=25.6$	21.01×2.0	$=42$
$3.41-0.086652$	$=3.32$	$18.4+12.99+13.772+9.704$	$=54.9$

4. Convert the following into scientific notation or standard notation

Standard notation	Scientific notation
47,000	4.7×10^{4}
0.0008	8×10^{-4}
$675,000,000$	6.75×10^{8}
$157,000,000,000,000,000,000,000$	1.57×10^{23}
0.0000003407	3.407×10^{-7}
0.0766	7.66×10^{-2}
780,000	7.8×10^{5}
0.000475	4.75×10^{-4}
0.006	6×10^{-3}
$900,000,000$	9×10^{8}

Metric System:

Perform the following metric conversions. Show your conversion factors. Use correct number of significant figures. If you need more room, do calculations on separate page(s).

$0.50 \mathrm{~m}=\ldots 5.0 \times 10^{2} _\mathrm{mm}$	$2.00 \mathrm{~km}=\ldots 2.00 \times 10^{3} \ldots \mathrm{~m}$	$\begin{aligned} & 0.4000 \mathrm{~L}=4.000 \times 10^{2} \mathrm{~mL} \\ & \text { or } 400.0 \mathrm{~mL} \end{aligned}$
$\begin{aligned} & 1.00 \mathrm{~g}=1.00 \times 10^{-3} \mathrm{~kg} \\ & \text { or } .00100 \mathrm{~kg} \end{aligned}$	$\begin{aligned} & 01.00 \mathrm{~cm}=\frac{0.0100}{} \mathrm{~m} \\ & \text { or } 1.00 \times 10^{-2} \mathrm{~m} \end{aligned}$	$\begin{aligned} & 8.00 \mathrm{~mm}=\frac{0.800}{} \mathrm{~cm} \\ & \text { or } 8.00 \times 10^{-1} \mathrm{~cm} \end{aligned}$
$\begin{aligned} & 22.4 \mathrm{~L}=2.24 \times 10^{4} \mathrm{~mL} \\ & \text { or } 22400 \mathrm{~mL} \end{aligned}$	$\begin{aligned} & 5.00 \mathrm{~g}=5.00 \times 10^{-3} \mathrm{~kg} \\ & \text { or } .00500 \mathrm{~kg} \end{aligned}$	$\begin{aligned} & 4.245 \mathrm{~L}=\frac{4245}{\mathrm{or}} 4.245 \times 10^{3} \mathrm{~mL} \end{aligned}$
$\begin{aligned} & 345 \mathrm{~g}=-0.345 \mathrm{~kg} \\ & \text { or } 3.45 \times 10-{ }^{1} \mathrm{~kg} \end{aligned}$	$\begin{aligned} & 10.0 \mathrm{~nm}=1.00 \times 10^{-8} \mathrm{~m} \\ & \text { or } .0000000100 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 3.22 \mathrm{Gg}=3.22 \times 10^{6} \mathrm{~kg} \\ & \text { or } 3220000 \mathrm{~kg} \end{aligned}$
$\begin{aligned} & 3.001 \mathrm{cg}=\frac{30.01 \mathrm{mg}}{10^{1} \mathrm{mg}} \\ & \text { or } 3.001 \times{ }^{1} \end{aligned}$	$1.2 \mathrm{~m}=1.2 \times 10^{6} _\mu \mathrm{m}$ or $1200000 \mu \mathrm{~m}$	$\begin{aligned} & 455 \mathrm{~nm}=4.55 \times 10^{-7} \mathrm{~m} \\ & \text { or } .000000455 \mathrm{~m} \end{aligned}$

English-Metric Conversions (show your work)

$10.0 \mathrm{~cm}=3.94$ _in	$15.0 \mathrm{lb}=\ldots 6.80 _\mathrm{kg}$
$1.00 \mathrm{yd}=\underline{91.4} \mathrm{Cm}$	$\begin{gathered} 16.9 \mathrm{fl} . \mathrm{oz}=\frac{0.500}{\mathrm{~L}} \mathrm{~L} \\ (0.0338 \mathrm{fl} \mathrm{oz.}=1 \mathrm{~mL}) \end{gathered}$
$1.00 \mathrm{qt}=\ldots 0.946 \ldots \mathrm{~L}$	$6.00 \mathrm{in}=\ldots 15.2 \ldots \mathrm{~cm}$
$0.800 \mathrm{~kg}=\ldots 28.2$ __oz ($16 \mathrm{oz}=1 \mathrm{lb}$)	$1.83 \mathrm{~kg}=\ldots 4.04 \ldots \mathrm{lb}$
$25.00 \mathrm{~mL}=$. $0.0264 _\mathrm{qt}(1 \mathrm{qt}=.946 \mathrm{~L})$	$\begin{aligned} & 1.40 \mathrm{~L}=\frac{1.40 \times 10^{3}}{\text { note: } 1 \mathrm{~mL}=1 \mathrm{~cm}^{3}}=\mathrm{cm}^{3} \end{aligned}$

Temperature Conversions

Perform the following temperature conversions (show your calculation)

$75^{\circ} \mathrm{C}=\ldots 348 \ldots \mathrm{~K}$
$-15^{\circ} \mathrm{C}=\ldots 258 \quad \mathrm{~K}$
$0.00 \mathrm{~K}=$ _-273.15_ ${ }^{\circ} \mathrm{C}=$ - $459.67 \chi^{\circ}{ }^{\circ} \mathrm{F}$
$25^{\circ} \mathrm{C}(\text { room temperature })=\ldots 298 \quad \mathrm{~K}$
$98.6{ }^{\circ} \mathrm{F}($ body temperature $)=\ldots 37.0 \quad{ }^{\circ} \mathrm{C}$
$25^{\circ} \mathrm{C}=\ldots 77 \quad{ }^{\circ} \mathrm{F}$
$-40.0^{\circ} \mathrm{C}=-40.0 _{ }^{\circ} \mathrm{F}$
$412 \mathrm{~K}=\ldots 282 \quad{ }^{\circ} \mathrm{F}$

Chapter 1 Worksheet 1 and KEY

