Chapter 1 Worksheet 1 and KEY

Significant Figures, Scientific Notation, and Rounding

1) Determine the number of significant figures in the following values:

Value	# of sig.	Value	# of sig.
	figures		figures
140.74		4	
0.0041		3.70×10^{14}	
31.00		1.05×10^{12}	
1300		7.0400×10^3	
847.040		2495	

2) Round the following values to 3 significant figures.

3.76411 →	$0.0411984 \rightarrow$
3.76811 →	$150.6142 \rightarrow$
3.76511 →	0.013877 →
11.048176 →	$4.88223 \ge 10^9 \rightarrow$
8.75510 →	$2.0097 \ge 10^{-12} \rightarrow$

3) Perform the following calculations and round the final answer to the correct number of significant figures.

Calculation	Rounded	Calculation	Rounded
	Answer		Answer
18.7644 - 3.472 + 0.4101	=	0.87 + 4.061 + 10.4	=
17.441÷ 3	=	16 x 841.1 ÷ 16.300	=
14.044 + 8.11 + 3.4	=	21.01 x 2.0	=
3.41 - 0.086652	=	18.4 +12.99 +13.772 + 9.704	=

4. Convert the following into scientific notation or standard notation

Standard notation	Scientific notation
47,000	
0.0008	
675,000,000	
157,000,000,000,000,000,000,000	
0.000003407	
	7.66×10^{-2}
	7.8×10^5
	4.75×10^{-4}
	6 x 10 ⁻³
	9×10^8

Conversions Within the Metric System:

Perform the following metric conversions. Show your conversion factors. Use correct number of significant figures. If you need more room, do calculations on separate page(s.

0.50 m =mm	2.00 km =m	0.4000 L =mL
1.00 g =kg	01.00 cm =m	8.00 mm =cm
22.4 L =mL	5.00 g =kg	4.245 L = mL
345 g =kg	10.0 nm =m	3.22 Gg =kg
3.001 cg =mg	1.2 m =μm	455 nm =m

English-Metric Conversions (show your work)

$10.0 \text{ cm} = \underline{\qquad} \text{in}$	$15.0 \text{ lb} = \kg (1kg=2.205 \text{ lb})$
$\frac{1.00 \text{ yd} = _}{(1 \text{ yard} = \text{exactly 36 in})} \text{ cm}$	$ \begin{array}{c} 16.9 \text{ fl. oz} = ___L \\ (0.0338 \text{ fl oz.}=1 \text{ mL}) \end{array} $
$1.00 \text{ qt} = \ L(1 \text{ qt} = 946 \text{ mL})$	6.00 in =cm
$0.800 \text{ kg} = _oz$ (16 oz = exactly 1 lb and 1kg=2.205 lb)	$ \begin{array}{c} 1.83 \text{ kg} = _ lb \\ (1 \text{ kg} = 2.205 \text{ lb}) \end{array} $
25.00 mL =qt (1qt = .946L)	$1.40 L = \underline{\qquad} = cm^{3}$ note: 1 mL = exactly 1 cm ³

Temperature Conversions

Recall the Temperature Conversions from Chapter 1 lecture notes:

- $^{\circ}F = (1.8 \text{ x} ^{\circ}C) + 32$
- $^{\circ}C = (^{\circ}F 32) / 1.8$
- $K = {}^{o}C + 273.15$

NOTE: In temperature conversion equations, the 273.15, 32 and 1.8 are *exact.*

IMPORTANT: When doing a calculation that involves **only** multiplication and/or division, you can do the entire calculation then round the answer to the correct number of significant figures at the end. The same is true for a calculation that involves **only** addition and/or subtraction.

But what about a calculation that involves mixed operations: **both** multiplication or division *and* addition or subtraction?

When doing calculations that involve **<u>both</u>** multiplication or division *and* addition or subtraction, first do a calculation for the operation *shown in parenthesis* and round that value to the correct number of significant figures, **then** use the rounded number to carry out the next operation.

Perform the following temperature conversions (show your calculation)

$75^{\circ}C = $ K
$-15^{\circ}C = $ K
$0.00 \text{ K} = \^{\circ} \text{C} = \^{\circ} \text{F}$
$25^{\circ}C \text{ (room temperature)} = \ K$
98.6 °F (body temperature) = °C
$25^{\circ}C = \{\circ}F$
-40.0 °C = °F
412 K = °F

Chapter 1 Worksheet 1 and KEY

Value	# of sig.	Value	# of sig.
	figures		figures
140.74	5	4	1
0.0041	2	3.70×10^{14}	3
31.00	4	1.05×10^{12}	3
1300	2	7.0400×10^3	5
847.040	6	2495	4

Significant Figures, Scientific Notation, and Rounding 1) Determine the number of significant figures in the following values:

2) Round the following values to 3 significant figures.

3.76411 → 3.76	0.0411984 →0.0412
3.76811 →3.77	$150.6142 \rightarrow 151$
3.76511 →3.77	$0.013877 \rightarrow 0.0139$
$11.048176 \rightarrow 11.0$	$4.88223 \times 10^9 \rightarrow 4.88 \times 10^9$
8.75510 →8.76	$2.0097 \text{ x } 10^{-12} \rightarrow 2.01 \text{ x } 10^{-12}$

3) Perform the following calculations and round the final answer to the correct number of significant figures.

Calculation	Rounded	Calculation	Rounded
	Answer		Answer
18.7644 - 3.472 + 0.4101	= 15.703	0.87 + 4.061 + 10.4	= 15.3
17.441÷ 3	= 6	16 x 841.1 ÷ 16.300	= 830
14.044 + 8.11 + 3.4	= 25.6	21.01 x 2.0	= 42
3.41 - 0.086652	= 3.32	18.4 +12.99 +13.772 + 9.704	= 54.9

4. Convert the following into scientific notation or standard notation

Standard notation	Scientific notation
47,000	4.7×10^4
0.0008	8 x 10 ⁻⁴
675,000,000	6.75×10^8
157,000,000,000,000,000,000,000	$1.57 \ge 10^{23}$
0.000003407	3.407 x 10 ⁻⁷
0.0766	7.66 x 10 ⁻²
780,000	7.8×10^5
0.000475	4.75×10^{-4}
0.006	6×10^{-3}
900,000,000	9×10^8

Metric System:

Perform the following metric conversions. Show your conversion factors. Use correct number of significant figures. If you need more room, do calculations on separate page(s).

$0.50 \text{ m} = 5.0 \text{ x } 10^2 \text{ mm}$	$2.00 \text{ km} = \underline{2.00 \text{ x } 10^3} \text{ m}$		$0.4000 L = 4.000 \times 10^{2} mL$ or 400.0 mL
$1.00 \text{ g} = _1.00 \text{ x } 10^{-3} \text{ kg}$ or .00100 kg	01.00 cm = 0.0100 m or $1.00 \text{ x} 10^{-2} \text{ m}$		8.00 mm = 0.800 cm or $8.00 \text{ x } 10^{-1} \text{ cm}$
$22.4 \text{ L} = 2.24 \text{ x } 10^4 \text{ mL}$ or 22400 mL	$5.00 \text{ g} = 5.00 \text{ x } 10^{-3} \text{ kg}$ or .00500 kg		4.245 L = 4245 mL or 4.245 x 10 ³ mL
$345 \text{ g} = _0.345 \text{ kg}$ or 3.45 x 10- ¹ kg	$10.0 \text{ nm} = \underline{1.00 \text{ x } 10^{-8}} \text{ m}$ or .0000000100 m		$3.22 \text{ Gg} = 3.22 \times 10^{6} \text{ kg}$ or 3220000 kg
$3.001 \text{ cg} = \underline{30.01} \text{ mg}$ or 3.001 x 10 ¹ mg	$\frac{1.2 \text{ m} = 1.2 \text{ x } 10^{6} \mu\text{m}}{\text{or } 1200000 \mu\text{m}}$		$455 \text{ nm} = \underline{4.55 \text{ x } 10^{-7}} \text{ m}$ or .000000455 m
English-Metric Conversions	(show your wo	ork)	
10.0 cm = 3.94 in		$15.0 \text{ lb} = \underline{6}$	<u>5.80</u> kg
1.00 yd = 91.4 cm		16.9 fl. oz = 0.500 L (0.0338 fl oz.= 1 mL)	
$1.00 ext{ qt} = 0.946 ext{ L}$		6.00 in = 15.2 cm	
$0.800 \text{ kg} = \underline{28.2} \text{ oz } (16 \text{ oz} = 1 \text{ lb})$		1.83 kg =	<u>4.04</u> lb
			2 2

<u>**Temperature Conversions</u>** Perform the following temperature conversions (show your calculation)</u>

Perform the following temperature conversions (show your calculation)
$75^{\circ}C = 348 K$
$-15^{\circ}C = 258 K$
$0.00 \text{ K} = -273.15 ^{\circ}\text{C} = -459.67 ^{\circ}\text{F}$
0.00 K = -273.13 C = -433.07 T
$25^{\circ}C \text{ (room temperature)} = \underline{298} \text{ K}$
98.6 °F (body temperature) = 37.0 °C
$25^{\circ}C = \underline{77}^{\circ}F$
$25 \text{ C} = \underline{11} \text{ I}$
$-40.0 ^{\circ}\text{C} = \underline{-40.0} ^{\circ}\text{F}$
412 K = 282 °F

Chapter 1 Worksheet 1 and KEY