Lecture Notes Package for General, Organic, and Biochemistry

By Jim Zoval, Ph.D.

INCLUDES WORKSHEETS
© 2016 Jim Zoval

Chapter 1 Lecture Notes: Stuff and Energy

Educational Goals

1. Explain, compare, and contrast the terms scientific method, hypothesis, and experiment.
2. Compare and contrast scientific theory and scientific law.
3. Define the terms matter and energy. Describe the three phases (states) of matter and the two forms of energy.
4. Describe and give examples of physical properties and physical change.
5. Perform unit conversion calculations.
6. Express and interpret numbers in scientific (exponential) notation.
7. Explain the difference between the terms accurate and precise.
8. Know and use the rules for significant figures.

- Given a value, determine the number of significant figures.
- Use the correct number of significant figures to report the results of calculations involving measured quantities.

Science is a \qquad for gaining knowledge and understanding of reality.

It produces generalizations with \qquad value.

The Scientific Method

There are two ways to do science: scientific \qquad and scientific \qquad .

- It is important to note that both methods are used to acquire predictive power and both begin with

Scientific Theory

Other words for theory are \qquad or \qquad .

- Scientific theory uses models/explanations to make sense of observables. Often, a first guess at a model is proposed.
- The first guess is called a \qquad .

The hypothesis can usually be tested by experiment or additional observations.
If the hypothesis continues to be validated by experiment or new observations, it becomes \qquad .

In the healthcare field, another word for theory or model is \qquad .

Scientific Law

A scientific law is simply \boldsymbol{a} \qquad about something that generally occurs.

Note that in using scientific law, \qquad explanation (model) is given.

Scientific law can be contrasted with scientific theory that involves proposing a model or explanation for what is observed.

Chemistry

Chemistry is the study of matter and how it interacts with other \qquad and/or \qquad .

Matter and Energy

Matter is anything that has \qquad and occupies \qquad .
We can describe matter in terms of \qquad
\qquad , those characteristics that can be determined without changing it into a different substance.

- Example: Sugar is white, tastes sweet, and can be crushed into powder. Crushing sugar does not change sugar into something else.

Matter can also be described in terms of its \qquad properties. Chemical properties of substances describe how they are converted to new substances in processes called chemical reactions.

- Example: Caramelization of sugar

Matter is typically found in one of three different physical \qquad (sometimes called \qquad).

Changing the phase of matter, converting matter between solid, liquid, and gas is considered a physical change because the identity does not change.

- Examples of phase changes are: melting, boiling water to make steam, and melting an iron rod.

Energy

Energy is commonly defined as the ability to do \qquad .

Energy can be found in two forms, \qquad energy and \qquad energy.
Potential energy is \qquad energy; it has the potential to do work.

- An example of potential energy is water stored in a dam. If a valve is opened, the water will flow downhill and turn a paddle connected to a generator to create electricity.
Kinetic energy is the energy of \qquad .
- Any time matter is moving, it has kinetic energy.

An important law that is central to understanding nature is: matter will exist in the lowest possible energy state. Another way to say this is "if matter can lose energy, it will always do so."

Understanding Check: Kinetic Energy vs. Potential Energy

Which are mainly examples of potential energy and which are mainly examples of kinetic energy?
a) A mountain climber sits at the top of a peak.
b) A mountain climber rappels down a cliff.
c) A hamburger sits on a plate.
d) A nurse inflates a blood pressure cuff.

Units of Measurements

Measurements consist of two parts - a \qquad and a \qquad .

SI Units and Their Symbols

Quantity	SI Unit Name	Symbol
Length	meter	m
Mass	kilogram	kg
Time	second	s
Temperature	Kelvin	K

Commonly Used Units and Their Symbols

Quantity	Unit Name	Symbol			
Length	foot				
	inch	ft			
in			$	$	gram
:---:					
Mass					

Scientific Notation and Metric Prefixes

Scientific Notation

When making measurements, particularly in science and in the health sciences, there are many times when you must deal with very large or very small numbers.

Example: a typical red blood cell has a diameter of about 0.0000075 m .
In \qquad (exponential notation) this diameter is written $7.5 \times 10^{-6} \mathrm{~m}$.
Values expressed in scientific notation are written as a number between \qquad and \qquad multiplied by a power of 10 .

The superscripted number to the right of the ten is called an exponent.

- An exponent with a positive value tells you how many times to multiply a number by 10 .

$$
3.5 \times 10^{4}=3.5 \times 10 \times 10 \times 10 \times 10=35000
$$

- An exponent with a negative value tells you how many times to divide a number by 10 .

$$
3.5 \times 10^{-4}=\frac{3.5}{10 \times 10 \times 10 \times 10}=0.00035
$$

Converting from Regular Notation to Scientific

1) Move the decimal point to the right of the first (right-most) non-zero number

- The exponent will be equal to the number of decimal places moved.

2) When you move the decimal point to the left, the exponent is positive.

$$
\begin{aligned}
35000 & =3.5 \times 10^{4} \\
285.2 & =2.852 \times 10^{2} \\
8300000 & =8.3 \times 10^{6}
\end{aligned}
$$

3) When you move the decimal point to the right, the exponent is negative.

$$
\begin{aligned}
0.00035 & =3.5 \times 10^{-4} \\
0.0445 & =4.45 \times 10^{-2} \\
0.00000003554 & =3.554 \times 10^{-8}
\end{aligned}
$$

Understanding Check: Convert each number into scientific notation.
a) 0.0144
b) 144
c) 36.32
d) 0.0000098

Converting from Scientific Notation to Regular Notation

You just learned how to convert from regular numerical notation to scientific notation. Now let's do the reverse; convert from scientific notation to regular notation.

Step 1: Note the value of the exponent.
Step 2: The value of the exponent will tell you which direction and how many places to move the decimal point.

- If the value of the exponent is positive, remove the power of ten and move the decimal point that value of places to the right.
- If the value of the exponent is negative, remove the power of ten and move the decimal point that value of places to the left.

Example: Convert 3.7×10^{5} into regular notation.
Step 1: Note the value of the exponent: The exponent is positive 5.
Step 2: The value of the exponent will tell you which direction and how many places to move the decimal point.

- If the value of the exponent is positive, remove the power of ten and move the decimal point that value of places to the right.
- We will move the decimal point 5 places to the right.

$$
3.7 \text { un } \longrightarrow 3.70000 \longrightarrow 370000
$$

When the decimal point is not shown in a number, as in our answer, it is assumed to be after the rightmost digit.

Let's do another example: Convert 1.604×10^{-3} into regular notation.
Step 1: Note the value of the exponent: The exponent is negative 3.
Step 2: The value of the exponent will tell you which direction and how many places to move the decimal point.

- If the value of the exponent is negative, remove the power of ten and move the decimal point that value of places to the left.
- We will move the decimal point 3 places to the left.

$$
w^{1,604} \longrightarrow 001,604 \longrightarrow \underset{\text { or } 0.001604}{.001604}
$$

Understanding Check: Convert the following numbers into regular notation.
a) 5.2789×10^{2}
b) 1.78538×10^{-3}
c) 2.34×10^{6}
d) 9.583×10^{-5}

Measurements and Significant Figures

There are three important factors to consider when making measurements:

1) accuracy
2) precision
3) significant figures
\qquad is related to how close a measured value is to a true value.
Example: Suppose that a patient's temperature is taken twice and values of $98^{\circ} \mathrm{F}$ and $102^{\circ} \mathrm{F}$ are obtained. If the patient's true temperature is $103^{\circ} \mathrm{F}$, the second measurement is more accurate.
\qquad is a measure of reproducibility.

Example: Suppose that a patient's temperature is taken three times and values of $98^{\circ} \mathrm{F}, 99^{\circ} \mathrm{F}$, and $97^{\circ} \mathrm{F}$ are obtained. Another set of temperature measurements gives $90^{\circ} \mathrm{F}, 100^{\circ} \mathrm{F}$, and $96^{\circ} \mathrm{F}$.

- The values in the first set of measurements are closer to one another, so they are more precise than the second set.

The quality of the equipment used to make a measurement is one factor in obtaining accurate and precise results. The ability of the human operator to correctly use the measuring device is another factor.

Significant Figures

One way to include information on the \qquad of a measured value (or a value that is calculated using measured values) is to report the value using the correct number of significant figures.

The precision of a measured value can be determined by the \qquad -most decimal place reported.

- The names and precision of the decimal places for the number $\mathbf{8 6 9 . 2 5 7}$ are shown below:

A simple way to understand significant figures is to say that a digit is significant if we are \qquad of its value.

Method for Counting Significant Figures

Measured and calculated values should be reported using significant figures. We can look at a numerical value and determine the number of significant figures as follows:

- If the decimal point is \qquad , starting from the left, count all numbers (including zeros) beginning with the first non zero number.
- If the decimal point is \qquad , starting from the right, count all numbers (including zeros) beginning with the first non zero number.
- When numbers are given in scientific notation, do not consider the power of 10 , only the value before " $\times 10{ }^{\mathbf{n}}$."

Example: If the botanist reported the age of the tree as $\mathbf{5 0 0}$ years, how many significant figures are given?

Note that although the decimal point is implied to be after the right-most zero, it is absent (not shown explicitly), therefore we use the decimal point absent rule shown above; if the decimal point is absent, starting from the right, count all numbers (including zeros) beginning with the first non zero number.

- We will start inspecting each digit from right (to left) as shown by the arrow.
- We will start counting when we get to the first non zero number.

We do not count the first two zeros, but start counting at the 5. Therefore, there is one significant figure present.

Example: If the botanist reported the age of the tree as 500. years (note the decimal point present), how many significant figures are given?

Note that in this case, the decimal point is present (shown), therefore we use the decimal point present rule shown above; if the decimal point is present, starting from the left, count all numbers (including zeros) beginning with the first non zero number. We will start inspecting each digit from left to right as shown by the arrow. We will start counting when we get to the first non zero number.

We begin with the $\mathbf{5}$, then count all numbers including zeros. In this case, the two zeros are also significant. Therefore there are three significant figures present.

Outside of the science fields, " $\mathbf{5 0 0}$ " and " $\mathbf{5 0 0}$." are generally thought of as equivalent, however, the use of significant figures tells us that when we write " $\mathbf{5 0 0}$." (with the decimal point present) we know that number one hundred times more precisely than when we write " 500 " (without the decimal point). We have precision to the "ones" decimal place in " $\mathbf{5 0 0}$." vs. precision to the "hundreds" place in " $\mathbf{5 0 0}$ ".

Here are some other examples:
Example: How many significant figures are contained in 0.00045 ?
Note that in this case, the decimal point is present (shown). We will start inspecting each digit from left to right as shown by the arrow. We will start counting when we get to the first non zero number.

0.00045

We begin with the $\mathbf{4}$, then count all numbers including zeros. Therefore there are two significant figures present.

Example: How many significant figures are contained in 0.0002600 ?
Note that in this case, the decimal point is present (shown). We will start inspecting each digit from left to right as shown by the arrow. We will start counting when we get to the first non zero number.

0.0002600

We begin with the $\mathbf{2}$, then count all numbers including zeros. Therefore there are four significant figures present.

Example: How many significant figures are contained in 7080?
If the decimal point is absent, starting from the right, count all numbers (including zeros) beginning with the first non zero number. We will start inspecting each digit from right (to left) as shown by the arrow. We will start counting when we get to the first non zero number.

7080
We do not count the first zero, but start counting at the 8, and then count all numbers (including zeros). Therefore, there are three significant figures present.

Understanding Check: Specify the number of significant figures in each of the values below.
a) 23.5
b) 0.0073000
c) 6.70
d) 48.50
e) 6200
f) 6200 .
g) 6200.0
h) 0.6200
i) 0.62
j) 930

Significant Figures in Scientific Notation

When numbers are given in scientific notation, do not consider the power of 10 , only the value before "x 10 "."

Examples: How many significant figures are contained in each of the values shown below?
a) 5×10^{2} one significant figure
b) 5.0×10^{2} two significant figures
c) 5.00×10^{2} three significant figures

When converting back and forth from standard numerical notation to scientific notation, the number of significant figures used should not change.

Understanding Check: Write each measured value in scientific notation, being sure to use the correct number of significant figures.
a) 5047
b) 87629.0
c) 0.00008
d) 0.07460

Calculations Involving Significant Figures

When doing \qquad
\qquad with measured values, the answer should have the same number of significant figures as the measured value with the least number of significant figures.

When doing \qquad
\qquad with measured values, the answer should have the same precision as the least precise measurement (value) used in the calculation.

Example for Multiplication or Division:

- When doing multiplication or division with measured values, the answer should have the same number of significant figures as the measured value with the least number of significant figures.
- Example: If an object has a mass of 5.324 grams and a volume of 7.9 ml , what is its density?

Example for Addition or Subtraction:

- When doing addition or subtraction with measured values, the answer should have the same precision as the least precise measurement (number) used in the calculation.
- Example: A book 50.85 mm thick, a box 168.3 mm thick and a piece of paper 0.037 mm thick are stacked on top of each other. What is the height of the stack?

Understanding Check: Each of the numbers below is measured. Solve the calculations and give the correct number of significant figures.
a) 0.12×1.77
b) $690.4 \div 12$
c) $5.444-0.44$
d) $16.5+0.114+3.55$

Unit Conversions

Typical Unit Conversion Problems:

- A package weighs 3.50 kg (kilograms), what is the weight in lbs. (pounds)
- A student is 60.0 inches tall, what is the student's height in cm ?
- The temperature in Cabo San Lucas, Mexico is $30^{\circ} \mathrm{C}$, what is the temperature in ${ }^{\circ} \mathrm{F}$?

To convert from one unit to another, we must know the \qquad between the two units of measure.

- Examples:
- A package weighs 3.50 kg (kilograms), what is the weight in lbs. (pounds)
$-1 \mathrm{~kg}=2.20 \mathrm{lb}$
- A student is 60.0 inches tall, what is the student's height in cm ?
$-\quad 1$ inch $=2.54 \mathrm{~cm}$

Unit Relationships to Know:

- 1 milliliter $(\mathrm{mL})=1$ cubic centimeter $\left(\mathrm{cm}^{3}\right)$
- 1 inch (in) $=2.54$ centimeters (cm)
- 1 kilogram $(\mathrm{kg})=2.20$ pounds (lb)
- $4.184 \operatorname{Joule}(\mathrm{~J})=1$ calorie (cal)

The relationships between units are called \qquad .

Unit Conversion Calculations: The Factor Label Method

A package weighs 3.50 kg (kilograms), what is the weight in lbs. (pounds)?
Equivalence statement: $1 \mathrm{~kg}=2.20 \mathrm{lb}$

Equivalence statements can be written as \qquad .

Take notes here:

\qquad number of significant figures.
\qquad (defined or agreed upon) conversion factors have an infinite number of significant figures.
-Examples of exact/defined conversion factors

- $1 \mathrm{lb}=0.45359237 \mathrm{~kg}$
- 1 inch $=2.54 \mathrm{~cm}$
- $1 \mathrm{cg}=10^{-2} \mathrm{~g}$
- $1 \mathrm{ft}=12$ inches
- $1 \mathrm{ml}=1 \mathrm{~cm}^{3}$

A student is 60.0 inches tall, what is the student's height in cm ?
Equivalence statement: $1 \mathrm{inch}=2.54 \mathrm{~cm}$

Take notes here:

Understanding Check:

1) How many ft. (feet) in 379.3 in. (inches)?

- $1 \mathrm{ft}=12$ inches

2) How many eggs in 7.5 dozen?

- 12 eggs $=1$ dozen

3) How many calories in 514 joules?

- 1 calorie $=4.184$ joules

Sometimes it takes more than one step!

-Example: How many seconds in 33.0 hours?

Take notes here:

Take notes here:

Now you try a two-step conversion: How many inches in 5.5 meters given that:

- 1 inch $=2.54 \mathrm{~cm}$
- $100 \mathrm{~cm}=1 \mathrm{~m}$

Metric Prefixes

Earlier, we used scientific notation to simplify working with very large or very small numbers.
Another way to simplify working with large or small numbers is to use metric \qquad .

Example: The volume of blood required for diabetics to measure blood glucose levels in modern glucometers is about 0.0000005 L .

It is much more practical to use and say:

The metric prefix tells the fraction or multiple of the base unit(s).

- For example, $1 \times 10^{6} \mu \mathrm{~L}=1 \mathrm{~L}$

The base unit can be \qquad metric unit:

- liter (L), gram (g), meter (m), joule (J), second (s), calorie (cal)...etc.

Unit Conversions Within The Metric System

Example: The volume of blood required to measure blood glucose levels in modern glucometers is about 0.0000005 L .

- Question: How can we convert that to $\mu \mathrm{L}$?
- Answer: We need the relationship between L and $\mu \mathrm{L}$ to get the conversion factor.

We will use the "Equality Table":

1 base unit $=$	
10 d (deci-)	0.1 da (deca-)
100 c (centi-)	.01 h (hecto)
1000 m (milli-)	.001 k (kilo)
$1 \times 10^{6} \mu$ (micro-)	$1 \times 10^{-6} \mathrm{M}$ (mega-)
$1 \times 10^{9} \mathrm{n}$ (nano)	$1 \times 10^{-9} \mathrm{G}$ (giga)

All these quantities in the table are equal; any pair can be used as a conversion factor!!!
Example: What is the relationship between L (microliters) and liters (L)?

1 base unit	
10 diters (deci-)	0.1 da (deca-)
100 c (centi-)	.01 h (hecto)
1000 m (milli-)	.001 k (kilo)
$1 \times 10^{6} \mu$ (micro-)	$1 \times 10^{-6} \mathrm{M}$ (mega-)
$1 \times 10^{9} \mathrm{n}$ (nano)	$1 \times 10^{-9} \mathrm{G}$ (giga)

Equivalence statement: $1 \mathrm{~L}=1 \times 10^{6} \mu \mathrm{~L}$
This table works for any units!
The \qquad could be gram (g), meter (m), liter (L), joule (J), second (s), mole (mol), calorie (cal)... etc.

Understanding Check: Find the relationships between the following:
\qquad $\mathrm{L}=$ \qquad mL
\qquad $\mathrm{kg}=$ \qquad mg
\qquad nm = \qquad m
\qquad $\mathrm{cm}=$ \qquad mm

Example: How many $\mu \mathrm{L}$ (microliters) in 0.0000005 L?

$$
\left.\left(\frac{1 \times 10^{6} \mu \mathrm{~L}}{1 \mathrm{~L}}\right)<\begin{array}{c}
\text { Conversion } \\
\text { Factors }
\end{array}\right\rangle\left(\frac{1 \mathrm{~L}}{1 \times 10^{6} \mu \mathrm{~L}}\right)
$$

Equivalence statement: $1 \mathrm{~L}=1 \times 10^{6} \mu \mathrm{~L}$

1 base unit (Liters in this problem) $=$	
10 d (deci-)	0.1 da (deca-)
100 c (centi-)	.01 h (hecto)
1000 m (milli-)	.001 k (kilo)
$1 \times 10^{6} \mu$ (micro-)	$1 \times 10^{-6} \mathrm{M}$ (mega-)
$1 \times 10^{9} \mathrm{n}$ (nano)	$1 \times 10^{-9} \mathrm{G}$ (giga)

Take notes here:

You try one: How many mL (milliliters) in $0.0345(\mathrm{~kL})$ kiloliters?
Equivalence statement: \qquad $\mathrm{mL}=$ \qquad kL

1 base unit (Liters in this problem) $=$	
10 d (deci-)	0.1 da (deca-)
100 c (centi-)	.01 h (hecto)
1000 m (milli-)	001 k (kilo)
$1 \times 10^{6} \mu$ (micro-)	$1 \times 10^{-6} \mathrm{M}$ (mega-)
$1 \times 10^{9} \mathrm{n}$ (nano)	$1 \times 10^{-9} \mathrm{G}$ (giga)

You try another one: A vial contains 9758 mg of blood serum. Convert this into grams (g).
Equivalence statement: \qquad $\mathrm{g}=$ \qquad mg

Temperature Unit Conversions

$$
\begin{aligned}
{ }^{\circ} \mathrm{F} & =\left(1.8 \times{ }^{\circ} \mathrm{C}\right)+32 \\
{ }^{\circ} \mathrm{C} & =\frac{\left({ }^{\circ} \mathrm{F}-32\right)}{1.8} \\
\mathrm{~K} & ={ }^{\circ} \mathrm{C}+273.15
\end{aligned}
$$

- Note: The $273.15,32$, and 1.8 in the temperature conversion equations are exact.

When doing a calculation that involves only multiplication and/or division, you can do the entire calculation then round the answer to the correct number of significant figures at the end. The same is true for a calculation that involves only addition and/or subtraction. But what about a calculation that involves mixed operations: both multiplication or division and addition or subtraction?
When doing calculations that involve both multiplication or division and addition or subtraction, first do a calculation for the operation shown in parenthesis and round that value to the correct number of significant figures, then use the rounded number to carry out the next operation.

Example: On a warm summer day, the temperature reaches $85^{\circ} \mathrm{F}$. What is this temperature in ${ }^{\circ} \mathrm{C}$?
The relationship between ${ }^{\circ} \mathrm{F}$ and ${ }^{\circ} \mathrm{C}$ is:

$$
{ }^{\circ} \mathrm{C}=\frac{\left({ }^{\circ} \mathrm{F}-32\right)}{1.8}
$$

First, we do the subtraction (operation in parenthesis) and round the calculated value to the correct number of significant figures based on the rule for addition/subtraction.

Next, we divide that rounded number by 1.8 (exactly $1.8=1.80000 \ldots$...) then round the calculated value to the correct number of significant figures using the rule for multiplication/division.

Take notes here:

Significant Figures, Scientific Notation, and Rounding

1) Determine the number of significant figures in the following values:

Value	\# of sig. figures	Value	\# of sig. figures
140.74		4	
0.0041		3.70×10^{14}	
31.00		1.05×10^{12}	
1300		7.0400×10^{3}	
847.040		2495	

2) Round the following values to 3 significant figures.

$3.76411 \rightarrow$	$0.0411984 \rightarrow$
$3.76811 \rightarrow$	$150.6142 \rightarrow$
$3.76511 \rightarrow$	$0.013877 \rightarrow$
$11.048176 \rightarrow$	$4.88223 \times 10^{9} \rightarrow$
$8.75510 \rightarrow$	$2.0097 \times 10^{-12} \rightarrow$

3) Perform the following calculations and round the final answer to the correct number of significant figures.

Calculation	Rounded Answer	Calculation	Rounded Answer
$18.7644-3.472+0.4101$	$=$	$0.87+4.061+10.4$	$=$
$17.441 \div 3$	$=$	$16 \times 841.1 \div 16.300$	$=$
$14.044+8.11+3.4$	$=$	21.01×2.0	$=$
$3.41-0.086652$	$=$	$18.4+12.99+13.772+9.704$	$=$

4. Convert the following into scientific notation or standard notation

Standard notation	Scientific notation
47,000	
0.0008	
$675,000,000$	
$157,000,000,000,000,000,000,000$	
0.0000003407	
	7.66×10^{-2}
	7.8×10^{5}
	4.75×10^{-4}
	6×10^{-3}
	9×10^{8}

Conversions Within the Metric System:
Perform the following metric conversions. Show your conversion factors. Use correct number of significant figures. If you need more room, do calculations on separate page(s.

$0.50 \mathrm{~m}=\ldots \mathrm{mm}$	$2.00 \mathrm{~km}=\ldots \mathrm{m}$	$0.4000 \mathrm{~L}=\ldots \mathrm{mL}$
$1.00 \mathrm{~g}=\ldots \mathrm{kg}$	$01.00 \mathrm{~cm}=\ldots \mathrm{m}$	$8.00 \mathrm{~mm}=\ldots \mathrm{cm}$
$22.4 \mathrm{~L}=\ldots \mathrm{mL}$	$5.00 \mathrm{~g}=\ldots \mathrm{kg}$	$4.245 \mathrm{~L}=\ldots \mathrm{mL}$
$345 \mathrm{~g}=\ldots \mathrm{kg}$	$10.0 \mathrm{~nm}=$ \qquad m	$3.22 \mathrm{Gg}=$ \qquad kg
$3.001 \mathrm{cg}=\ldots \mathrm{mg}$	$1.2 \mathrm{~m}=\ldots \quad \mu \mathrm{m}$	$455 \mathrm{~nm}=$ \qquad m

English-Metric Conversions (show your work)

$10.0 \mathrm{~cm}=\ldots$ in	$15.0 \mathrm{lb}=\ldots \mathrm{kg}(1 \mathrm{~kg}=2.205 \mathrm{lb})$
$\begin{aligned} & 1.00 \mathrm{yd}=\overline{\text { exactly } 36 \mathrm{in})} \mathrm{cm} \\ & (1 \text { yard } \end{aligned}$	$\begin{aligned} & 16.9 \mathrm{fl} . \mathrm{oz}= \\ & (0.0338 \mathrm{fl} \mathrm{oz} .=1 \mathrm{~mL}) \end{aligned}$
$1.00 \mathrm{qt}=\ldots \mathrm{L}(1 \mathrm{qt}=946 \mathrm{~mL})$	$6.00 \text { in }=\ldots \mathrm{cm}$
$\begin{aligned} & 0.800 \mathrm{~kg}= \\ & (16 \mathrm{oz}=\text { exactly } 1 \mathrm{lb} \text { and } \mathrm{oz} \\ & 1 \mathrm{~kg}=2.205 \mathrm{lb}) \end{aligned}$	$\begin{aligned} & 1.83 \mathrm{~kg}= \\ & (1 \mathrm{~kg}=2.205 \mathrm{lb}) \end{aligned}$
$25.00 \mathrm{~mL}=\ldots \ldots \mathrm{qt}(1 \mathrm{qt}=.946 \mathrm{~L})$	$\begin{aligned} & 1.40 \mathrm{~L}= \\ & \text { note: } 1 \mathrm{~mL}=\mathrm{cm}^{3} \text { exactly } 1 \mathrm{~cm}^{3} \end{aligned}$

Temperature Conversions

Recall the Temperature Conversions from Chapter 1 lecture notes:

- ${ }^{\circ} \mathrm{F}=\left(1.8 \mathrm{x}^{\circ} \mathrm{C}\right)+32$
- ${ }^{\circ} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right) / 1.8$
- $\mathrm{K}={ }^{\circ} \mathrm{C}+273.15$

NOTE: In temperature conversion equations, the $273.15,32$ and 1.8 are exact.

IMPORTANT: When doing a calculation that involves only multiplication and/or division, you can do the entire calculation then round the answer to the correct number of significant figures at the end. The same is true for a calculation that involves only addition and/or subtraction.

But what about a calculation that involves mixed operations: both multiplication or division and addition or subtraction?

When doing calculations that involve both multiplication or division and addition or subtraction, first do a calculation for the operation shown in parenthesis and round that value to the correct number of significant figures, then use the rounded number to carry out the next operation.

Perform the following temperature conversions (show your calculation)

$75^{\circ} \mathrm{C}=\ldots \mathrm{K}$	
$-15^{\circ} \mathrm{C}=$ \qquad K	
$0.00 \mathrm{~K} \quad=\quad{ }^{\circ} \mathrm{C}=$	${ }^{0} \mathrm{~F}$
$25^{\circ} \mathrm{C}($ room temperature $)=$	_ K
$98.6^{\circ} \mathrm{F}($ body temperature $)=$	${ }^{\circ} \mathrm{C}$
$25^{\circ} \mathrm{C}=$ \qquad ${ }^{\circ} \mathrm{F}$	
$-40.0^{\circ} \mathrm{C}=$ \qquad ${ }^{\circ} \mathrm{F}$	
$412 \mathrm{~K}=\ldots{ }^{\circ} \mathrm{F}$	

Significant Figures, Scientific Notation, and Rounding

1) Determine the number of significant figures in the following values:

Value	\# of sig. figures	Value	\# of sig. figures
140.74	5	4	1
0.0041	2	3.70×10^{14}	3
31.00	4	1.05×10^{12}	3
1300	2	7.0400×10^{3}	5
847.040	6	2495	4

2) Round the following values to 3 significant figures.

$3.76411 \rightarrow 3.76$	$0.0411984 \rightarrow 0.0412$
$3.76811 \rightarrow 3.77$	$150.6142 \rightarrow 151$
$3.76511 \rightarrow 3.77$	$0.013877 \rightarrow 0.0139$
$11.048176 \rightarrow 11.0$	$4.88223 \times 10^{9} \rightarrow 4.88 \times 10^{9}$
$8.75510 \rightarrow 8.76$	$2.0097 \times 10^{-12} \rightarrow 2.01 \times 10^{-12}$

3) Perform the following calculations and round the final answer to the correct number of significant figures.

Calculation	Rounded Answer	Calculation	Rounded Answer
$18.7644-3.472+0.4101$	$=15.703$	$0.87+4.061+10.4$	$=15.3$
$17.441 \div 3$	$=6$	$16 \times 841.1 \div 16.300$	$=830$
$14.044+8.11+3.4$	$=25.6$	21.01×2.0	$=42$
$3.41-0.086652$	$=3.32$	$18.4+12.99+13.772+9.704$	$=54.9$

4. Convert the following into scientific notation or standard notation

Standard notation	Scientific notation
47,000	4.7×10^{4}
0.0008	8×10^{-4}
$675,000,000$	6.75×10^{8}
$157,000,000,000,000,000,000,000$	1.57×10^{23}
0.0000003407	3.407×10^{-7}
0.0766	7.66×10^{-2}
780,000	7.8×10^{5}
0.000475	4.75×10^{-4}
0.006	6×10^{-3}
$900,000,000$	9×10^{8}

Metric System:

Perform the following metric conversions. Show your conversion factors. Use correct number of significant figures. If you need more room, do calculations on separate page(s).

$0.50 \mathrm{~m}=\ldots 5.0 \times 10^{2} _\mathrm{mm}$	$2.00 \mathrm{~km}=\ldots 2.00 \times 10^{3} \ldots \mathrm{~m}$	$\begin{aligned} & 0.4000 \mathrm{~L}=4.000 \times 10^{2} \mathrm{~mL} \\ & \text { or } 400.0 \mathrm{~mL} \end{aligned}$
$\begin{aligned} & 1.00 \mathrm{~g}=1.00 \times 10^{-3} \mathrm{~kg} \\ & \text { or } .00100 \mathrm{~kg} \end{aligned}$	$\begin{aligned} & 01.00 \mathrm{~cm}=\frac{0.0100}{} \mathrm{~m} \\ & \text { or } 1.00 \times 10^{-2} \mathrm{~m} \end{aligned}$	$\begin{aligned} & 8.00 \mathrm{~mm}=\frac{0.800}{} \mathrm{~cm} \\ & \text { or } 8.00 \times 10^{-1} \mathrm{~cm} \end{aligned}$
$\begin{aligned} & 22.4 \mathrm{~L}=2.24 \times 10^{4} \mathrm{~mL} \\ & \text { or } 22400 \mathrm{~mL} \end{aligned}$	$\begin{aligned} & 5.00 \mathrm{~g}=5.00 \times 10^{-3} \mathrm{~kg} \\ & \text { or } .00500 \mathrm{~kg} \end{aligned}$	$\begin{aligned} & 4.245 \mathrm{~L}=\frac{4245}{\mathrm{or}} 4.245 \times 10^{3} \mathrm{~mL} \end{aligned}$
$\begin{aligned} & 345 \mathrm{~g}=-0.345 \mathrm{~kg} \\ & \text { or } 3.45 \times 10-{ }^{1} \mathrm{~kg} \end{aligned}$	$\begin{aligned} & 10.0 \mathrm{~nm}=1.00 \times 10^{-8} \mathrm{~m} \\ & \text { or } .0000000100 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 3.22 \mathrm{Gg}=3.22 \times 10^{6} \mathrm{~kg} \\ & \text { or } 3220000 \mathrm{~kg} \end{aligned}$
$\begin{aligned} & 3.001 \mathrm{cg}=\frac{30.01 \mathrm{mg}}{10^{1} \mathrm{mg}} \\ & \text { or } 3.001 \times{ }^{1} \end{aligned}$	$1.2 \mathrm{~m}=1.2 \times 10^{6} _\mu \mathrm{m}$ or $1200000 \mu \mathrm{~m}$	$\begin{aligned} & 455 \mathrm{~nm}=4.55 \times 10^{-7} \mathrm{~m} \\ & \text { or } .000000455 \mathrm{~m} \end{aligned}$

English-Metric Conversions (show your work)

$10.0 \mathrm{~cm}=3.94$ _in	$15.0 \mathrm{lb}=\ldots 6.80 _\mathrm{kg}$
$1.00 \mathrm{yd}=\underline{91.4} \mathrm{Cm}$	$\begin{gathered} 16.9 \mathrm{fl} . \mathrm{oz}=\frac{0.500}{\mathrm{~L}} \mathrm{~L} \\ (0.0338 \mathrm{fl} \mathrm{oz.}=1 \mathrm{~mL}) \end{gathered}$
$1.00 \mathrm{qt}=\ldots 0.946 \ldots \mathrm{~L}$	$6.00 \mathrm{in}=\ldots 15.2 \ldots \mathrm{~cm}$
$0.800 \mathrm{~kg}=\ldots 28.2$ __oz ($16 \mathrm{oz}=1 \mathrm{lb}$)	$1.83 \mathrm{~kg}=\ldots 4.04 \ldots \mathrm{lb}$
$25.00 \mathrm{~mL}=$. $0.0264 _\mathrm{qt}(1 \mathrm{qt}=.946 \mathrm{~L})$	$\begin{aligned} & 1.40 \mathrm{~L}=\frac{1.40 \times 10^{3}}{\text { note: } 1 \mathrm{~mL}=1 \mathrm{~cm}^{3}}=\mathrm{cm}^{3} \end{aligned}$

Temperature Conversions

Perform the following temperature conversions (show your calculation)

$75^{\circ} \mathrm{C}=\ldots 348 \ldots \mathrm{~K}$
$-15^{\circ} \mathrm{C}=\ldots 258 \quad \mathrm{~K}$
$0.00 \mathrm{~K}=$ _-273.15_ ${ }^{\circ} \mathrm{C}=$ - $459.67 \chi^{\circ}{ }^{\circ} \mathrm{F}$
$25^{\circ} \mathrm{C}(\text { room temperature })=\ldots 298 \quad \mathrm{~K}$
$98.6{ }^{\circ} \mathrm{F}($ body temperature $)=\ldots 37.0 \quad{ }^{\circ} \mathrm{C}$
$25^{\circ} \mathrm{C}=\ldots 77 \quad{ }^{\circ} \mathrm{F}$
$-40.0^{\circ} \mathrm{C}=-40.0 _{ }^{\circ} \mathrm{F}$
$412 \mathrm{~K}=\ldots 282 \quad{ }^{\circ} \mathrm{F}$

Chapter 1 Worksheet 1 and KEY

Significant Figures Worksheet

1. Indicate how many significant figures there are in each of the following measured values.

246.32	1.008	700000
107.854	0.00340	350.670
100.3	14.600	1.0000
0.678	0.0001	320001

2. Calculate the answers to the appropriate number of significant figures.

32.567	246.24	658.0
135.0	238.278	23.5478
$+\quad 1.4567$	$+98.3-$	1345.29

3. Calculate the answers to the appropriate number of significant figures.
a) 23.7×3.8
$=$ \qquad
e) $43.678 \times 64.1=$ \qquad
b) 45.76×0.25 \qquad f) $1.678 / 0.42=$ \qquad
c) 81.04×0.010
$=$ \qquad
g) $28.367 / 3.74$ \qquad
d) 6.47×64.5

$$
=
$$

\qquad
h) 4278 / $1.006=$ \qquad

Significant Figures Worksheet Key

1. Indicate how many significant figures there are in each of the following measured values.

246.32	5 sig figs	1.008	4 sig figs	700000	1 sig fig
107.854	6 sig figs	0.00340	3 sig figs	350.670	6 sig figs
100.3	4 sig figs	14.600	5 sig figs	1.0000	5 sig figs
0.678	3 sig figs	0.0001	1 sig fig	320001	6 sig figs

2. Calculate the answers to the appropriate number of significant figures.

32.567	246.24	658.0
135.0	238.278	23.5478
$+\quad 1.4567$	$+98.3-$	$+\quad 1345.29$
$\mathbf{1 6 9 . 0}$	$\mathbf{5 8 2 . 8}$	$\mathbf{2 0 2 6 . 8}$

3. Calculate the answers to the appropriate number of significant figures.
a) 23.7×3.8
$=90$.
e) 43.678×64.1
$=2.80 \times 10^{3}$
b) 45.76×0.25
$=11$
f) $1.678 / 0.42=\mathbf{4 . 0}$
c) $81.04 \times 0.010=\mathbf{0 . 8 1}$
g) $28.367 / 3.74=7.58$
d) 6.47×64.5
$=417$
h) $4278 / 1.006=\mathbf{4 2 5 2}$

Unit Conversions Worksheet

Complete each of the following conversions to the proper number of significant figures; clearly show your set-up with units in the set-up and the answer.

1) $0.30 \mathrm{~m}=$ \qquad mm
2) $5.00 \mathrm{~g}=$ \qquad kg
3) $5.00 \mathrm{~mm}=$ \qquad cm
4) $1.00 \mathrm{yd}=$
cm ($3 \mathrm{ft}=1$ yard, exactly)
5) $10.0 \mathrm{~cm}=$ \qquad in
6) $6.35 \mathrm{~g}=\square \mathrm{kg}$
7) $2.00 \mathrm{~km}=$ \qquad m
8) $8.245 \mathrm{~L}=\square \mathrm{mL}$
9) $33.4 \mathrm{~L}=$ \qquad mL
10) $16.9 \mathrm{fl} . \mathrm{oz}=$ L ($0.0338 \mathrm{fl} \mathrm{oz} .=1 \mathrm{~mL}$)
11) $15.0 \mathrm{lb}=$ \qquad kg
12) $1.00 \mathrm{~cm}=$ \qquad m (use $2.20 \mathrm{lb}=1 \mathrm{~kg}$)
13) $0.400 \mathrm{~L}=$ \qquad mL
14) 345 g $=$ \qquad kg

See next page for Key

Unit Conversion Worksheet Key

1) $0.30 \mathrm{~m}=3.0 \times 10^{2} \mathrm{~mm}$
2) $5.00 \mathrm{~mm}=0.500 \mathrm{~cm}$ or $5.00 \times 10^{-1} \mathrm{~cm}$
3) $10.0 \mathrm{~cm}=3.94 \mathrm{in}$
4) $2.00 \mathrm{~km}=2.00 \times 10^{3} \mathrm{~m}$
5) $33.4 \mathrm{~L}=3.34 \times 10^{4} \mathrm{~mL}$ or 33400 mL
6) $15.0 \mathrm{lb}=6.82 \mathrm{~kg}$
7) $0.400 \mathrm{~L}=400 . \mathrm{mL}$ or $4.00 \times 10^{2} \mathrm{~mL}$
8) $5.00 \mathrm{~g}=5.00 \times 10^{-3} \mathrm{~kg}$ or 0.00500 kg
9) $1.00 \mathrm{yd}=91.4 \mathrm{~cm}$
10) $6.35 \mathrm{~g}=0.00635 \mathrm{~kg}$ or $6.35 \times 10^{-3} \mathrm{~kg}$
11) $8.245 \mathrm{~L}=8245 \mathrm{~mL}$ or $8.245 \times 10^{3} \mathrm{~mL}$
12) 16.9 fl . oz $=0.500 \mathrm{~L}$ or $5.00 \times 10^{-1} \mathrm{~L}$
13) $1.00 \mathrm{~cm}=0.0100 \mathrm{~m}$ or $1.00 \times 10^{-2} \mathrm{~m}$
14) $345 \mathrm{~g}=0.345 \mathrm{~kg}$ or $3.45 \times 10^{-1} \mathrm{~kg}$

Chapter 2 Lecture Notes: Atoms

Educational Goals

1. Describe the subatomic structure of an atom.
2. Define the terms element and atomic symbol.
3. Understand how elements are arranged in the periodic table based on the number of protons they contain.
4. Understand how atomic number and mass number are used to indicate details of an atom's nucleus.
5. Know how isotopes of an element differ from one another.
6. Define the term mole and describe the relationship between moles and molar mass.
7. Given the molar mass of an element, convert between number of atoms, number of moles, and mass (grams).

An Introduction to Atoms

Matter (stuff) is made of \qquad .

Model of the Atom

Check your current model: Draw a carbon atom.

Atoms are made of \qquad particles.

There are three types of subatomic particles that will make up our atomic model:

1. \qquad
2.
3.

\qquad
\qquad

Protons and neutrons are compacted together in what we call the \qquad of an atom. Electrons are distributed in space around the nucleus.

- They are moving very fast in a volume surrounding the nucleus.

Atoms are mostly empty space.

Electrical Charge

There are a few fundamental properties of nature.

- Examples: Gravity, magnetism, and mass.

Another fundamental property in nature is \qquad .
Particles may or may not have electrical charge.
There are two types of electrical charge; we arbitrarily call one type \qquad and the other type
\qquad -.

Every thing we discuss in this course ultimately occurs because of the interaction of these two types of charges.

Particles with opposite charges attract each other.
The natural attraction is called
\qquad force.

Oppositely charged particles will accelerate toward one another if not held apart.

Particles with like charges repel each other.
The natural repulsion is called
\qquad
\qquad force.
Like charged particles will accelerate away from one another if not held together.

Subatomic Particles

1) Protons

Protons are \qquad charged particles located in the \qquad of an atom.
The number of protons a particular atom contains determines that atom's identity.

- For example, any atom that contains just one proton is called hydrogen. An atom with two protons is called helium. An atom with six protons is called carbon.

Historically, matter with different numbers of protons, such as hydrogen, helium, and carbon were called the \qquad .

There are 92 elements that occur in nature. About 25 others have been man-made by slamming two atoms together causing their nuclei to combine, however these new atoms do not last long (fractions of a second up to one year), they break apart into smaller atoms.

A modern periodic table of the elements is shown on the next page.

- You can download a copy of this periodic table at: http://www.zovallearning.com/GOBlinks/ch2/periodictablezovalbasic.pdf

Note that each element is represented by its atomic \qquad (a one- or two-letter name abbreviation) and occupies a box in the table.
Above each element's symbol is the \qquad .
The atomic number tells us the \qquad of \qquad in an atom of that particular element.

- Example: Look at carbon, symbol C, atomic number 6. Carbon has an atomic number of six because an atom with six protons is called carbon. If it had seven protons, it would not be carbon - it would be nitrogen and have an atomic number of 7 .
- Atomic number can be abbreviated using "Z."
- For example, with carbon, $\mathbf{Z}=6$, with hydrogen, $\mathbf{Z}=1$.
- Elements are ordered in the periodic table by increasing atomic number.

2) Electrons

Electrons are negatively charged subatomic particles.
They are light-weight particles that move extremely fast.

- For the remainder of chapter 2 we can visualize the electrons as bees flying around a beehive (the bee hive represents the nucleus). In chapter 3 you will learn more details about the regions around the nucleus that the electrons can occupy.
- Electrons are very light compared to protons and neutrons.
- Protons and neutrons are about 2000 times heavier than electrons and therefore compose most of an atom's mass.

3) Neutrons

Neutrons are located in the \qquad (with the protons).
Neutrons do not have electrical charge; we say they are electrically \qquad .
The names, charges, and symbols for the three types of subatomic particles are shown below:

SUBATOMIC PARTICLE	SYMBOL	CHARGE
PROTON	p	positive (1+)
NEUTRON	n	none
ELECTRON	e or e^{-}	negative (1-)

How many neutrons are in an atom?

We cannot determine the number of neutrons in an atom based on the number of protons.

- This is because atoms of a particular element do not all have the same number of neutrons.

Example: Some carbon atoms have six neutrons, some have seven neutrons, and some have eight neutrons.

- These three different forms of carbon are called \qquad of carbon.

Isotopes are defined as atoms with the same number of protons (same element), but a different number of neutrons.

You learned that an atom's "atomic number (Z) " is the number of protons it contains.
When considering the number of neutrons in an isotope of a particular atom, it is useful to learn a new term called "mass number."

The \qquad of an atom is defined as the number of protons plus the number of neutrons. mass number $=$ number of protons + number of neutrons
Mass number can be abbreviated using "A."

	SYMBOL	DEFINITION
ATOMIC NUMBER	Z	number of protons
MASS NUMBER	A	number of protons + number of neutrons

Example: How many neutrons are in a sodium (Na) atom that has a mass number of $\mathbf{2 3}$?
Take notes here:

Understanding Check: How many neutrons are in a carbon (C) atom that has a mass number of $\mathbf{1 4}$?

You will often see one of two "shorthand notation" methods used to differentiate the various isotopes:
Method 1: Write the element symbol, a dash, then the mass number (A)
Let's use our three isotopes of carbon for examples:

NUMBER OF NEUTRONS IN THE CARBON ATOM	SHORTHAND NOTATION
$\mathbf{6}$	$\mathrm{C}-12$
$\mathbf{7}$	$\mathrm{C}-13$
$\mathbf{8}$	$\mathrm{C}-14$

Method 2: Write the element symbol, we superscript the mass number (A) to the left of the symbol.

NUMBER OF NEUTRONS IN THE CARBON ATOM	SHORTHAND NOTATION
6	${ }^{12} \mathrm{C}$
7	${ }^{13} \mathrm{C}$
8	${ }^{14} \mathrm{C}$

- Although redundant, sometimes the atomic number (Z) is also subscripted to the left of the symbol.
- For example:
${ }_{6}^{12} \mathrm{C}$

Understanding Check: Fill in the blanks for the following isotopes:
a. ${ }^{14} \mathrm{~N}$ number of protons \qquad number of neutrons \qquad atomic number \qquad mass number \qquad
b. ${ }^{15} \mathrm{~N}$ number of protons \qquad number of neutrons \qquad atomic number \qquad mass number \qquad
c. ${ }^{42} \mathrm{Ca}$ number of protons \qquad number of neutrons \qquad atomic number \qquad mass number \qquad
d. ${ }^{1} \mathbf{H}$ number of protons number of neutrons atomic number mass number

Atoms are electrically neutral; their total charge is equal to zero.

- They have the same number of electrons $(-)$ as protons $(+)$, so the positive and negative charges add up to zero (cancel).

The Mole

Atoms are so tiny and small in mass that it is more convenient to do calculations with a large number of atoms

- Just like bakers and chefs use eggs by the dozen, chemists use atoms and molecules by the mole.
- A \qquad is a counting unit used for atoms and molecules.
- A \qquad is any term that refers to a specific number of things.
- a couple $=2$ items (e.g. people)
$-\quad$ a dozen $=12$ items (e.g. eggs, donuts)
$-\quad$ a mole $=6.022 \times 10^{23}$ (e.g. atoms, molecules)
The Chemist's Mole
- One mole of anything represents 6.022×10^{23} of the things.
- This is referred to as Avogadro's number.
- 1 mole $=6.022 \times 10^{23}$

Understanding Check: How many atoms are in $\mathbf{1}$ mole of helium (He)? \qquad
Because the mole is the standard counting unit used to indicate the number of atoms present in a sample, it is useful to convert back and forth from moles to atoms.

- Use our conversion factor method.
- The relationship between \# of atoms and moles is:
- 1 mole $=6.022 \times 10^{23}$

Example: How many carbon atoms are there in 0.100 mole of carbon?
Take notes here:

You try one: How many moles are $2.9 \times 10^{12} \mathrm{~F}$ atoms?

The Mole and Mass

- The \qquad
\qquad of an element is equivalent to the mass (in grams) of one mole of the element.
- Molar mass is given in the periodic table \qquad the symbol of the element.
- Molar mass units: \qquad
- Example: Carbon - molar mass is \qquad
- Another example:
- 1 mole of argon (Ar) $=39.95 \mathrm{~g}$
- Molar mass of argon is $39.95 \mathrm{~g} / \mathrm{mole}$

Understanding Check:

1 mole of $\mathrm{C}=$ \qquad grams of carbon $(\mathrm{C})=$ \qquad atoms of C
1 mole of $\mathrm{Al}=$ \qquad grams of aluminum $(\mathrm{Al})=$ \qquad atoms of Al

Because the molar mass gives us the \qquad between the number of moles and the mass of an element, it can be used to \qquad back and forth between moles and mass (in grams).

- Use our conversion factor method

Example: Carbon

- The relationship between \# of moles of carbon and grams of carbon is:
- 1 mole Carbon $=12.01 \mathrm{~g}$
- This can be written as conversion factors:

Example Problem: What is the mass of 0.770 moles of carbon?
Take notes here:

You try one: How many moles are there in 50.0 g of lead?

Converting Between the Number of Atoms and Grams

Example: (atoms to grams) What is the mass of $2.50 \times 10^{21} \mathrm{Lead}(\mathrm{Pb})$ atoms?

Take notes here:

You try one: (grams to atoms) Compute the number atoms in 10.0 g of Aluminum (Al)?

The Periodic Table

As we continue to build our model of atoms and matter in later chapters, we will gain more understanding of why the elements are arranged as they are in the periodic table and how the periodic table can be very useful in predicting the chemical and physical properties of matter.

CATEGORY	PROPERTIES
Metals	•Good conductors of heat and electricity Nonmetals •Have a luster
Metalloids	•Poor conductors of heat and electricity •Brittle (break or shatter if bent or hammered)
(sometimes called Semimetals)	Intermediate conductors of heat and electricity

Elements in the periodic table are arranged in columns called \qquad (sometimes, but much less often, called Families).

- Sometimes these groups are shown with group numbers in Roman numerals above the column.

(Inner) Transition Metals

6	Lanthanides	$\begin{aligned} & 58 \\ & \mathrm{Ce} \end{aligned}$	$\begin{aligned} & 59 \\ & \text { Pr } \\ & \hline \end{aligned}$	$\begin{gathered} 60 \\ \mathbf{N d} \end{gathered}$	$\begin{gathered} 61 \\ \text { Pm } \end{gathered}$	$\begin{gathered} 62 \\ \text { Sm } \end{gathered}$	$\begin{aligned} & 63 \\ & \text { Eu } \end{aligned}$	$\begin{aligned} & 64 \\ & \text { Gd } \end{aligned}$	$\begin{aligned} & 65 \\ & \mathbf{T b} \end{aligned}$	$\begin{aligned} & 66 \\ & \text { Dy } \end{aligned}$	$\begin{aligned} & 67 \\ & \text { Ho } \end{aligned}$	$\begin{aligned} & 68 \\ & \text { Er } \end{aligned}$	$\begin{gathered} 69 \\ \mathbf{T m} \end{gathered}$	$\begin{aligned} & 70 \\ & \mathbf{Y b} \end{aligned}$	$\begin{gathered} 71 \\ \mathbf{L u} \\ \hline \end{gathered}$
	Actinides	90	91	92	93	94	95	96	97	98	99	100	101	102	103
7		Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

The elements in Group I (also called Group 1A) are called the \qquad metals.

- Although it is not a metal, note that hydrogen is in this group for reasons that I will discuss in chapter 3.

The elements in Group II (also called group 2A) are called the \qquad earth metals.

The elements in Group VII (also called group 7A) are called the \qquad .

The elements in Group VIII (also called group 8A) are called the \qquad .

The elements in Group I and Group II are in what is called the \qquad -Block.

The elements in Groups III - VIII are in the \qquad -Block.

The \qquad , located between the s - and p-Blocks, are in the \qquad -Block.

The Inner Transition Metals, located in the bottom two rows of the periodic table are in the \qquad -Block.

- They are called lanthanides (top row of the f-Block) and actinides (bottom row of the f-Block).

The rows in the periodic table are called \qquad .

- The periods are often numbered to the left of each row.

Chapter 2: Atomic Molar Mass Worksheet and Key

1. Complete the following table:

Symbol	Symbol-Mass Number	Atomic $\#$	Mass \#	\# protons	\# neutrons	\# electrons
${ }_{3}^{7} \mathrm{Li}$						
	Mo-96					
				49	53	
			72			35
${ }_{2}^{238} \mathrm{U}$						

Answer the following questions. Be sure to write units with every number and to use the correct number of significant figures. Use two digits to the right of the decimal place for molar masses when possible, then your final answer will match the key exactly.

1. What is the molar mass of the following elements?
a) B \qquad b) Zn \qquad c) He \qquad
2. What is the mass (grams) of one mole of Xenon? \qquad
3. How many atoms are in one mole of Xenon?

Use the conversion map below to solve the following problems

4. How many moles of oxygen (O) contain 1.65×10^{27} oxygen atoms?

5. How many moles of K contain $3.50 \times 10^{19} \mathrm{~K}$ atoms?

6. How many moles of fluorine (F) contain $8.27 \times 10^{24} \mathrm{~F}$ atoms?

7. How many carbon atoms are contained in 5.45 moles of carbon?

8. How many Neon (Ne) atoms are contained in 0.75 moles of Ne ?

9. How many moles of oxygen (O) is contained 2.65 grams of oxygen?

10. How many moles of potassium (K) is contained 8.44 grams of potassium?

11. How many g of Xe is contained in 0.054 moles of Xe ?

12. How many g of C is contained in 39.5 moles of C ?

13. What is the mass (grams) of 5.00×10^{24} oxygen atoms?

14. What is the mass (grams) of 1.00×10^{6} sodium (Na) atoms?

15. How many iron atoms are in 10.0 grams of iron (Fe)?

10.0 g Fe	mole Fe	Fe atoms
	g Fe	\ldots

\qquad Fe atoms
16. How many copper (Cu) atoms are in a 257 gram copper pipe?

See next page for KEY

KEY

1. Complete the following table:

Symbol	Symbol- Mass Number	Atomic \#	Mass \#	\# protons	\# neutrons	\# electrons
${ }_{3}^{7} \mathrm{Li}$	Li-7	3	7	3	4	3
${ }_{42}^{96} \mathrm{Mo}$	Mo-96	42	96	42	54	42
${ }^{102} \mathrm{In}$	In-102	49	102	49	53	49
${ }_{32}^{72} \mathrm{Br}$	$\mathrm{Br}-72$	35	72	35	37	35
${ }_{9}^{238} \mathrm{U}$	$\mathrm{U}-238$	92	238	92	146	92

Answer the following questions. Be sure to write units with every number and to use the correct number of significant figures. Use two digits to the right of the decimal place for molar masses when possible, then your final answer will match the key exactly.

1. What is the molar mass of the following elements?
a) B $10.81 \mathrm{~g} / \mathrm{mole}$
b) $\mathrm{Zn} 65.39 \mathrm{~g} / \mathrm{mole}$
c) $\mathrm{He} \quad 4.00 \mathrm{~g} / \mathrm{mole}$
2. What is the mass (grams) of one mole of Xenon? \qquad 131.29 g
3. How many atoms are in one mole of Xenon? 6.022×10^{23}
4. How many moles of oxygen (O) contain 1.65×10^{27} oxygen atoms?

$$
\begin{array}{c|c|c}
1.65 \times 10^{27} \mathrm{O} \text { atoms } & 1 \text { mole } \mathrm{O} & =2740 \text { mole } \mathrm{O} \text { or } 2.74 \times 10^{3} \mathrm{~mole} \mathrm{O} \\
\hline & 6.022 \times 10^{23} \mathrm{O} \text { atoms } & \text { Note: } 3 \text { significant figures!!! }
\end{array}
$$

5. How many moles of K contain $3.50 \times 10^{19} \mathrm{~K}$ atoms?

6. How many moles of fluorine (F) contain $8.27 \times 10^{24} \mathrm{~F}$ atoms?

$8.27 \times 10^{24} \mathrm{~F}$ atoms	1 mole F
	$6.022 \times 10^{23} \mathrm{~F}$ atoms

7. How many carbon atoms are contained in 5.45 moles of carbon?

5.45 moles C	$6.022 \times 10^{23} \mathrm{C}$ atoms
	1 mole C

8. How many Neon (Ne) atoms are contained in 0.75 moles of Ne ?

0.75 moles Ne	$6.022 \times 10^{23} \mathrm{Ne}$ atoms
	1 mole Ne

9. How many moles of oxygen (O) is contained 2.65 grams of oxygen?

2.65 g O	1 mole O
	16.00 g O

10. How many moles of potassium (K) is contained 8.44 grams of potassium?

8.44 g K	1 mole K	$=0.216$ mole K

11. How many g of Xe is contained in 0.054 moles of Xe ?

12. How many g of C is contained in 39.5 moles of C ?

13. What is the mass (grams) of 5.00×10^{24} oxygen atoms?

5.00×10^{24} atoms O	1 mole O	16.00 g O
	$6.022 \times 10^{23} \mathrm{O}$ atoms	1 mole O

14. What is the mass (grams) of 1.00×10^{6} sodium (Na) atoms?

$1.00 \times 10^{6} \mathrm{Na}$ atoms	1 mole Na	22.99 g Na
	$6.022 \times 10^{23} \mathrm{Na}$ atoms	1 mole Na

15. How many iron atoms are in 10.0 grams of iron (Fe) ?

10.0 g Fe	1 mole Fe	$6.022 \times 10^{23} \mathrm{Fe}$ atoms
	55.85 g Fe	1 mole Fe

16. How many copper (Cu) atoms are in a 257 gram copper pipe?

257 g Cu	1 mole Cu	$6.022 \times 10^{23} \mathrm{Cu}$ atoms
	63.55 g Cu	1 mole Cu

CHAPTER 2 REVIEW WORKSHEET AND KEY

The Mole

1) How many zinc (Zn) atoms are contained in 5.16 moles of Zn ?
2) How many moles of He are $221,000 \mathrm{He}$ atoms?
3) How many atoms are contained in 0.98 moles of iron (Fe) ?
4) How many moles of cesium are in 66.45 g Cs ?
5) What is the mass (grams) of 2500 . carbon atoms?
6) What is the mass (grams) of 6.52×10^{18} atoms of gold (Au)?

Isotopes
(IMPORTANT NOTE: $X=$ Symbol, $A=$ mass number, $Z=$ atomic number)

Name	Atomic number	Mass number	\# of protons	\# of neutrons	X-A form	A X Zotation
Cobalt		60				
					I-131	
						${ }^{3} H$
	26	59				
						99 no
			11	24		
Strontium				52		
					$\mathrm{U}-235$	
		13	55			
	79			118		
Copper				36		
			56	81		
					$\mathrm{~K}-40$	

KEY
The Mole

1) How many zinc (Zn) atoms in 5.16 moles of Zn ?
$3.11 \times 10^{24} \mathrm{Zn}$ atoms
2) How many moles of He are $221,000 \mathrm{He}$ atoms?
3.67×10^{-19} moles He
3) How many atoms are contained in 0.98 moles of iron (Fe) ?
$5.9 \times 10^{23} \mathrm{Fe}$ atoms
4) How many moles of cesium are in 66.45 g Cs ?
0.5000 moles Cs
5) What is the mass (grams) of 2500 . carbon atoms?
$4.986 \times 10^{-20} \mathrm{~g}$ C
6) What is the mass (grams) of 6.52×10^{18} atoms of gold (Au)?
0.00213 g Au

Isotopes

Name	Atomic number	Mass number	\# of protons	\# of neutrons	$\begin{aligned} & \hline \text { X-A } \\ & \text { form } \end{aligned}$	$\begin{gathered} { }_{\mathrm{Z}}^{\mathrm{Z}} X \\ \text { notation } \end{gathered}$
Cobalt	27	60	27	33	Co-60	${ }_{27}^{60} \mathrm{Co}$
Iodine	53	131	53	78	I-131	${ }_{53}^{131}$ I
Hydrogen	1	3	1	2	H-3	${ }_{1}^{3} \mathrm{H}$
Iron	26	59	26	33	Fe-59	${ }_{26}^{59} \mathrm{Fe}$
Molybdenum	42	99	42	57	Mo-99	${ }_{42}^{99} \mathrm{Mo}$
Sodium	11	35	11	24	Na-35	${ }_{11}^{35} \mathrm{Na}$
Strontium	38	90	38	52	Sr-90	${ }_{38}^{90} \mathrm{Sr}$
Uranium	92	235	92	143	U-235	${ }_{92}^{235} \mathrm{U}$
Cesium	55	134	55	79	Cs-134	${ }_{55}^{134} \mathrm{Cs}$
Fluorine	9	19	9	10	F-19	${ }_{9}^{19} \mathrm{~F}$
Gold	79	197	79	118	Au-197	${ }_{79}^{197}$ Au
Copper	29	65	29	36	Cu-65	${ }_{29}^{65} \mathrm{Cu}$
Barium	56	137	56	81	Ba-137	${ }_{56}^{137}$ Ba
Potassium	19	40	19	21	K-40	${ }_{19}^{40} \mathrm{~K}$

Chapter 3 Lecture Notes: Compounds

Educational Goals

1. Understand where electrons are located in atoms and how the locations of electrons affect the energy of the atom.
2. Define the term valence electron and draw the electron dot structure of an atom or ion.
3. Define the term ion and explain how the electron dot structure of a s- or p-block element can be used to predict the charge of the monoatomic ion.
4. Given the symbol, be able to name monoatomic cations and anions (and vice versa).
5. Explain the difference between an ionic bond and a covalent bond.
6. Understand the structural difference between ionic and covalent compounds.
7. Given the name, be able to write the formulas of ionic compounds and binary covalent compounds (and vice versa).
8. Define the terms molar mass, formula mass, and molecular mass and use these values in unit conversions involving moles and mass.
9. Given the formula, draw the line bond structures of diatomic molecules.

The Arrangement of Electrons

Before we learn about compound, we must build on our understanding of atoms and electrons.
Specifically, in the beginning of chapter 3 you will learn:

1) Where electrons are located in atoms.
2) How the location of electrons effect the energy of the atom.

Scientists used light to study how electrons are arranged around the nucleus.
Energy, in the form of light or heat, can be \qquad by atoms.

Energy is absorbed by \qquad an electron to a new area.

Atoms release energy when electrons move back to \qquad
\qquad areas.

- This can happen when an atom collides with another particle.
- Another way this can happen is by an atom emitting \qquad .

The Modern Model of the Atom

New scientific laws and models of nature were needed to explain the pattern of light that was emitted by atoms.

Another word for light is electromagnetic radiation.

Visible light, the part of the electromagnetic spectrum that can be detected with the human eye, is a small part of the electromagnetic radiation spectrum (see the textbook for colored spectrum).

Short wavelengths correspond to higher energy; longer wavelengths correspond to lower energy light.
If all energies of light could be released from excited atoms, then we would expect the pattern of emitted light to look like this:

However, only light with discrete (distinct) energies is emitted. For example, the pattern of light emitted from excited hydrogen atoms is:

Our understanding of nature was dramatically changed when Max Planck and Albert Einstein introduced " \qquad
\qquad ."

They proposed that energy is absorbed and emitted by atoms only in \qquad amounts called quanta.

- Another word for "discrete" is "distinct."

Recall that the light emitted from excited atoms is generated by electrons losing energy as they move from areas further from the nucleus (high energy) to areas nearer the nucleus (low energy). To lose the energy in this process, atoms emit light.

The observation that only discrete energies are emitted from excited atoms is explained using an atomic model that says that the electrons can only exist in certain areas and therefore atoms have discrete energies.

- We say that the energy of atoms is " \qquad ."
- The first scientist to propose a model of the atom where electrons existed in specific regions that had discrete energies was Niels Bohr.

Illustration of the "Quantized" Energy of Hydrogen

When an atom's electron(s) are in the lowest possible energy area, we call this the \qquad .

- At room temperature, all atoms will exist in their ground state unless temporarily excited to a higher energy area by absorbing light.
Absorption of a discrete amount of energy corresponds to the worker only being able to move to particular areas (represented by posts in the illustration above).
When hydrogen's electron is in any other region than the ground state (lowest energy), we call that an
\qquad
\qquad of hydrogen.

The excited atom will soon lose energy as the electron moves back to the ground state position. When the energy lost is in the form of light, that light will be the color (wavelength) corresponding to the energy difference between the initial "excited" region and the final, lower energy region.

The Modern Model of the Atom: The Quantum Mechanical Model

You can avoid getting lost in the detail (and wonder) of nature by focusing on the following two educational goals:

1) Understand where electrons are \qquad in atoms.
2) Understand how the location of electrons affect the \qquad of the atom.

The Hydrogen Atom

Hydrogen is unique because it has only \qquad electron.
Electrons exist in certain three-dimensional regions called \qquad .
Orbitals can be described by these properties:
\qquad
\qquad an electron in a particular orbital is from the nucleus.
Since orbitals are three-dimensional and the electrons move (very quickly) within the orbitals, the distance an electron is from the nucleus is not constant (as it would be in a circular two-dimensional path). Therefore, we talk about the electron's average distance from the nucleus.
. As hydrogen's orbitals get larger, the average distance of an electron from the nucleus increases, therefore the \qquad the orbital occupied by an electron, the \qquad the energy. (As described in the illustration at the top of this page).
2. The three-dimensional \qquad of the orbital.

- Not only do the sizes of orbitals vary, the shapes of orbitals vary as well.
- When the shapes of orbitals are shown as three-dimensional representations, the shapes represent the region that would contain the electron \qquad of the time. The remaining 10% of the time, the electron would be outside of the shape that is shown in the graphic representation.

The Language of Quantum Mechanics

The orbitals are centered on the \qquad , and are labeled by a \qquad .
In a hydrogen atom:

- This number is related to the orbital size and the energy of an electron in the orbital.
- The orbitals are numbered from lowest energy (smallest size) to higher energy (larger size).

These numbers are referred to as "energy level," or "quantum number," or "quantum level," or "shell."

- We will use the term " \qquad " or " \qquad
\qquad " and abbreviate it by using "__. .$"$
In the lowest energy state of a hydrogen atom (the ground state), the electron occupies the $\mathbf{n}=1$ quantum level.

The $\mathbf{n}=\mathbf{1}$ quantum level has \qquad orbital.

- It is called an \qquad orbital.
- " \mathbf{s} " represents the shape of the orbital, we use $\mathbf{1 s}$ because $\mathbf{n}=\mathbf{1}$).
- \mathbf{s} orbitals are \qquad in shape.

An Illustration of a 1s Orbital

- The \qquad is in the center of the orbital.

The $\mathbf{n}=\mathbf{2}$ quantum level has \qquad orbitals.

- There is one 2s orbital
- All s orbitals are spherically shaped.
- We use $\mathbf{2 s}$ because $\mathbf{n}=\mathbf{2}$.
- The major difference between the 2 s orbital and the 1 s orbital is that the 2 s orbital is larger.
- There are three $\mathbf{2 p}$ orbitals.
- \mathbf{p} represents the shape; we use $\mathbf{2 p}$ because $\mathbf{n = 2}$.
- The \mathbf{p} orbitals all have the same shape and only differ in how they are \qquad around the nucleus.

The $\mathbf{n}=\mathbf{3}$ quantum level has \qquad orbitals.

- There is one 3s orbital, three 3p orbitals, and five 3d orbitals.
- The shapes of the $\mathbf{3 s}$ and $\mathbf{3 p}$ orbitals are similar to those of the $2 \mathbf{s}$ and $\mathbf{2 p}$ orbitals, respectively, but they are larger.
- The five 3d orbital are illustrated below:

As is the case for all orbitals, the \mathbf{d} orbitals are centered on the nucleus.

Image Source: Wikimedia Commons, CK-12 Foundation, CC-BY-SA, http://creativecommons.org/licenses/by-sa/3.0/legalcode

The $\mathbf{n}=\mathbf{4}$ quantum level has \qquad orbitals.

- There is one 4 s orbital, three $\mathbf{4 p}$ orbitals, five $4 d$ orbitals, and seven $4 f$ orbitals.
- The \mathbf{f} orbitals have shapes that are even more complicated then the \mathbf{d} orbitals.
- The shapes of the $\mathbf{4 s}, \mathbf{4} \mathbf{p}$, and $\mathbf{4 d}$ orbitals are similar to those of the $\mathbf{3 s}, \mathbf{3 p}$, and $\mathbf{3 d}$ orbitals, respectively, but they are larger.

The $\mathbf{n}=\mathbf{5}$ level has twenty-five orbitals.
This just keeps going, $\mathbf{n}=\mathbf{6}, \mathbf{7}, \mathbf{8}$, etc.
Although quantum levels with $\mathbf{n}>\mathbf{4}$ contain orbitals other than $\mathbf{s}, \mathbf{p}, \mathbf{d}$, and \mathbf{f}, these other orbitals are never occupied by electrons of any element in its ground state.

- The only time an electron can occupy any of those orbitals will be if the atom absorbs energy.

Energy Level Diagram for Hydrogen

We can organize the various atomic orbitals according to their energy in an illustration called an energy level diagram. The energy level diagram for the first five quantum levels $(\mathbf{n}=1-5)$ of a hydrogen atom is shown below.

In an energy level diagram, we draw a short horizontal line that is labeled for each \qquad .

The orbitals are arranged, from bottom to top, in order of increasing \qquad .

An electron is depicted as an
\qquad above the line
that represents the orbital occupied by it.

Let's compare the energy level diagram to a skyscraper, we will call this our skyscraper model.

Skyscraper photo source: Wikimedia Commons, Author: Avala, CC-BY-SA, http://creativecommons.org/licenses/by-sa/3.0/legalcode
The different \qquad of the skyscraper represent the quantum levels (\mathbf{n}).

- The first floor is the lowest energy floor so it would correlate with $\mathbf{n}=1$, the ground state.
\qquad on a particular floor are analogous to the various orbitals in a particular quantum level.

Model of a Hydrogen Atom

Atomic Model for Multi-Electron Atoms

Energy Level Diagram for Multi-Electron Atoms

We live in a universe where matter tends to exist in the lowest possible energy state.
An informal way to state this is:
Nature wants everything to be at the \qquad possible energy.

Electrons are arranged (configured) into the orbitals of multi-electron atoms in the way that results in the lowest possible energy.
Nature does this by obeying the following principles:

1) The Aufbau Principle
"Aufbau" (German) means build-up or construct.
The aufbau principle states that an electron occupies the lowest energy orbital that can receive it.
2) The Pauli Exclusion Principle

An orbital can hold a maximum of \qquad electrons.
Electrons have a quantum mechanical property called spin.
We call the spin states "up" or "down."

- When two electrons occupy the same orbital, one electron has spin "up" the other has spin "down."

This is all that you need to know about spin to understand all of the concepts covered in this textbook. You may find it interesting that spin is responsible for magnetic properties of matter. In fact, spin is the reason that electrons behave as tiny magnets!

Example:

Energy Level Diagram for a Helium Atom

Model of a Helium Atom

3) Hund's Rules

When electrons are configured into orbitals that all have the same energy, a single electron is placed into each of the equal-energy orbitals before a second electron is added to an occupied orbital.
When electrons are configured into a set of orbitals that all have the same energy, the spins of the first electrons to be placed into each orbital are all in the same state (for example all "up").

Example: Energy Level
Diagram for a Carbon Atom

Understanding Check:

Energy Level Diagram for a Neon (Ne) Atom

Drawing of a Carbon-12 Atom

Understanding Check:

Energy Level Diagram for an Iodine (I) Atom

Valence Electrons

Valence electrons are the electrons held in the \qquad shell (largest " n ").
Language Reminder: "shell" = "quantum level" = "energy level"

- Valence electrons are furthest away from the \qquad .
- It is important to know how many valence electrons are in an atom because:
- These are the electrons that are involved in \qquad
\qquad to other elements to form \qquad .
- These are the electrons that elements lose to become \qquad .

Example: How many valence electrons do carbon (C) atoms have?

Understanding Check: How many valence electrons do oxygen (O) atoms have?

Short-Cut for Determining the Number of Valence Electrons

Elements are arranged in the periodic table according to the number of valence electrons.

For \mathbf{s} - and p-block elements, all elements in the same periodic \qquad (group) have the same number of valence electrons as all others in that column.
The group numbers for the columns represent the number of valence electrons contained in those atoms.

(Inner) Transition Metals

(Inner) Transition Metals														
Lanthanides	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Actinides	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Different elements with the same number of valence electrons are said to be
\qquad .

Example of isoelectric elements: oxygen and sulfur

Isoelectric atoms often behave in similar ways. For example, oxygen atoms often chemically "bond" to two hydrogen atoms to form water $\left(\mathrm{H}_{2} \mathrm{O}\right)$; sulfur atoms, also often "bond" with two hydrogen atoms to form hydrogen sulfide $\left(\mathrm{H}_{2} \mathrm{~S}\right)$.

Understanding Check: Use the periodic table to determine the number of valence electrons in each of these types of atoms:
a. hydrogen (H)
b. nitrogen (N)
c. bromine (Br)
d. krypton (Kr)

Electron Dot Structures

Electron dot structures show the number of valence electrons that an atom carries.

- In these structures, valence electrons are represented by \qquad drawn next to an element's symbol.

Noble Gases and the Octet Rule

The group VIII elements ($\mathrm{He}, \mathrm{Ne}, \mathrm{Ar}, \mathrm{Kr}, \mathrm{Xe}$, and Rn) are called \qquad gases.
$\mathrm{He}, \mathrm{Ne}, \mathrm{Ar}, \mathrm{Kr}, \mathrm{Xe}$, and Rn belong to the noble gas family, which gets it's name from the fact that these elements are resistant to change and, with few exceptions, do not lose or gain electrons.

The resistance to change (stability) of the noble gases is related to having their outermost quantum level (shell) completely \qquad with electrons

Helium 's outermost shell (the $\mathrm{n}=1$ quantum level) is completely filled with its two electrons. All of the other noble gas elements have completely filled outermost shells with \qquad electrons.

This stability of the noble gas elements that have eight electrons in their outermost shell led to what chemists call the \qquad .

Most substances around us do not exist as individual atoms. Atoms will "bond" with other atoms to form compounds such as water $\left(\mathrm{H}_{2} \mathrm{O}\right)$, carbon dioxide $\left(\mathrm{CO}_{2}\right)$, and table salt (sodium chloride). In the remainder of chapter 3, we will discuss the nature of this "bonding" of atoms to other atoms.

The Octet Rule is quite useful in predicting and understanding bonding patterns in chemical compounds.

The Octet Rule

Chemical compounds tend to form so that each atom, by gaining, losing, or sharing electrons, has an octet (eight) of electrons in its outermost shell.

There are exceptions to the octet rule. An important exception that we will always use is for hydrogen and helium.

- Hydrogen and helium have filled outer shells (are stable) with just two electrons because their outermost level $(\mathbf{n}=1)$ has only one orbital.

Ions

Atoms have the same number of electrons as protons and are therefore electrically neutral.
An \qquad is a small particle that has an electrical charge.

Atoms can gain or lose \qquad to become ions.

Metal atoms can \qquad electrons to form positive ions.

If an atom loses one or more electrons, it will then have more protons than electrons and have an overall positive charge.

- Positive ions are called \qquad .

Nonmetal atoms can \qquad electrons to form negative ions.

If an atom gains one or more electrons, it will then have more electrons than protons and have an overall negative charge.

- Negative ions are called \qquad .

The Octet Rule in the Formation of Ions

The Octet Rule can be used to predict the formation of ions.
Very often, ions are formed such that the ion has an \qquad in its outermost shell.

This tendency will allow us to predict the \qquad of the ion that is formed for particular elements.

Example: Let's do a Cation - Sodium (Na)

- A sodium atom has \qquad protons and \qquad electrons.
- How many valence electrons does the sodium atom have? \qquad
- How many valence electrons does sodium want? \qquad

When sodium loses an electron, it has an octet of electrons in its outer shell.

Sodium will lose \qquad electron to become a sodium ion $\left(\mathrm{Na}^{+}\right)$.

- Sodium has one valence electron
- There are two ways to have a filled octet:
- 1) Add 7 electrons
- 2) Remove one electron
- It is easier to remove one electron! for a Sodium Atom

electron dot structure for a Sodium Ion

Example: Let's do Another Cation - Magnesium (Mg)

- A magnesium atom has \qquad protons and \qquad electrons.
- How many valence electrons does the magnesium atom have?
- How many valence electrons does magnesium "want?" \qquad
Fill the energy level diagrams with electrons:

When magnesium loses two electrons, it has an octet of electrons in its outer shell.

Magnesium will lose \qquad electrons to become a magnesium ion $\left(\mathrm{Mg}^{2+}\right)$.

Understanding Check: Based on the octet rule, what would be the charge of an aluminum ion?
HINT: Begin with the energy level diagram (or the number of valence electrons) for an aluminum atom.

Example: Let's do an Anion - Oxygen (O)

- An oxygen atom has \qquad protons and \qquad electrons.
- How many valence electrons does the oxygen atom have? \qquad
- How many valence electrons does oxygen want? \qquad
Fill the energy level diagrams with electrons:

When oxygen gains two electrons, it has an octet of electrons in its outer shell.

Oxygen will gain \qquad electrons to become an oxide ion $\left(0^{2-}\right)$.

The electron dot structure can give us the same conclusion!

Draw an electron dot structure
for an Oxygen Atom:

gain two electrons

Oxygen has 6 valence electrons, if we add two electrons; its outer shell will have an octet.

Understanding Check: What would be the charge of an ion formed from a chlorine atom?
HINT: Begin with the electron dot structure for a chlorine atom.

We can determine the charge of an ion formed from s-block elements and p-block nonmetals from the number of valence electrons in those elements, and therefore by their location on the periodic table.

Periodic Group	Number of Valence Electrons of the Element	Number of Electrons Gained or Lost in lon Formation	Charge of lon Formed	
s-Block Elements				
Group I	1	Lose 1 electron	$1+$	
Group II	2	Lose 2 electrons	$2+$	
Group III	p-Block Nonmetal Elements			
Group IV	4	Do not form ions, high energy to gain or lose 4 electrons!		
Group V	5	Gain 3 electrons	$3-$	
Group VI	6	Gain 2 electrons	$2-$	
Group VII	7	Gain 1 electron	$1-$	
Group VIII	8	Do not form ions, noble gas atoms have filled outer shells.		

The charge of the ions formed from the transition metals and p-block metals cannot always be predicted by their position in the periodic table.

Many of these elements can form more than one type (charge) of ion.

Example: Iron (Fe):

Iron (Fe) ions can come as Fe^{2+} or Fe^{3+}

Example: Copper (Cu):

Copper (Cu) ions can come as Cu^{1+} or Cu^{2+}
To differentiate the various charge states of ions when reading or writing their names, we use \qquad numerals corresponding to the charge after the element
 name.

- When saying the ion's name, one would say "copper one" for Cu^{1+} and "copper two" for Cu^{2+}.

We only use the Roman numeral for ions that can exist in more than one charge state.

Some of the transition metals and p-block metals only exist in one charge state.

- For example, cadmium ions only exist as $\mathbf{C d}^{2+}$.

Roman numerals are not used when the metal cations have just one charge state.

Since the charges of many of the transition metal and p-block metal ions cannot be easily predicted from their positions on the periodic table, and many can have more than one charge, we must refer to tabulated list for the charges.

The table below lists the charges for some transition metals and p-block ions. You do not need to memorize the metal names and charges in this table; I will give you this table for with your exams.

Charges for Some Transition Metal and p-Block Metal Ions

Ions that occur with only one charge			
Name	Charge	Name	Charge
aluminum ion	Al^{3+}	cadmium ion	Cd^{2+}
silver ion			
Ag^{+}	zinc ion	Zn^{2+}	
Ions that occur with multiple charges			
Name	Charge	Name	Charge
copper(I) ion	Cu^{+}	tin(II) ion	Sn^{2+}
copper(II) ion	Cu^{2+}	tin(IV) ion	Sn^{4+}
iron(II) ion	Fe^{2+}	lead(II) ion	Pb^{2+}
iron(III) ion	Fe^{3+}	lead(IV) ion	Pb^{4+}
cobalt(II) ion	Co^{2+}	mercury(I) ion	Hg^{+}
cobalt(III) ion	Co^{3+}	mercury(II) ion	Hg^{2+}

This table does not contain data for the all ions formed by all of the transition and p-block metal cations, however it includes the ions that you will need in order to solve and understand any of the examples and problems in this course.

Naming Monatomic Ions

A monatomic ion is an ion that is made when a \qquad atom gains or loses electron(s).

Naming Monatomic Cations

Cations use the name of the element, followed by the word "ion."

- Examples:
$\mathbf{N a}^{+}$is referred to as a sodium ion.
$\mathbf{M g}{ }^{\mathbf{2 +}}$ is referred to as a magnesium ion.
For monatomic cations that can occur with multiple charges, indicate the charge using Roman numerals after the element's name.
- Examples:
Fe^{2+} is referred to as an iron(II) ion
Fe^{3+} is referred to as an iron(III) ion

Naming Monatomic Anions

Anions are named by changing the suffix (ending) of the name to "- \qquad ."

- Examples:

\mathbf{F}^{-}is referred to as a fluoride ion.
\mathbf{O}^{2-} is referred to as an oxide ion.

Polyatomic Ions

Several atoms often "stick" (bond) together to form a small particle.
If the resulting particle has the same number of protons as electrons, then it will be electrically neutral, and we call the particle a \qquad .

If, on the other hand, there is an excess of protons or an excess of electrons in the particle, then it will have an overall electrical charge, and we call the particle a \qquad ion.

Example of a Polyatomic Ion: Nitrate Ion

The table below lists the names and charges for some polyatomic ions. You do not need to memorize this table; I will give you this table for with your exams.

Some Polyatomic Ion Names and Charges

POLYATOMIC CATIONS	
$\mathrm{H}_{3} \mathrm{O}^{+}$hydronium ion	$\mathrm{NH}_{4}{ }^{+}$ammonium ion
POLYATOMIC ANIONS	
OH^{-}hydroxide ion	$\mathrm{HSO}_{4}{ }^{-}$hydrogen sulfate (or bisulfate) ion
$\mathrm{CO}_{3}{ }^{2-}$ carbonate ion	$\mathrm{PO}_{4}{ }^{3-}$ phosphate ion
$\mathrm{HCO}_{3}{ }^{\text {- bicarbonate (also called hydrogen carbonate) ion }}$	$\mathrm{HPO}_{4}{ }^{2-}$ hydrogen phosphate ion
$\mathrm{NO}_{2}{ }^{-}$nitrite ion	$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$dihydrogen phosphate ion
$\mathrm{NO}_{3}{ }^{-}$nitrate ion	$\mathrm{CrO}_{4}{ }^{2-}$ chromate ion
$\mathrm{SO}_{3}{ }^{2-}$ sulfite ion	$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ dichromate ion
$\mathrm{SO}_{4}{ }^{2-}$ sulfate ion	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$acetate ion (sometimes written as $\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}$)
	CN - cyanide ion

Chemical Compounds

Compounds: \qquad

Each compound has the same \qquad of the same elements.

- Example: Water $=2$ hydrogen atoms and 1 oxygen atom (Ratio $\mathrm{H}: \mathrm{O}=2: 1$)

Chemical bonds

Atoms can bond with other atoms, and ions can bond with other ions to form compounds such as water $\left(\mathrm{H}_{2} \mathrm{O}\right)$, carbon dioxide $\left(\mathrm{CO}_{2}\right)$, and table salt (sodium chloride).

Chemical bonds are the electrical attractive \qquad that hold atoms or ions together in a compound.
There are three types of chemical bonding:

1) Covalent Bonding
2) Ionic Bonding
3) Metallic Bonding

In this chapter, you will learn about the first two types, covalent bonding and ionic bonding.
You will learn about metallic bonding in chapter 5.

Some Terminology

All matter can be classified as either mixtures or pure substances. You will learn about mixtures in chapter 6. Pure substances are described in the chart on the right:

Chemistry is the study of matter and the changes it undergoes.
changes, such as melting or boiling, result in changes in physical properties and do not involve the formation of new pure substances.

- For example, the melting of ice is simply $\mathrm{H}_{2} \mathrm{O}$ being changed from the solid phase to the liquid phase. The chemical bonds
 between oxygen and hydrogen atoms do not change in that process. changes, on the other hand, result in the formation of new pure substances.
- To make a new pure substance, chemical bonds must be \qquad and/or new chemical bonds are \qquad .
- This happens in a process called a chemical reaction, which we will study in chapter 6.

A major principle of chemistry is that the observed (macroscopic) properties of a substance are related to its "microscopic" structure.

- The microscopic structure entails details such as the kind of atoms/ions and the pattern in which they are bonded to each other.

Covalent Chemical Bonding

Covalent bonding is defined as the chemical bonding force that results from the
\qquad between two atoms.

The resulting collection of atoms results in the formation of either \qquad or polyatomic ions. A molecule is an electrically \qquad group of atoms held together by covalent bonds.
Covalent bonding occurs between \qquad atoms.

Covalent bonding occurs because the bound atoms are at a \qquad energy than the unbound atoms.

Why does sharing of electron pairs result in an attractive electrostatic force capable of holding atoms together?

Consider the two hydrogen atoms coming together to form a covalent bond.

In covalent bonding, the atoms \qquad electron pairs.

The shared electron pair spends significantly more \qquad in the area between the positive nuclei of the hydrogen atoms than in other regions.

The electron pair between the nuclei create a positive-negative-positive electrostatic attractive "sandwich" and this \qquad holds the atoms together.

The Octet Rule in the Formation of Molecules

The positive-negative-positive model cannot explain why a covalent bond does not form between two helium atoms.

The octet rule in the formation of molecules is: molecules tend to form such that the atoms are surrounded by an octet (eight) of valence electrons (except for hydrogen and helium that have two electrons).

Example: $\mathbf{H}_{\mathbf{2}}$
(recall that H and He are stable with two valence electrons)

When a covalent bond forms, each hydrogen atom "feels" two electrons in its outermost shell.

shared electrons

The H_{2} covalent bond can also be illustrated with electron dot structures.

The two electrons \qquad the atoms are shared in a covalent bond.
Chemist use a line to represent \qquad electrons in a covalent bond.

$\mathrm{H}-\mathrm{H}$

These drawings are called \qquad -

Let's do another example: Hydrogen Chloride (HCl)

When a covalent bond forms, the hydrogen atom "feels" two electrons in its outermost shell, and the chlorine atom "feels" eight electrons in its outermost shell.

The HCl covalent bond can also be illustrated using electron dot structures.

Let's do another example: $\mathbf{C l}_{\mathbf{2}}$ (chlorine gas).
When a covalent bond forms, each chlorine atom "feels" eight electrons in its outermost shell.

You try it:

Draw the line bond structure for Cl_{2}.

- Start with the electron dot structure for two Cl atoms.

Let's do oxygen gas $\left(\mathbf{O}_{\mathbf{2}}\right)$.

In O_{2}, two pairs of electrons are shared.
When a covalent bond forms, each oxygen atom "feels" eight electrons in its outermost shell.

Let's draw the line bond structure for oxygen gas ($\mathbf{O}_{\mathbf{2}}$).

- Oxygen atoms have 6 valence electrons.
- We will rotate the electrons so they can form bonding pairs.

We use lines to represent electron pairs.
When atoms are bonded with 2 pairs of electrons it is called a \qquad .

Let's draw the line bond structure for nitrogen gas ($\mathbf{N}_{\mathbf{2}}$)

- Nitrogen atoms have 5 valence electrons.
- We will rotate the electrons so they can form bonding pairs.

We use lines to represent electron pairs.
When atoms are bonded with $\mathbf{3}$ pairs of electrons it is called a \qquad .

Naming Covalent Compounds

The covalent bonding that we will see in this course will always involve \qquad elements only.

The nonmetal atoms can share electrons to form molecules (molecular compounds) or polyatomic ions.
A chemical substance whose simplest units are molecules is called a \qquad compound.

When discussing molecules we use a \qquad that shows the types (elements) and numbers of atoms that make up a single molecule.

The number of atoms of each element contained in the molecule is written as a subscript after the element's symbol.

- Examples:

line bond structure
$\mathrm{H}-\mathrm{H}$
$\mathrm{H}-\ddot{\mathrm{O}}-\mathrm{H}$
molecular formula

$\mathrm{H}_{2} \mathrm{O}$

When there is only one atom of a particular element present in a molecule the subscripted " 1 " is omitted for that element.

Some molecules only contain one element, for example $\mathbf{H}_{\mathbf{2}}, \mathbf{C l}_{\mathbf{2}}$, and $\mathbf{O}_{\mathbf{2}}$.

- These molecules often take the name of the elements they contain.
- Examples:

molecular formula	name
H_{2}	hydrogen
O_{2}	oxygen

Naming Binary Covalent (Molecular) Compounds

covalent compounds contain only two \qquad (the "bi-" prefix indicates "two").

- Examples of binary covalent compounds are $\mathbf{H C l}, \mathbf{H}_{2} \mathrm{O}$, and $\mathbf{C O}_{2}$.

Educational Goals:

Given the name of a binary covalent molecule, be able to write the molecular formula.
Given the molecular formula of a binary covalent molecule, be able to write the name of the molecule.

Method for Naming Binary Covalent (Molecular) Compounds

1. List the name of the first element in the formula.
2. List the second element and add the -ide \qquad .
3. Use Greek \qquad to indicate the number of each atom in the formula.

- Exception: If there is just one atom of the \qquad element in the formula, do not use mono- for the first element in the name.
- Example: $\mathrm{CO}_{\mathbf{2}}$ menecarbon dioxide \rightarrow carbon dioxide
- The " $\mathbf{0}$ " or "a" at the end of the Greek prefix is omitted when the element's name begins with a vowel.
- Example: CO
carbon moneoxide \rightarrow carbon monoxide

Greek Prefix	Number
mono	1
di	2
tri	3
tetra	4
penta	5
hexa	6
hepta	7
octa	8
nona	9
deca	10

Example Problem:

Name the following compound: $\mathbf{C C l}_{\mathbf{4}}$
Answer: carbon tetrachloride

Understanding Check
Write the names of the following molecules:
CF_{4} \qquad
$\mathrm{N}_{2} \mathrm{O}$ \qquad
SF_{6} \qquad

Method for Writing the Molecular Formula of a Binary Covalent Compound

1. Write the symbol of the first element in the compound's name, then the symbol of the second element in the compound's name.
2. Indicate how many atoms of each element the molecule contains using subscripts after the atomic symbol.

- The numbers of atoms are given in the Greek prefixes in the molecule's name.
- NOTE: If there is no Greek prefix in front of the first element in the name, that means the number is $\mathbf{1}$.

Example:
Write the molecular formula for dinitrogen tetrafluoride.
$\mathrm{N}_{2} \mathrm{~F}_{4}$

Understanding Check

Write the molecular formula for the covalent compounds:

- nitrogen trichloride \qquad
- dinitrogen pentoxide \qquad
- sulfur dioxide \qquad

For covalent compounds with more than two types of atoms, we use common names or IUPAC system names. You are not responsible for knowing common names. You will learn some IUPAC system names in later chapters.

Examples of common names:

- Glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$
- Acetone $\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right)$

Ionic Compounds

Definition of ionic bonding: Chemical bonding that results from the electrostatic attraction between numbers of cations and anions.

- Compounds composed of ions are called ionic compounds.

Example of an ionic compound: sodium chloride ($\mathbf{N a C l}$)
Many sodium ions combine with many chloride ions in a three-dimensional pattern that minimizes the distance between the oppositely charged cations and anions and maximizes the distance between the likecharged particles.

We call this structure a \qquad or crystal \qquad .

It is this regular, repeating structure on the scale of the individual ions that give crystals the interesting geometrical shapes that we see on the macro-scale when we look at them with our eyes or with a microscope.

Ionic bonding (ionic compounds) results from:

- Combining metal ions with nonmetal ions.
- Combining polyatomic ions with other ions.

The cations and anions will combine in a ratio such that the total of the positive $(+)$ and negative $(-)$ charges equals \qquad !

- Example: Sodium Chloride (NaCl)

Sodium ions have a charge of $1+$
Chloride ions have a charge of 1They combine in a 1-to-1 \qquad in the crystal

For every sodium ion, there is one chloride ion!
The charges \qquad up to ZERO!

Formula Units

The use of molecular formulas would not make sense for ionic compounds; they do not form molecules, instead they form crystals.

We write \qquad (as opposed to molecular formulas) for ionic compounds.

The formula unit looks like the molecular formula used for covalent compounds, however it means something entirely different.

The formula unit uses subscripted numbers after the ion's symbol that indicate the ratio that the cations and anions combine in the ionic crystal.

- As in the case of molecular formula, when a subscript would have a value of " 1 ," the subscript is omitted.
- We write the cation symbol first followed by a numerical subscript (if needed), then we write the anion symbol followed by a numerical subscript (if needed).

Example: For sodium chloride, since sodium ions and chloride ions combine in a one-to-one ratio, we write the formula unit of sodium chloride as:

NaCl

Example: Calcium ions combine with fluoride ions to form an ionic compound.

Calcium ions have a charge of $2+$
Fluoride ions have a charge of 1-
They combine in a \qquad ratio in the crystal

For every calcium ion, there are \qquad fluoride ions.

We write the formula unit for calcium fluoride as:

CaF_{2}

Understanding Check:
Write the formula unit for the compound formed by combining magnesium and chloride ions.

Understanding Check:
Write the formula unit for the compound formed by combining potassium and oxide ions.

Understanding Check:
Write the formula unit for the compound formed by combining magnesium and nitride ions.

Formula Units

Write the formula for the ionic compound formed between each of the following pairs of ions:

$$
\begin{aligned}
& \mathrm{Cu}^{+} \text {and } \mathrm{O}^{2-} \\
& \mathrm{Fe}^{3+} \text { and } \mathrm{S}^{2-} \\
& \mathrm{Cu}^{2+} \text { and } \mathrm{Cl}^{-} \\
& \mathrm{Mg}^{2+} \text { and } \mathrm{O}^{2-} \\
& \mathrm{Sn}^{4+} \text { and } \mathrm{S}^{2-} \\
& \mathrm{V}^{3+} \text { and } \mathrm{Cl}^{-}
\end{aligned}
$$

Formula Unit vs. Molecular Formula

Formula Unit $=$ Lowest RATIO of ions

Example: $\mathbf{N a C l}$
Ratio of Na^{+}to $\mathrm{Cl}^{-}=1$ to 1
sodium $\left(\mathrm{Na}^{+}\right)$ion
chloride $\left(\mathrm{Cl}^{-}\right)$ion

Molecular Formula = Actual number of atoms

Example: $\mathbf{H}_{\mathbf{2}} \mathbf{O}$
two hydrogen atoms and one oxygen atom

Educational Goals:

Given the name of an ionic compound, be able to write the formula unit. Given the formula unit of an ionic compound, be able to write the name.

Method for Writing Formula Units for Ionic Compounds

1) Write the symbol of the first ion (the cation) in the compound's name, then the symbol of the second ion (the anion) in the compound's name.
2) Indicate the ratio of the ions in the compound using subscripts after each ion.

The ratio of the ions is deduced by balancing the charges of the ions so that the total charge in the crystal is equal to zero.

- We find the ion's charge from its position on the periodic table or, for polyatomic ions, we look it up in a table.
- You will know the charge for the metals that occur with various charges because the charge will be written in the compound's name in Roman numerals.
For \qquad ions:
When the subscript for a polyatomic ion is greater than 1, the polyatomic ion formula is written in parenthesis and the subscript is written after/outside of the parenthesis.

Example: Write the formula unit for iron(III) bromide.

- You will know the charge for the metals that occur with various charges because the charge will be written in the compound's name in Roman numerals.

iron(III) bromide

Example: Write the formula unit for magnesium nitrate.

- For polyatomic ions:

When the subscript for a polyatomic ion is greater than 1, the polyatomic ion formula is written in parenthesis and the subscript is written after/outside of the parenthesis.

Understanding Check: Write the formula unit for each of the following compounds:
a. sodium bicarbonate
b. sodium fluoride
c. iron(III) chloride
d. sodium carbonate
e. copper(II) sulfate
f. magnesium hydroxide

Method for Writing the Names of Ionic Compounds

1. Write the \qquad name first, then the \qquad name.

- Monoatomic anions (anions composed of one element) use the "ide" suffix.
- We get the names of polyatomic ions from the polyatomic ion table.

2. If the cation is one of the metals with various charges, write the charge using parenthesis and Roman numerals after the metal's name.

Example: Name the following compound: $\mathbf{M g C l}_{\mathbf{2}}$

Name: magnesium chloride

Example: Name the following compound: $\mathbf{C u B r}_{2}$

- What must the charge of the copper ion be? 2+

Name: copper(II) bromide

Complete the names of the following ionic compounds with variable charge metal ions:

FeBr_{2}	$\operatorname{iron}(\ldots)$ bromide
CuCl	$\operatorname{copper}(\ldots)$ chloride
SnO_{2}	$\quad(\ldots)$

$\mathrm{Fe}_{2} \mathrm{O}_{3}$

Name the following ionic compounds:
NaCl \qquad
ZnI_{2} \qquad
$\mathrm{Al}_{2} \mathrm{O}_{3}$ \qquad

Naming Compound Summary

Given the Molecular Formula, Write the Name

Determine if the Compound is Binary Covalent (Molecular) or Ionic:
Does the compound contain only two types of nonmetal elements?

Binary Covalent (Molecular) Compound:

1) List the name of the first element in the formula.
2) List the second element and add the "ide" suffix.
3) Use Greek prefixes to indicate the number of each atom in the formula.

- Exception: Do not use mono- for the first element in the name.
- The \boldsymbol{o} or \boldsymbol{a} at the end of the Greek prefix is dropped when the element name begins with a vowel.

Ionic Compound:

1) Write the cation name first, then name the anion.

- Monoatomic anions use the "ide" suffix

2) If the cation is one of the metals with various charges, write the charge using parenthesis and Roman numerals after the metal name.

Molar Mass of Compounds

In this video, you will learn how to calculate the molar mass of a compound and how to use the molar mass of a compound to do mole-mass conversions.

1) Molar Mass of Covalent Compounds (Molecules)
2) Molar Mass of Ionic Compounds

Molar Mass of Covalent Compounds (Molecules)

The molar mass of a \qquad tells us the mass (grams) of $\mathbf{1}$ mole of the molecules.

- The molar mass of a molecule is also called the molecular mass.

To calculate the molar mass of a molecule we add up the atomic molar masses of all \qquad in the molecule.

Example: Let's calculate the molar mass of $\mathrm{H}_{2} \mathrm{O}$.

Atom	\# of Atoms	Atomic Molar Mass	Total	
oxygen	1	$\times 16.00 \mathrm{~g} / \mathrm{mole}$	$16.00 \mathrm{~g} / \mathrm{mole}$	
hydrogen	2	$\mathrm{X} \quad 1.01 \mathrm{~g} / \mathrm{mole}$	$2.02 \mathrm{~g} / \mathrm{mole}$	
Molar Mass of $\mathrm{H}_{\mathbf{2}} \mathbf{O}=$				
$\mathbf{1 8 . 0 2} \mathbf{~ g} / \mathrm{mole}$				

One mole of $\mathrm{H}_{2} \mathrm{O}$
$\left(6.022 \times 10^{23}\right.$ molecules $)$ has a mass of 18.02 grams

Understanding Check: Calculate the molar mass of CH_{4} (methane).

Mass-Mole-Molecules Conversions

Note that, as in the case of atoms, the molar mass of a compound is the relationship between moles and mass (grams), therefore we can convert between moles and grams of compounds.

Example: How many grams of CH_{4} is contained in 3.65 moles?
Use the molar mass to write an equivalence statement:

$$
\text { - } 1 \mathrm{~mole}^{\mathrm{CH}_{4}}=16.05 \text { grams }
$$

The equivalence statements can be written as conversion factors:

$$
\left(\frac{1 \mathrm{~mole} \mathrm{CH}_{4}}{16.05 \text { grams }}\right) \underset{\substack{\text { Conversion } \\ \text { Factors }}}{\substack{\text { gole } \mathrm{CH}_{4}}}
$$

3.65 moles CH_{4}	$\mathbf{1 6 . 0 5}$ grams CH_{4}
	1 mole CH_{4}

You have just learned how to convert between moles and mass of a compound and vice versa.

We do a two-step calculation to convert between mass and number of molecules.
We can convert between molecules and moles since Avogadro's Number applies to molecules; one mole of a molecular compound contains 6.022×10^{23} molecules.

You try one: How many $\mathrm{H}_{2} \mathrm{O}$ molecules are contained in 237 grams?

Molar Mass of Ionic Compounds

When using the molar mass of ionic compounds, we calculate the mass of a compound based on the number of each ion as it appears in the formula unit.

- For this reason, the molar mass of an ionic compound is also called \qquad mass.

Example: The molar mass of sodium chloride (NaCl)
The formula unit for sodium chloride is $\mathbf{N a C l}$ because there is a 1:1 ratio of sodium ions to chloride ions in the crystal.
One mole of sodium chloride contains one mole of sodium ions and one mole of chloride ions.
Although ions have extra or missing elections, their molar masses are calculated by adding the atomic molar masses of the elements they contain.

- The reason we can do this is because the mass of electrons is negligible compared to the mass of protons and neutrons.

Ion	\# of ions in the Formula Unit	Molar Mass of ion	Total
Sodium	1	$\mathrm{x} \quad 22.99 \mathrm{~g} / \mathrm{mole}$	$=22.99 \mathrm{~g} / \mathrm{mole}$
Chloride	1	$\mathrm{x} \quad 35.45 \mathrm{~g} / \mathrm{mole}$	$=35.45 \mathrm{~g} / \mathrm{mole}$
Molar Mass (Formula Mass) of $\mathbf{N a C l}$			
$=58.44 \mathbf{g} / \mathrm{mole}$			

Example: What is the molar mass of iron(II) phosphate, $\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}$?
One mole of iron(II) phosphate contains three moles of iron(II) ions and two moles of phosphate ions. three moles of iron(II) ions two moles of phosphate ions
Fe_{3}
The molar mass of each iron(II) ion is: $55.85 \mathrm{~g} / \mathrm{mole}$.

$$
\left(\mathrm{PO}_{4}\right)_{2}
$$

each phosphate ion contains:

- one mole of phosphorus
- four moles of oxygen

The molar mass of each phosphate ion is: $\mathbf{9 4 . 9 7} \mathrm{g} / \mathrm{mole}$.

The molar mass (or formula mass) is calculated by adding the molar masses of the ions:

Ion	\# of lons in the Formula Unit	Molar Mass of ion	Total	
Iron(II)	3	x	$55.85 \mathrm{~g} / \mathrm{mole}$	$=167.55 \mathrm{~g} / \mathrm{mole}$
Phosphate	2	$\mathrm{x} \quad$$94.97 \mathrm{~g} / \mathrm{mole}$ based on: one phosphorus and four oxygens per ion	$=189.94 \mathrm{~g} / \mathrm{mole}$	
Molar Mass (Formula Mass) of $\mathrm{Fe}_{\mathbf{3}}\left(\mathrm{PO}_{4}\right)_{\mathbf{2}}$				$=357.49 \mathrm{~g} / \mathrm{mole}$

An Alternative Method:

$$
\begin{array}{cc}
\mathrm{Fe}_{3} & \left(\mathrm{PO}_{4}\right)_{2} \\
\text { three moles of iron(II) ions } & \text { two moles of phosphate ions } \\
\text { contain: } \\
& \text { • two moles of phosphorous } \\
& \text { elght }(2 \times 4) \text { moles of oxygen }
\end{array}
$$

Three moles of Fe: $\mathbf{3 \times 5 5 . 8 5 \mathrm { g } / \mathrm { mole } = 1 6 7 . 5 5 \mathrm { g } / \mathrm { mole } , ~}$
Two moles of P: $2 \times 30.97 \mathrm{~g} / \mathrm{mole}=\mathbf{0 6 1 . 9 4} \mathrm{g} / \mathrm{mole}$
Eight moles of O: $8 \times 16.00 \mathrm{~g} / \mathrm{mole}=$
The molar mass of $\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ is $\quad 357.49 \mathrm{~g} / \mathrm{mole}$

Understanding Check: What is the molar mass of magnesium nitrate, $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$?

Mole-Mass Conversions for Ionic Compounds

Mole-Mass conversions for ionic compounds are done exactly as we did for covalent compounds; use the molar mass as a conversion factor.

You Try One: What is the mass (grams) of 4.95 moles of $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$?

Naming Compounds Tutorial and Worksheet

Since we use different methods in naming binary covalent (molecular) compounds and ionic compounds, the first step in naming or writing the formula of a compound is to determine which of the $\mathbf{2}$ compound classes it belongs. This can be done as follows:

Determine if the Compound is Binary Covalent (Molecular) or Ionic:

 Does the compound contain only two types of nonmetal elements?

Binary covalent compounds will contain only two types of non-metal elements. There may be more than one of each element. For example CO_{2} contains just two types of elements, carbon and oxygen. We will discuss naming covalent compounds that contain more than two types of elements, like glucose $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, in later chapters.

Once it is determined that the compound is ionic or covalent, the student can be asked to do either of the following:

1) Given the name of the compound, write the formula.

Or

2) Given the formula of the compound, write the name.

In this tutorial we will review the process for achieving these 2 objectives and practice with some worksheet problems. First, we will review and practice how to write formulas for compounds when given the compound's name. Second, we will review and practice how to write the name of a compound when given the compound's formula.

Given the Name of the Compound, Writing Formulas for Compounds

Determine if the Compound is Binary Covalent (Molecular) or Ionic:

Does the compound contain only two types of nonmetal elements?

Binary Covalent (Molecular) Compound:

1) Write the symbol of the first element in the compound's name, then the symbol of the second element in the compound's name.
2) Indicate how many atoms of each element the molecule contains using subscripts after the atomic symbol.

- The numbers of atoms are given in the molecule's name in Greek prefixes
- NOTE: If there is no Greek prefix in front of the first element in the name that implies the number is 1.

Ionic Compound:

1) Write the symbol/formula of the first ion in the compound's name, then the symbol/formula of the second ion in the compound's name.
2) Indicate the ratio of the ions in the compound using subscripts after each ion.

- The ratio of the ions is deduced by balancing the charges of the ions.
- IMPORTANT: When there is more than one of a polyatomic ion in the formula unit we use parenthesis. Example $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$

Writing the Formulas of Ionic Compounds

Example: Write the formula for calcium bromide.

1) Write the symbol/formula of the first ion in the compound's name, then the symbol/formula of the second ion in the compound's name.

Ca Br

2) Indicate the ratio of the ions in the compound using subscripts after each ion.

- This step involves filling in the subscripts boxes as we did in the lecture:

$\mathrm{Ca}_{\square} \mathrm{Br}_{\square}$

- The ratio of the ions is deduced by balancing the charges of the ions.
- This is done so that the total charge in the crystal, when large numbers of cations and anions combine, is equal to zero.
- We find the ion's charge from its position on the periodic table or we look it up in a table in the case of polyatomic ions.
- Transition metal with varying charges will be written in the compound name in Roman numerals.
- First, temporarily write the charge of each ion above the ion's symbol.

2+ 1-

- Next, place numbers in the subscripts such that the total charge of the compound is zero. Note that in this example, we need two bromide ions, each has a charge of (1-) to cancel the ($2+$) charge of the calcium ion:
- $2(-1)+(+2)=0$ zero total charge.

$$
{ }^{2+}{ }^{\mathrm{Ca}_{1}} \mathrm{Br}_{2}=\mathrm{CaBr}_{2}
$$

- We saw a shortcut way to do this called the Criss-Cross Method (see your chapter 3 notes)

$$
{ }^{2+} \mathrm{Ca}_{1}^{2+} \mathrm{Br}_{2}^{1-}=\mathrm{CaBr}_{2}
$$

- Note, we do not leave the charges written above the symbols in the completed formula.

IMPORTANT: When there is more than one of a polyatomic ion in the formula, we use parenthesis.

- Not applicable in this example since there are no polyatomic ions in calcium bromide.

Examples: Writing the Formulas of Ionic Compounds

Write the formula for magnesium nitrate.

1) Write the symbol/formula of the first ion in the compound's name, then the symbol/formula of the second ion in the compound's name.

- When you see a polyatomic ion (nitrate), look up the formula and charge in the table of polyatomic ions.

Mg NO

2) Indicate the ratio of the ions in the compound using subscripts after each ion.
a. This step involves filling in the subscripts boxes as we did in the lecture:

$\mathrm{Mg}_{\square} \mathrm{NO}_{\square}$

- The ratio of the ions is deduced by balancing the charges of the ions.
- This is done so that the total charge in the crystal, when large numbers of cations and anions combine, is equal to zero.
- We find the ion's charge from its position on the periodic table or we look it up in a table in the case of polyatomic ions.
- Transition metal with varying charges will be written in the compound name in Roman numerals.
- First, temporarily write the charge of each ion above the ion's symbol.
2+ 1-
$\mathrm{Mg}_{\square} \mathrm{NO}_{\square}$
- Next, place numbers in the subscripts such that the total charge of the compound is zero. Note that in this example, we need two nitrate ions, each has a charge of (1-) to cancel the ($2+$) charge of the magnesium ion:
- $2(-1)+(+2)=0$ zero total charge.

$$
\begin{gathered}
\stackrel{2+}{\mathrm{Mg}_{1}} \mathrm{NO}_{3}
\end{gathered}
$$

- We saw a shortcut way to do this called the Criss-Cross Method (see your chapter 3 notes)

IMPORTANT: When there is more than one of a polyatomic ion in the formula unit we use parenthesis. There are $\mathbf{2}$ ions of nitrate in magnesium nitrate

$$
\mathrm{Mg}_{1} \mathrm{NO}_{3}=\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}
$$

In compound where there is just one formula unit of a polyatomic ion, no parenthesis are needed. An example of this is sodium nitrate: $\mathrm{NaNO}_{\mathbf{3}}$

Examples: Writing the Formulas of Ionic Compounds

Write the formula for iron(II) phosphate.

1) Write the symbol/formula of the first ion in the compound's name, then the symbol/formula of the second ion in the compound's name.

- When you see a polyatomic ion (phosphate in this case), look up the formula and charge in the table of polyatomic ions.
$\mathrm{Fe} \mathrm{PO}_{4}$

2) Indicate the ratio of the ions in the compound using subscripts after each ion.
b. This step involves filling in the subscripts boxes as we did in the lecture:
$\mathrm{Fe} \mathrm{PO}_{4}$
c. The ratio of the ions is deduced by balancing the charges of the ions.

- This is done so that the total charge in the crystal, when large numbers of cations and anions combine, is equal to zero.
- We find the ion's charge from its position on the periodic table or we look it up in a table in the case of polyatomic ions.
- Transition metal with varying charges will be written in the compound name in Roman numerals.
- In this example, now we know the charge on the Fe ion is $\mathbf{2 +}$
d. First, temporarily write the charge of each ion above the ion's symbol.

2+ 3-
Fe PO_{4}
e. Next, place numbers in the subscripts such that the total charge of the compound is zero. Note that in this example, we need two phosphate ions, each has a charge of (3-) and three Fe^{2+} ions to balance the charge:

- $2(-3)+3(+2)=0$ zero total charge.

$$
\begin{aligned}
& 2+\quad 3- \\
& \mathrm{Fe}_{3} \mathrm{PO}_{4}{ }_{2}^{2-}
\end{aligned}
$$

- We saw a shortcut way to do this called the Criss-Cross Method (see your chapter 3 notes)

IMPORTANT: When there is more than one of a polyatomic ion in the formula unit we use parenthesis. There are $\mathbf{2}$ ions of phosphate in iron(II)phosphate.

$$
\mathrm{Fe}_{3} \mathrm{PO}_{4}^{ \pm}=\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}
$$

Examples: Writing the Formulas of Ionic Compounds

Write the formula for barium sulfide.

1) Write the symbol/formula of the first ion in the compound's name, then the symbol/formula of the second ion in the compound's name.

Ba S

2) Indicate the ratio of the ions in the compound using subscripts after each ion.

- This step involves filling in the subscripts boxes as we did in the lecture:

$\mathrm{Ba} \square^{\mathrm{S}} \square$

- The ratio of the ions is deduced by balancing the charges of the ions.
- This is done so that the total charge in the crystal, when large numbers of cations and anions combine, is equal to zero.
- We find the ion's charge from its position on the periodic table or we look it up in a table in the case of polyatomic ions.
- Transition metal with varying charges will be written in the compound name in Roman numerals.
- First, temporarily write the charge of each ion above the ion's symbol.

2+ 2-
$\mathrm{Ba}_{\square} \mathrm{S}_{\square}$

- Next, place numbers in the subscripts such that the total charge of the compound is zero. Note that in this example, we need one sulfide ion, with a charge of (2-) to cancel the $(2+)$ charge of the barium ion:
- $(-2)+(+2)=0 \quad$ zero total charge.

$$
{ }^{2+} \mathrm{Ba}_{1} \mathrm{~S}_{1}^{2-}=\mathrm{BaS}
$$

- We saw a shortcut way to do this called the Criss-Cross Method (see your chapter 3 notes)

- Note, the subscripts in ionic compound represent the ratio in which large numbers of anions and cations combine to form the ionic compounds. Since we want the lowest ratio: we use 1:1, since 2:2 $=1: 1$

Write the formula for the following ionic compounds: (see next page for key)

sodium bicarbonate \qquad
sodium fluoride \qquad
iron (III) chloride \qquad
sodium carbonate \qquad
copper (II) sulfate \qquad
magnesium hydroxide \qquad
barium nitrate \qquad
lithium sulfate \qquad
magnesium chloride \qquad
silver nitrate \qquad
aluminum sulfate \qquad
calcium hydroxide \qquad
calcium sulfate \qquad
mercury (II) nitrate \qquad
lead (IV) nitrate \qquad
magnesium iodide \qquad
sodium nitride \qquad

```
sodium bicarbonate NaHCO3
sodium fluoride NaF
iron (III) chloride FeCl3
sodium carbonate Na2CO
copper (II) sulfate CuSO
magnesium hydroxide }\textrm{Mg}(\textrm{OH}\mp@subsup{)}{2}{
barium nitrate }\textrm{Ba}(\mp@subsup{\textrm{NO}}{3}{}\mp@subsup{)}{2}{
lithium sulfate Li_ SO
magnesium chloride }\mp@subsup{\textrm{MgCl}}{2}{
silver nitrate }\mp@subsup{\textrm{AgNO}}{3}{
aluminum sulfate }\mp@subsup{\textrm{Al}}{2}{}(\mp@subsup{\textrm{SO}}{4}{}\mp@subsup{)}{3}{
calcium hydroxide Ca(OH)2
calcium sulfate CaSO4
mercury (II) nitrate _ Hg(NO)
lead (IV) nitrate Pb(NO
magnesium iodide Mgl
sodium nitride Na3}
```


Writing the Formulas of Covalent Compounds

1) Write the symbol/formula of the first element in the compound's name, then the symbol/formula of the second element in the compound's name.
2) Indicate how many atoms of each element the molecule contains using subscripts after the atomic symbol.

- The numbers of atoms are given in the molecule's name in Greek prefixes
- NOTE: If there is no Greek prefix in front of the first element in the name, that means the number is 1 .

Example: Write the formula of dinitrogen tetrafluoride.

1) Write the symbol/formula of the first element in the compound's name, then the symbol/formula of the second element in the compound's name.

N F
2) Indicate how many atoms of each element the molecule contains using subscripts after the atomic symbol.

- The numbers of atoms are given in the molecule's name in Greek prefixes.
- dinitrogen tetrafluoride
- see your chapter 3 notes for a list of the Greek prefixes $\mathrm{N}_{2} \mathrm{~F}_{4}$
- NOTE: If there is no Greek prefix in front of the first element in the name, then the number is 1.
- Example carbon tetrachloride $=\mathrm{CCl}_{4}$

Example: Write the formula of carbon disulfide.

1) Write the symbol/formula of the first element in the compound's name, then the symbol/formula of the second element in the compound's name.
C S
2) Indicate how many atoms of each element the molecule contains using subscripts after the atomic symbol.

- The numbers of atoms are given in the molecule's name in Greek prefixes.
- carbon disulfide
- see your chapter 3 notes for a list of the Greek prefixes

$$
\mathrm{C}_{1} \mathrm{~S}_{2}=\mathrm{CS}_{2}
$$

- NOTE: If there is no Greek prefix in front of the first element in the name, then the number is 1.

Write the formulas for the following covalent compounds:

See next page for KEY
a. disulfur tetrafluoride
b. carbon trioxide \qquad
c. nitrogen pentoxide \qquad
d. nitrogen tribromide \qquad
e. dinitrogen heptachloride \qquad
f. carbon tetrachloride \qquad
g. hydrogen monochloride \qquad
h. trihydrogen monophosphide \qquad
i. dihydrogen monoxide \qquad

KEY

a. disulfur tetrafluoride $\mathrm{S}_{2} \mathrm{~F}_{4}$
b. carbon trioxide CO_{3}
c. nitrogen pentoxide NO_{5}
d. nitrogen tribromide NBr_{3}
e. dinitrogen heptachloride $\mathrm{N}_{2} \mathrm{Cl}_{7}$
f. carbon tetrachloride CCl_{4}
g. hydrogen monochloride HCl
h. trihydrogen monophosphide $\mathrm{H}_{3} \mathrm{P}$
i. dihydrogen monoxide $\mathrm{H}_{2} \mathrm{O}$

Given the Formulas for Compounds, Write the Name

Determine if the Compound is Binary Covalent (Molecular) or Ionic:
Does the compound contain only two types of nonmetal elements?

Binary Covalent (Molecular) Compound:

1) List the name of the first element in the formula.
2) List the second element and add the "ide" suffix.
3) Use Greek prefixes to indicate the number of each atom in the formula.

- Exception: Do not use mono- for the first element in the name.
- The \boldsymbol{o} or \boldsymbol{a} at the end of the Greek prefix is dropped when the element name begins with a vowel.

Ionic Compound:

1) Write the cation name first, then name the anion.

- Monoatomic anions use the "ide" suffix

2) If the cation is one of the metals with various charges, write the charge using parenthesis and Roman numerals after the metal name.

Writing the Names of Ionic Compounds

Example: Write the name for CaBr_{2}

1) Write the cation name first, then name the anion.

- monoatomic anions use the "ide" suffix

calcium bromide

2) If the cation is one of the transition metals with various charges, write the charge using parenthesis and Roman numerals after the metal name.

- Not necessary here, there is not a transition metal present

Example: Write the name for $\mathbf{M g}\left(\mathbf{N O}_{3}\right)_{\mathbf{2}}$

1) Write the cation name first, then name the anion.

- monoatomic anions use the "ide" suffix
- Here we notice that the anion is a polyatomic ion. Get the name from the polyatomic ion table (in your notes or textbook). You will be given a copy of the polyatomic ion table on your exams.
- Do not change the suffix to "ide" with polyatomic ions:
magnesium nitrate

2) If the cation is one of the transition metals with various charges, write the charge using parenthesis and Roman numerals after the metal name.

- Not necessary here, there is not a transition metal present

Writing the Names of Ionic Compounds

Example: Write the name for CuF_{2}

1) Write the cation name first, then name the anion.

- monoatomic anions use the "ide" suffix

copper fluoride

2) If the cation is one of the transition metals with various charges, write the charge using parenthesis and Roman numerals after the metal name.

copper(?) fluoride

- We must figure out what the charge is on the copper, we can deduce the charge on the transition metal cations from the charge on the anions
- Recall that the total charge for any compound must equal zero.
- Since there are two fluorides, each with a charge of (1-) and there is only one copper, we can conclude that the charge on the copper must be ($2+$).
- You can think of this as the reverse criss-cross! See chapter 3 notes for more details.
copper(II) fluoride
write the charge in parenthesis in
Roman numerals after the cation name

Write the names of the following compounds:

See next page for key

NaCl \qquad
$\mathrm{Fe}_{2}\left(\mathrm{CO}_{3}\right)_{3}$ \qquad
$\mathrm{Cu}(\mathrm{OH})_{2}$ \qquad
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ \qquad
LiNO_{3} \qquad
BaSO_{4} \qquad
$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ \qquad

AgCl \qquad
$\mathrm{Al}(\mathrm{OH})_{3}$ \qquad
CaSO_{4} \qquad

FeS \qquad
FeCl_{3} \qquad

Nal \qquad
MgCO_{3}

KEY

NaCl sodium chloride
$\mathrm{Fe}_{2}\left(\mathrm{CO}_{3}\right)_{3}$ iron(III) carbonate
$\mathrm{Cu}(\mathrm{OH})_{2}$ copper(II) hydroxide
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ ammonium sulfate
LiNO_{3} lithium nitrate
BaSO_{4} barium sulfate
$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ magnesium nitrate

AgCl silver chloride

- (note: silver is one of the transition metals that only occurs as a (1+) ion)
$\mathrm{Al}(\mathrm{OH})_{3}$ aluminum hydroxide
CaSO_{4} calcium sulfate

FeS Iron(II) sulfide
FeCl_{3} iron(III) chloride

Nal sodium iodide
MgCO_{3} magnesium carbonate

Writing the Names of Covalent Compounds

1) List the name of the first element in the formula.
2) List the second element and add the -ide suffix.
3) Use Greek prefixes to indicate the number of each atom in the formula.

- Exception: do not use mono- for the first element in the name.
- The o or a at the end of the Greek pre-fix is usually dropped when the element name begins with a vowel

Example: Write the name for $\mathbf{N}_{2} \mathbf{S}_{4}$

1) List the name of the first element in the formula.

nitrogen

2) List the second element and add the -ide suffix.

nitrogen sulfide

3) Use Greek prefixes to indicate the number of each atom in the formula.

- See your textbook or lecture notes for a table of the Greek prefixes.
nitrogen
sulfide
dinitrogen tetrasulfide
- Exception: do not use mono- for the first element in the name.
- Not applicable in this example
- The o or a at the end of the Greek pre-fix is usually dropped when the element name begins with a vowel
- Not applicable in this example

Example: Write the name for SO_{3}

1) List the name of the first element in the formula.

sulfur

2) List the second element and add the -ide suffix.

sulfur oxide

3) Use Greek prefixes to indicate the number of each atom in the formula.
sulfur oxide sulfur trioxide

- Exception: do not use mono- for the first element in the name.
- NOTE, we did not write monosulfur because of this rule!
- The o or a at the end of the Greek pre-fix is usually dropped when the element name begins with a vowel
- Not applicable in this example

Example: Write the name for SO_{2}

1) List the name of the first element in the formula.
sulfur
2) List the second element and add the -ide suffix.

sulfur oxide

3) Use Greek prefixes to indicate the number of each atom in the formula.

___ sulfur ___oxide sulfur dioxide

- Exception: do not use mono- for the first element in the name.
- NOTE, we did not write monosulfur because of this rule!
- The o or a at the end of the Greek pre-fix is usually dropped when the element name begins with a vowel
- Not applicable in this example

Example: Write the name for CO

1) List the name of the first element in the formula.

carbon

2) List the second element and add the -ide suffix.

carbon oxide

3) Use Greek prefixes to indicate the number of each atom in the formula.
carbon \qquad oxide
carbon monoxide

- Exception: do not use mono- for the first element in the name.
- NOTE, we did not write monocarbon because of this rule!
- The o or a at the end of the Greek pre-fix is usually dropped when the element name begins with a vowel
- NOTE, we did not write monooxide because of this rule!

Write the names of the following compounds:
See next page for key
a. $\mathrm{Br}_{2} \mathrm{I}_{4}$
b. $\mathrm{P}_{5} \mathrm{~F}_{8}$
c. NO_{5}

- Remember: The o or a at the end of the Greek pre-fix is usually dropped when the element name begins with a vowel
d. NBr_{3} \qquad
e. $\mathrm{N}_{2} \mathrm{O}_{5}$ \qquad
f. BrCl_{3} \qquad
g. $\mathrm{H}_{2} \mathrm{~S}$ \qquad
h. $\mathrm{N}_{2} \mathrm{O}$ \qquad

KEY

a. $\mathrm{Br}_{2} \mathrm{I}_{4}$ dibromine tetriodide
b. $P_{5} F_{8}$ pentaphosphorus octafluoride
c. NO_{5} nitrogen pentoxide

- The o or a at the end of the Greek pre-fix is usually dropped when the element name begins with a vowel
- NOTE, we did not write pentaoxygen because of this rule!
d. NBr_{3} nitrogen tribromide
e. $\mathrm{N}_{2} \mathrm{O}_{5}$ dinitrogen pentoxide
f. BrCl_{3} bromine trichloride
g. $\mathrm{H}_{2} \mathrm{~S}$ dihydrogen monosulfide
h. $\mathrm{N}_{2} \mathrm{O}$ dinitrogen monoxide

Molar Mass Worksheet and Key

For the following compounds, write the chemical formula and determine the molar mass. Write the units! water
sodium carbonate
carbon dioxide
sodium chloride
calcium hydroxide
potassium permanganate $\left(\mathrm{KMnO}_{4}\right)$
sulfuric acid ($\mathbf{H}_{2} \mathrm{SO}_{4}$)
acetic acid $\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right)$

Molar Mass Worksheet Key

Water $\left(\mathbf{H}_{\mathbf{2}} \mathbf{O}\right)$		
Element	Number	MM
H	2	$1.01 \mathrm{~g} / \mathrm{mole}$
O	1	$16.00 \mathrm{~g} / \mathrm{mole}$
Total $\mathrm{MM}=18.02 \mathrm{~g} / \mathrm{mole}$		

carbon dioxide, CO_{2}

Element		Number	MM
O	2	16.00	$\mathrm{~g} / \mathrm{mole}$
C	1	12.01	$\mathrm{~g} / \mathrm{mole}$

Total MM $=44.01 \mathrm{~g} / \mathrm{mole}$
sodium chloride, $\mathbf{N a C l}$

Element	Number	MM	
Cl	1	35.45	$\mathrm{~g} /$ mole
Na	1	22.99	$\mathrm{~g} / \mathrm{mole}$
Total MM			$=58.44 \mathrm{~g} / \mathrm{mole}$

calcium hydroxide, $\mathrm{Ca}(\mathbf{O H})_{2}$

Element			Number
H	2	1.01	$\mathrm{gM} / \mathrm{mole}$
O	2	16.00	$\mathrm{~g} / \mathrm{mole}$
Ca	1	40.08	$\mathrm{~g} / \mathrm{mole}$
Total $\mathrm{MM}=74.10 \mathrm{~g} / \mathrm{mole}$			

potassium permanganate $\left(\mathrm{KMnO}_{4}\right)$

Element			Number
O	4	MM	
Mn	1	54.94	$\mathrm{~g} / \mathrm{mole}$
K	1	39.10	$\mathrm{~g} / \mathrm{mole}$

Total $\mathrm{MM}=158.04 \mathrm{~g} / \mathrm{mole}$
sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$
Element Number MM

O	3	16.00	$\mathrm{~g} / \mathrm{mole}$
Na	2	22.99	$\mathrm{~g} / \mathrm{mole}$
C	1	12.01	$\mathrm{~g} / \mathrm{mole}$

Total MW $=105.99 \mathrm{~g} / \mathrm{mole}$
barium nitrate, $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$
Element Number MM

O	6	16.00	$\mathrm{~g} / \mathrm{mole}$
Ba	1	137.33	$\mathrm{~g} /$ mole
N	2	14.01	$\mathrm{~g} / \mathrm{mole}$
Total MM			

hydrogen monochloride, $\mathbf{H C l}$

Element	Number	MM	
Cl	1	35.45	$\mathrm{~g} / \mathrm{mole}$
H	1	1.01	$\mathrm{~g} / \mathrm{mole}$
Total MM		$=36.46 \mathrm{~g} / \mathrm{mole}$	

sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$
Element Number MM

S	1	32.07	$\mathrm{~g} /$ mole				
H	2	1.01	$\mathrm{~g} /$ mole				
O	4	16.00	$\mathrm{~g} /$ mole				
Total					MM	$=98.09$	$\mathrm{~g} / \mathrm{mole}$

acetic acid $\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}\right)$
Element Number MM

H	4	1.01	$\mathrm{~g} /$ mole		
O	2	16.00	$\mathrm{~g} /$ mole		
C	2	12.01	$\mathrm{~g} / \mathrm{mole}$		
Total MM					$=60.06 \mathrm{~g} / \mathrm{mole}$

1) How many moles are there in 24.0 grams of FeF_{3} ?
2) How many moles are there in 458 grams of $\mathrm{Na}_{2} \mathrm{SO}_{4}$?
3) How many grams are there in 2.30×10^{24} atoms of silver?
4) How many grams are there in 7.40 moles of AgNO_{3} ?
5) How many grams are there in 7.50×10^{23} molecules of $\mathrm{H}_{2} \mathrm{SO}_{4}$?
6) How many molecules are there in 122 grams of NO_{2} ?
7) How many grams are there in 9.40×10^{25} molecules of H_{2} ?
8) How many molecules are there in 237 grams of CCl_{4} ?
9) How many molecules are there in 2.30 grams of NH_{3} ?
10) How many grams are there in 3.30×10^{23} molecules of $\mathrm{N}_{2} \mathrm{I}_{6}$?
11) How many moles are there in 2.00×10^{19} molecules of CCl_{4} ?
12) How many grams are there in 1.00×10^{24} molecules of BCl_{3} ?
13) How many grams are there in 4.50 moles of $\mathrm{Ba}\left(\mathrm{NO}_{2}\right)_{2}$?
14) How many molecules are there in 9.34 grams of water?

Moles, Molecules, and Grams Worksheet - Answer Key

1) How many moles are there in 24.0 grams of FeF_{3} ? . 213 moles
2) How many moles are there in 458 grams of $\mathrm{Na}_{2} \mathrm{SO}_{4}$? $\mathbf{3 . 2 2}$ moles
3) How many grams are there in 2.30×10^{24} atoms of silver? 412 grams
4) How many grams are there in 7.40 moles of AgNO_{3} ? $\mathbf{1 2 6 0}$ grams (note:3 significant figures)
5) How many grams are there in 7.50×10^{23} molecules of $\mathrm{H}_{2} \mathrm{SO}_{4}$? $\mathbf{1 2 2}$ grams
6) How many molecules are there in 122 grams of NO_{2} ? $\mathbf{1 . 6 0} \times \mathbf{1 0} \mathbf{1 0}^{\mathbf{2 4}}$ molecules
7) How many grams are there in 9.40×10^{25} molecules of H_{2} ? $\mathbf{3 1 5}$ grams
8) How many molecules are there in 237 grams of CCl_{4} ? 9.28×10^{23} molecules
9) How many molecules are there in 2.30 grams of NH_{3} ? $\mathbf{8 . 1 3 \times 1 0 ^ { 2 2 }}$ molecules
10) How many grams are there in 3.30×10^{23} molecules of $\mathrm{N}_{2} \mathrm{I}_{6}$? 433 grams
11) How many moles are there in 2.00×10^{19} molecules of CCl_{4} ? $3.32 \times \mathbf{1 0}^{-5}$ moles
12) How many grams are there in 1.00×10^{24} molecules of BCl_{3} ? $\mathbf{1 9 5}$ grams
13) How many grams are there in 4.50 moles of $\mathrm{Ba}\left(\mathrm{NO}_{2}\right)_{2}$? 1030 grams ($\mathbf{3}$ significant figures)
14) How many molecules are there in 9.34 grams of water? $\mathbf{3 . 1 2} \times 10^{23}$ molecules

Educational Goals

1. Given the formula of a diatomic or small molecule, draw the line bond structure.
2. Understand and construct condensed and skeletal structural formulas given the line bond structures and vice versa.
3. Given the structural formula, determine the formal charge of \mathbf{O} and \mathbf{N} atoms.
4. Given the line bond structure of a small molecule, predict the molecular shape and bond angle(s).
5. Given the structure of a large molecule, predict the bond angle(s) around any atom.
6. Define electronegativity and explain its relationship to polar covalent bonds.
7. Give a simple rule that can be used to predict whether or not a covalent bond is polar.
8. Classify diatomic, small, and large molecules as polar or nonpolar.
9. Describe, compare, and contrast the five noncovalent interactions.
10. Describe, compare, and contrast the four classes of hydrocarbons.
11. Given the structural formula of an alkane, alkene, or alkyne, be able to give the name and vice versa.
12. Explain the difference between constitutional isomers, conformations, and the stereoisomers known as geometric isomers. Give examples of two different classes of hydrocarbons that can exist as geometric isomers.
13. Define the term functional group and describe the structural features that distinguish hydrocarbons, alcohols, carboxylic acids, and esters from one another.

Organic chemistry is the chemistry of carbon-containing molecules.

Review: The Octet Rule in the Formation of Molecules

Octet Rule: Chemical compounds tend to form so that each atom, by gaining, losing, or sharing electrons, has an \qquad of electrons in its outermost shell (n).

Exception to the octet rule \qquad and \qquad .

- Hydrogen and helium have filled outer shells with just \qquad electrons.

Covalent bonding results from the sharing of electron pairs between two atoms.

Method for Drawing Line Bond Structures

Step 1: Count the total number of \qquad
\qquad from all the atoms in the molecule.

Example: $\mathrm{H}_{2} \mathrm{O}$
2 H atoms $2 \times 1 e^{-}=2 e^{-}$
1 O atom $1 \times 6 e^{-}=\underline{6 e^{-}}$

Total number of valence $e-=8 e$ -
The line bond structure of $\mathrm{H}_{2} \mathrm{O}$ will have 8 electrons
Step 2: Draw the "Skeleton Structure"

- Attach the atoms together with \qquad in the most symmetric way possible.

$$
\mathrm{H}-\mathrm{O}-\mathrm{H}
$$

Step 3: Subtract the number of electrons used to make the skeleton structure from the total number of valence electrons.

Total number of valence $e^{-} \quad 8 e^{-}$
Minus electrons used in skeleton $-4 e^{-}$
Electrons remaining to be added $=4 e-$
Step 4: Add the remaining electrons as \qquad as evenly as possible on all atoms except hydrogen.

$$
\mathrm{H}-\ddot{\mathrm{O}}-\mathrm{H}
$$

Step 5: Check for \qquad .

- Are there 8 electrons around all atoms (except hydrogen)?

If YES, you are finished!

Step 6 (if needed): Use lone pairs to make \qquad or \qquad bonds until the octet rule is satisfied for all atoms in the molecule.

- Let's do a couple of examples to see how that works!
- We will do O_{2}, and N_{2}.

Example O_{2}

Step 1: Count the total number of valence electrons from all the atoms in the molecule.

- How many valence electrons in O_{2} ?

$$
\begin{aligned}
2 \mathrm{O} \text { atoms } 2 \times 6 e^{-} & =12 e^{-} \\
\text {Total number of valence } e^{-} & =12 e^{-}
\end{aligned}
$$

Step 2: Draw the "Skeleton Structure"
-Attach the atoms together with single bonds in the most symmetric way possible.

$$
\mathrm{O}-\mathrm{O}
$$

Step 3: Subtract the number of electrons used to make the skeleton structure from the total number of valence electrons.

Total number of valence $e^{-} \quad 12 e^{-}$
Minus electrons used in skeleton $\underline{-2 e^{-}}$
Electrons remaining to be added $=10 e$ -
Step 4: Add the remaining electrons as lone pairs as evenly as possible on all atoms except hydrogen.

Step 5: Check for Octets

- Are there 8 electrons around all atoms (except hydrogen)?
:ƠOO
- If NO, use lone pairs to make double or triple bonds.

Step 6 (if needed): Use lone pairs to make double or triple bonds until the octet rule is satisfied for all atoms in the molecule.

Example \mathbf{N}_{2}
Step 1: Count the total number of valence electrons from all the atoms in the molecule.

- How many valence electrons in N_{2} ?

2 N atoms $2 \times 5 e^{-}=10 e^{-}$
Total number of valence $e^{-}=10 e^{-}$

Step 2: Draw the "Skeleton Structure"
-Attach the atoms together with single bonds in the most symmetric way possible.

$$
\mathbf{N}-\mathbf{N}
$$

Step 3: Subtract the number of electrons used to make the skeleton structure from the total number of valence electrons.

Total number of valence $e^{-} \quad 10 e^{-}$
Minus electrons used in skeleton $\underline{-2 e^{-}}$
Electrons remaining to be added $=8 e-$
Step 4: Add the remaining electrons as lone pairs as evenly as possible on all atoms except hydrogen.

Step 5: Check for Octets

- Are there 8 electrons around all atoms (except hydrogen)?
- If NO, use lone pairs to make double or triple bonds.

Step 6 (if needed): Use lone pairs to make double or triple bonds until the octet rule is satisfied for all atoms in the molecule.

Step 1: Count the total number of valence electrons from all the atoms in the molecule. Molecular formula of molecule					Step 2: Draw the "Skeleton Structure" -Attach the atoms together with single bonds in the most symmetric way possible. Central atom is: \qquad Draw skeleton:
Atom	Number of atoms		Number of valence electrons per atom	Totals	
N	1	X		=	
H	3	x			
Total \# of electrons in line bond structure =					\# of electrons used in skeleton $=$ \qquad (multiply \# of bonds in skeleton by 2)
Step 3: Subtract the number of electrons used to make the skeleton structure from the total number of valence electrons. Total \# of electrons in structure \qquad (from step 1 above) \# of electrons used in skeleton - \qquad (from step 2 above) Remaining \# electrons to be added= \qquad					Step 4: First: Re-draw skeleton here: Next, Add the remaining electrons as lone pairs as evenly as possible on all atoms except hydrogen.
Step 5: Check for Octets Check the structure in step 4 for octets of electrons around each atom (except for hydrogen). If the octet rule is satisfied, you are done. If the octet rule in not satisfied, go the Step 6.					Step 6 (if needed): Use lone pairs to make double or triple bonds until the octet rule is satisfied for all atoms in the molecule.

Understanding Check: Draw the line bond structure for sulfur trioxide: $\mathbf{S O}_{\mathbf{3}}$

Step 1: Count the total number of valence electrons from all the atoms in the molecule. Molecular formula of molecule \qquad				Step 2: Draw the "Skeleton Structure" -Attach the atoms together with single bonds in the most symmetric way possible. Central atom is: \qquad Draw skeleton:
Atom	Number of atoms	Number of valence electrons per atom	Totals	
			$=$	
Total \# of electrons in line bond structure =				\# of electrons used in skeleton = \qquad (multiply \# of bonds in skeleton by 2)
Step 3: Subtract the number of electrons used to make the skeleton structure from the total number of valence electrons. Total \# of electrons in structure \qquad (from step 1 above) \# of electrons used in skeleton - \qquad (from step 2 above) Remaining \# electrons to be added= \qquad				Step 4: First: Re-draw skeleton here:
				Next, Add the remaining electrons as lone pairs as evenly as possible on all atoms except hydrogen.
Step 5: Check for Octets Check the structure in step 4 for octets of electrons around each atom (except for hydrogen). If the octet rule is satisfied, you are done. If the octet rule is not satisfied, go the Step 6.				Step 6 (if needed): Use lone pairs to make double or triple bonds until the octet rule is satisfied for all atoms in the molecule.

Structural Formulas

A molecular formula shows us the number and types of atoms contained in a molecule.

- Example of a molecular formula: $\mathrm{H}_{2} \mathrm{O}$

Drawings, such as line bond structures, that show the \qquad of atoms within molecules are called \qquad formulas.

- Example of a structural formula: $\mathrm{H}-\mathrm{O}_{\bullet}^{\bullet}-\mathrm{H}$

Structural Formulas vs. Molecular Formulas

The molecular formula of isopropyl alcohol (often called rubbing alcohol) is $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$.
The structural formula of isopropyl alcohol is:

Which of these two types of formulas, the molecular formula or the structural formula, do you think is more informative?

There are actually three completely different molecules that have this same molecular formula of $\mathbf{C}_{\mathbf{3}} \mathbf{H}_{\mathbf{8}} \mathbf{O}$:

isopropyl alcohol

1-propanol

ethyl methyl ether

Line bond structural formulas explicitly show all the information about how the atoms are connected and the presence of all single bonds, double bonds, triple bonds and lone pairs.

In practice, chemists often use one of two short-cut forms of structural formulas:
\qquad structural formulas or

- \qquad structural formulas

Condensed Structural Formulas (Condensed Structures)

When drawing condensed structures:

- Single bonds between carbon and hydrogen are omitted.
- Example: a carbon bonded to three hydrogen atoms is drawn as " $\mathbf{C H}_{3}$ "
- Single bonds between carbons (C-C) can be omitted.
- Single bonds between oxygen or nitrogen and hydrogen can be omitted.
- Example: an oxygen bonded to one hydrogen atom can be drawn as "OH."
- Bonds between all other pairs of atoms must be drawn.
- Lone pairs can be omitted.
- Double and triple bonds are always drawn.

Example: Propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$

The connectivity of the carbon and hydrogen atoms can be seen \qquad in propane's line bond structure:

In condensed structures, \qquad bonds between carbon and hydrogen atoms are omitted. We can draw the condensed structure of propane as:

$$
\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{3} \quad \text { or } \quad \mathrm{CH}_{3}>\mathrm{CH}_{2}>\mathrm{CH}_{3}
$$

When drawing condensed structures, carbon-carbon single bonds can be omitted when the carbon atoms are in a \qquad such as the three carbons in propane:

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$

Even though not all of the bonds are drawn in condensed structures, they are \qquad and can be unequivocally known.

Example: Isopentane $\left(\mathrm{C}_{5} \mathrm{H}_{12}\right)$

In isopentane, there are four carbons bonded in a linear sequence.

There is one carbon that " \qquad " from the linear sequence.

In condensed structures, single bonds between carbon and hydrogen atoms are omitted. We can draw the condensed structure of isopentane as:

Further condensation is possible.

- Single bonds between carbon atoms in a linear sequence can be omitted as in the case of the four carbons in a linear sequence in isopentane (as shown below).

If you are not a Saddleback College student, check with your instructor as to which form of condensed structures she/he wishes you to use.

Example: Isopropyl bromide ($\mathbf{C}_{3} \mathbf{H}_{7} \mathbf{B r}$)

The line bond structure of isopropyl bromide is:

In condensed structures, single bonds between atom pairs other than $\mathbf{C - C}, \mathbf{C - H}, \mathbf{O}-\mathbf{H}$, and $\mathbf{N}-\mathbf{H}$ are always drawn.

- Therefore the $\mathbf{C - B r}$ bond is drawn in the condensed structures:

- Lone pairs can be omitted in condensed structures.

Further condensation is possible.

- Single bonds between carbon atoms in a linear sequence can be omitted as in the case of the three carbons in a linear sequence in isopropyl bromide.

Skeletal Structural Formulas (Skeletal Structures)

Another structural formula that chemists use in order to more easily and quickly draw molecules is called the \qquad structure.

When drawing skeletal structures:

- Carbons are not drawn; they are implied to exist where lines (bonds) \qquad or at the \qquad of a line (bond).
- Hydrogens are omitted if they are bonded to carbon.
- Bonds between oxygen or nitrogen and hydrogen may be omitted.
- Atoms other than carbon and hydrogen are always drawn.
- Lone pairs can be omitted.

Example: Propane $\left(\mathrm{C}_{3} \mathbf{H}_{\mathbf{8}}\right)$

Line Bond Structure

Condensed Structure

Skeletal Structure

If the hydrogens bonded to carbon are omitted from skeletal structures, how do we determine how many hydrogens are bonded to each carbon? The answer to this is quite simple and is related to the octet rule:

- We never find lone pairs on carbon in any molecule that contains more than one carbon atom.
- The octet rule requires that carbons will always have four pairs of shared electrons around them, therefore we can deduce the number of hydrogens that are bonded to each carbon in a skeletal structure.

Example: 2-Fluorobutane

Line Bond Structure

Condensed Structure

Skeletal Structure

Example: Ethanol

Condensed Structure

Understanding Check: Draw condensed and skeletal structur of diethyl ether.

Understanding Check: Draw condensed and skeletal structure of ethylamine.

Understanding Check: The line bond structure of a large hydrocarbon molecule is shown below. Draw the condensed structure and the skeletal structure of this molecule.

Structural Formulas of Cyclic Compounds

Many compounds contain atoms bonded, not in a linear sequence, but in a "ring" pattern.
Molecules that contain rings of atoms are called \qquad compounds.

- An example of a cyclic compound is a molecule called cyclohexane. The three structural formulas for cyclohexane are:

Line Bond Structure

Condensed Structure

Skeletal Structure

Molecular Geometry

Let's define molecular geometry as the \qquad arrangement of a molecule's atoms.

Molecules very rarely take the shapes that are drawn in their structural formulas.
Structural formulas, whether line bond, condensed, or skeletal, are either one- or two-dimensional.
Most molecules are \qquad dimensional.

- Line bond structures are commonly drawn with the lines/bonds at 90° angles, but the bond angles in molecules (the angle between covalent bonds), with rare exceptions, are not at 90°.
- Skeletal and condensed structures often use bond angles of 90° or approximately 120° only for convenience in depicting the bonding pattern connectivity, not necessarily to represent the actual bond angles/geometry of the molecule.

Example: Fentanyl
The skeletal structure of fentanyl is:

The "geometry" of the molecule can be depicted in two types of views:

Definition: a \qquad is the angle between two covalent bonds.

Structural formulas, whether line bond, condensed, or skeletal, do not explicitly show the \qquad bond angles within molecules. However, the actual bond angles can be \qquad from a molecule's structural formula.

To know the exact molecular geometry, we must know all of the bond angles and bond lengths (distance between bonded atoms) within a molecule.

We will ignore variations in bond lengths since these relatively minor deviations in length do not significantly affect the concepts to be discussed.

Therefore, for our purposes, predicting molecular geometry will be equivalent to predicting the bond angles within a molecule.

When discussion molecular geometry and other concepts in this course, we will often use the following molecular size categories:

Molecular Size Category	Description	Example(s)	
Diatomic Molecule	Molecule contains only two atoms	H_{2}	HCl
Small Molecule	Molecule has one central atom with all other atoms bonded to the central atom	CH_{4}	$\mathrm{H}_{2} \mathrm{O}$
Large Molecule	Larger than Small Molecule; there is not just one single, central atom with all the other atoms bonded to it	$\mathrm{C}_{3} \mathrm{H}_{8}$	

For diatomic molecules, the geometry of the molecule is always \qquad ; the two atoms that make up the molecule exist on the same line.

- Examples: H_{2} and HCl

For small and large molecules: bond angles can be predicted from the \qquad formula using a model called Valence Shell Electron Pair Repulsion (VSEPR) Theory.

Valence Shell Electron Pair Repulsion (VSEPR) Theory: Predicting Bond Angles

The bond angles around any particular atom of interest in a molecule can be predicted because the groups of electrons surrounding this atom will \qquad each other.

- These \qquad
\qquad (abbreviated as EG) consist of, as the name implies, groups of electrons that are localized to a certain area.

You can easily recognize an EG by looking for one of the following:
(1) \mathbf{A} \qquad
\qquad (an atom bonded to the atom of interest).

- Each bonded atom counts as one electron group.
- Whether the bonded atom is connected to the atom of interest with a single, double, or triple bond, all of these shared electrons are localized within a particular region and therefore count as one $\boldsymbol{E G}$.
(2) \mathbf{A} \qquad (on the atom of interest).
- Each lone pair counts as one electron group (EG
- Even though lone pairs are not attached to other atoms, they do occupy a localized area around the atom of interest and therefore repel other electron groups.

Example: 2 Electron Groups

What do you think will happen to these two balloons if they both have a negative charge?

Draw the balloons inside the right-most sphere.

Electrostatic \qquad will cause the balloons to move as far apart from each other as possible.

The same thing happens with \qquad .

Draw the line bond structure for $\mathbf{C O}_{2}$.

The central atom (C) goes in the \qquad of the sphere.

- There are \qquad electron groups around the central atom!
- Each bonded atom counts as \qquad electron group.

The electron groups are placed as \qquad apart from each other as possible!

Both electron groups are on the same \qquad and are at a \qquad angle.

Example: 3 Electron Groups

If 3 negatively charged balloons are placed into a hollow, clear plastic sphere, electrostatic repulsion will cause the balloons to move as far apart from each other as possible.
The same thing happens with electron groups.

Draw the line bond structure for $\mathbf{S O}_{3}$.

The central atom (S) goes in the middle of the sphere.
There are \qquad electron groups around the central atom!

All electron groups are on the same \qquad and are at \qquad angles.

Example: 4 Electron Groups

If 4 negatively charged balloons are placed into a hollow, clear plastic sphere, electrostatic repulsion will cause the balloons to move as far apart from each other as possible.

The same thing happens with electron groups.

Draw the line bond structure for a methane molecule $\left(\mathbf{C H}_{4}\right)$.

The central atom (C) goes in the middle of the sphere.
How many electron groups are around the central atom?
There are $\underline{4}$ electron groups around the central atom!
The electron groups are placed as far apart from each other as possible!

This arrangement is a 4-sided, 3-dimensional structure with electron groups at about \qquad angles.

Electron Arrangement Review

For three or four electron groups, the angles will deviate slightly from $\mathbf{1 2 0}^{\mathbf{o}}$ and $\mathbf{1 1 0}^{\mathbf{0}}$ when one (or more) of the electron groups is a lone pair.

- In this course, these slight deviations in bond angles can be ignored because their effects are not significant in the chemistry that will be discussed.

The Geometry of Diatomic Molecules

Molecular Size Category	Description	Example(s)	
Diatomic Molecule	Molecule contains only two atoms	H_{2}	HCl

For diatomic molecules, the geometry of the molecule is always linear; the two atoms that make up the molecule exist on the same line.

- Since there is only one bond (whether single, double, or triple), it does not make sense to talk about a bond angle.
- To discuss a bond angle, there must be two bonds originating from the same atom.

The Molecular Shape of Small Molecules

Molecular Size Category	Description	Example(s)	
Small Molecule	Molecule has one central atom with all other atoms bonded to the central atom	CH_{4}	$\mathrm{H}_{2} \mathrm{O}$

For small molecules, there exists one central atom with all other atoms bonded to the central atom, therefore the only bond angles that exist are between bonds \qquad from the central atom.

This simplified geometry allows us to categorize (name) particular molecular \qquad seen in small molecules.

Given the line bond structure, small molecules can be categorized by their molecular shape as follows:

Step 1. Get the Electron Group Arrangement

Find the angle between the electron groups and their arrangement around the central atom.

- Two electron groups: 180° angle, both electron groups are on the same line as the central atom.
- Three electron groups: 120° angles, all electron groups are on the same plane as the central atom.
- Angles will deviate slightly from 120° if one of the electron groups is a lone pair
- Four electron groups: 110° angles, occupies three dimensions in space.
- Angles will deviate slightly from 110° if one or more of the electron groups is a lone pair

Step 2. Determine the Molecular Shape Category Based on the Arrangement of Atoms. Small molecules are categorized according to the arrangement of the atoms only.

Although lone pairs are also electron groups and are therefore important in determining the electron group arrangement in Step 1, they are treated as being " \qquad " when assigning molecular shape category names.

Draw the line bond structure of CO_{2}
Example: The Molecular Shape of CO_{2}

Step 1. Get the Electron Group Arrangement

How many electron groups are around the central atom? \qquad
What is the bond angle in a 2-electron group arrangement?
Choices: a) 180°
b) 120°
c) 110°

Step 2. Determine the Molecular Shape Category Based on the Arrangement of Atoms.

This molecular shape is called \qquad .

A very helpful tool for determining molecular shape is called the "ABE Method."
"A" represents the central atom (carbon in our CO_{2} example).
"B" represents atom(s) bonded to the central atom.
(each oxygen in our CO_{2} example)
" \mathbf{E} " represents lone pair(s) on the central atom.
(none seen in CO_{2} since there are no lone pairs on the central atom)

The ABE Method uses a "general notation" that indicates the type and number of
\qquad
\qquad (B or \mathbf{E}) that surround the central atom (A).

We write the ABE Method notation for CO_{2} and all other small molecules that have two bonded atoms and no lone pairs on the central atom as " \qquad ."

- There are two oxygens bonded to the central atom therefore we write " \mathbf{B}_{2}."

All AB_{2} molecules have \qquad bond angles and are in the \qquad molecular shape category.

Molecular Shape Table

Three Electron Groups

Example: Draw the line bond structure of $\mathbf{S O}_{\mathbf{3}}$

Step 1. Get the Electron Group Arrangement

- The number of electron groups around the central atom determines the bond angles.

Step 2. Determine the Molecular Shape Category Based on the Arrangement of Atoms.

This molecular shape is called \qquad .

We write the ABE Method notation for SO_{3} and all other small molecules that have three bonded atoms and no lone pair on the central atom as " \qquad ."

- There are three oxygens bonded to the central atom therefore we write "B3."

All $\mathbf{A B}_{3}$ molecules have \qquad bond angles and are in the trigonal planar molecular shape category.

Example: Draw the line bond structure of ozone gas $\left(\mathbf{O}_{3}\right)$.

Step 1. Get the Electron Group Arrangement

- The number of electron groups around the central atom determines the bond angles.
- Three electron groups: 120° angles, all electron groups are on the same plane as the central atom. Angles will deviate slightly from 120° if one of the electron groups is a lone pair.

Step 2. Determine the Molecular Shape Category Based on the Arrangement of Atoms.

- When determining molecular shape, we treat lone pair(s) as if they were invisible!

This molecular shape is called \qquad .

We write the ABE Method notation for O_{3} and all other small molecules that have two bonded atoms and one lone pair on the central atom as " \qquad ."

- There are two oxygens bonded to the central atom therefore we write " \mathbf{B}_{2}."
- There is one lone pair on the central atom therefore we write "E."

All $\mathbf{A B}_{2} \mathbf{E}$ molecules have \qquad bond angles and are in the bent molecular shape category.

Four Electron Groups

Example: Draw the line bond structure of methane gas $\left(\mathbf{C H}_{4}\right)$.

Step 1. Get the Electron Group Arrangement

- The number of electron groups around the central atom determines the bond angles.
- Four electron groups: 110° angles, occupies three dimensions in space

110°

Step 2. Determine the Molecular Shape Category Based on the Arrangement of Atoms.

This molecular shape is called \qquad .

We often use a \qquad representation in order to illustrate a three-dimensional molecule on a two-dimensional surface such as a page or computer screen.

a wedge and dash representation

a wedge and dash representation

a perspective representation

Solid wedges indicate bonds that would be coming out and above the page (toward the viewer) in the three-dimensional object.
Dashed shapes indicate bonds that would be coming out and behind the page (away from the viewer) in the three-dimensional object.
Regular lines (neither wedge nor dash) indicate bonds that exist on the plane of the page in the three-dimensional object.

The implication of a

We write the ABE Method notation for CH_{4} and all other small molecules that have four bonded atoms and no lone pair on the central atom as " \qquad ."

- There are four hydrogens bonded to the central atom therefore we write " \mathbf{B}_{4}."

All $\mathbf{A B}_{4}$ molecules have \qquad bond angles and are in the tetrahedral molecular shape category.

Four Electron Group Example: Consider the line bond structure of ammonia $\left(\mathrm{NH}_{3}\right)$.

Step 1. Get the Electron Group Arrangement

- The number of electron groups around the central atom determines the bond angles.
- Four electron groups: 110° angles, occupies three dimensions in space. Angles will deviate slightly from 110° if one or more of the electron groups is a lone pair.

Step 2. Determine the Molecular Shape Category Based on the Arrangement of Atoms.

- When determining molecular shape, we treat lone pair(s) as if they were invisible!

This molecular shape is called \qquad .

We write the ABE Method notation for NH_{3} and all other small molecules that have three bonded atoms and one lone pair on the central atom as " \qquad ."

- There are three hydrogens bonded to the central atom therefore we write " \mathbf{B}_{3}."
- There is one lone pair on the central atom therefore we write "E."
$\mathbf{A l l} \mathbf{A B}_{3} \mathbf{E}$ molecules have \qquad bond angles and are in the pyramidal molecular shape category.

Four Electron Group Example: Consider the line bond structure of a water molecule $\left(\mathbf{H}_{2} \mathbf{O}\right)$:

$$
H-\dddot{O}-H
$$

Step 1. Get the Electron Group Arrangement

- The number of electron groups around the central atom determines the bond angles.
- Four electron groups: 110° angles, occupies three dimensions in space. Angles will deviate slightly from 110° if one or more of the electron groups is a lone pair.

Step 2. Determine the Molecular Shape Category Based on the Arrangement of Atoms.

- When determining molecular shape, we treat lone pair(s) as if they were invisible!

This molecular shape is called \qquad .

We write the ABE Method notation for $\mathrm{H}_{2} \mathrm{O}$ and all other small molecules that have two bonded atoms and two lone pairs on the central atom as " \qquad ."

- There are two hydrogens bonded to the central atom therefore we write " \mathbf{B}_{2}."
- There are two lone pairs on the central atom therefore we write " \mathbf{E}_{2}."

All $\mathbf{A B}_{\mathbf{2}} \mathbf{E}_{\mathbf{2}}$ molecules have \qquad bond angles and are in the bent molecular shape category.

Molecular Shape Table

Understanding Check: Molecular Shapes for Small Molecules
Determine the bond angles (or approximate bond angles) and the molecular shape category for each of the following small molecules:
a) NF_{3}
b) $\mathrm{H}_{2} \mathrm{~S}$
c) SO_{2}
d) CS_{2}
e) carbon tetrachloride

The Molecular Geometry of Large Molecules

Large Molecule	Larger than Small Molecule; there is $\boldsymbol{n o t}$ just one single, central atom with all the other atoms bonded to it	$\mathrm{C}_{3} \mathrm{H}_{8}$

The bond angles around any \qquad of interest in a large molecule can be predicted in the same manner that we used for small molecules.

- Simply use the ABE method, but in this case let "A" represent the atom of interest in the large molecule instead of the central atom of a small molecule.
Example: Consider the line bond structure of an ethane molecule:

Molecules: ABE Method

ABE Class	Bond Angles
$A B_{2}$	180°
$A B_{3}$	120°
$A B_{2} E$	$\approx 120^{\circ}$
$A B_{4}$	110°
$A B_{3} E$	$\approx 110^{\circ}$
$A B_{2} E_{2}$	$\approx 110^{\circ}$

What are the bond angles around each of the carbon atoms in an ethane molecule?

The illustration on the right shows the significance of lines, wedges, and dashes implied in the wedge and dash representation of the ethane molecule.

You may have noticed that we only discussed molecular geometry (bond angles) for large molecules; we do not categorize large molecules by "molecular shape" as we did for small molecules.

The reason for this is that \qquad bonds can " \qquad $"$ and therefore large molecules are always changing their shape.
It is important to understand that although single bonds are capable of rotation, the bond angles around any particular atom do not change upon rotation.
Only single bonds freely rotate; because of the nature of double and triple bonds, they do not rotate.

Another example for the geometry of large molecules: Consider the line bond structure of an ethanol molecule (shown on the right).
What is the bond angle for the bonds coming from the oxygen atom in an ethanol molecule?

	The Geometry of Large Molecules: ABE Method	
	ABE Class	Bond Angles
	AB_{2}	180°
	AB_{3}	120°
$\bullet \rightarrow$	$\mathrm{AB}_{2} \mathrm{E}$	$\approx 120^{\circ}$
	AB_{4}	110°
$\mathrm{CH}_{3} \mathrm{CH}_{2}$	$\mathrm{AB}_{3} \mathrm{E}$	$\approx 110^{\circ}$
200	$\mathrm{AB}_{2} \mathrm{E}_{2}$	$\approx 110^{\circ}$

Understanding Check: Predicting Bond Angles in Large Molecules

Consider the line bond structure of an acetone molecule:

a) What are the bond angles around the left-most carbon atom?
b) What are the bond angles around the carbon atom in the middle of the molecule?
c) What are the bond angles around the right-most carbon atom?

Reflection and Looking Forward

You have seen how the connectivity of atoms shown in structural formulas, such as line bond structures, can be used to determine molecular geometries (bond angles).
For example:

The molecular geometries are quite important because the observed (macroscopic) properties of a molecular compound are related to its nanoscopic structure. The nanoscopic structure of molecules includes details such as the kind of atoms, the pattern in which they are bonded to each other, the molecular geometry, and how the electrons are distributed within the molecule.

Throughout the remainder of this course, you will see how the nanoscopic details of a molecule will affect observed, macroscopic properties such as biological effects, melting and boiling temperatures, rates of evaporation, and the ability of one substance to dissolve another substance.

The Distribution of Electrons in Molecules

Molecular geometry plays a major role in how the electrons are distributed in molecules.
The electron distribution is a major factor that determines the chemical and physical \qquad of molecular compounds.

- For example, consider two molecules that are quite similar in size - CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. Both molecules contain three atoms, however at room temperature they are in different phases; CO_{2} exists as a gas, whereas $\mathrm{H}_{2} \mathrm{O}$ exists as a liquid (water).

Here is a new concept: the electrons are \qquad within molecules.

- Sometimes electrons spend \qquad time in one particular region of the molecule giving that region additional \qquad charge.
- Sometimes a particular region of a molecule is electron \qquad , giving that region of the molecule additional \qquad charge.

The existence of this uneven charge within a molecule is a major factor that makes the properties of molecules such as $\mathrm{CH}_{4}, \mathrm{CO}_{2}$, and $\mathrm{H}_{2} \mathrm{O}$, quite different.

Let's first consider the H_{2} molecule: $\boldsymbol{H}-\boldsymbol{H}$
The two electrons in this covalent bond are "shared evenly" by the hydrogens.
The electrons do not spend more time, on average, closer to any one of the two hydrogen atoms.
This is because the bond is between \qquad atoms; the electrons are equally attracted to each of the positively-charged hydrogen nuclei.

When electrons are shared between like atoms, such as in H_{2}, they are, on average, evenly distributed between the atoms.
Next, let's consider the HCl molecule: $\mathrm{H}-\mathrm{C}_{\bullet}^{\bullet}$:
The two electrons in the H-Cl bond are not shared equally by the chlorine and hydrogen atoms.
The shared electrons spend, on average, a bit more time nearer the chlorine than the hydrogen.
This is because the bond is between \qquad atoms (chlorine vs. hydrogen).

- The shared electrons happen to be more strongly attracted to the chlorine than they are to the hydrogen.

When electrons in bonds are evenly shared, as is the case for like atoms (such as H_{2}), we call the bond a \qquad -.

When electrons in bonds are not equally shared, as is the case for un-like atoms, we call the bond a \qquad .

Scientists and engineers use the term \qquad
\qquad to describe this physical state that results when there is a separation of charge over a short distance such as the length of a chemical bond.

Representations of Bond Polarity in $\mathbf{H C l}$

The line bond structure (above, left) uses the Greek lowercase letter delta ($\boldsymbol{\delta})$ to indicate a partial positive charge $\left(\boldsymbol{\delta}^{+}\right)$or a partial negative charge $\left(\boldsymbol{\delta}^{-}\right)$near the appropriate atoms.

Another way to show bond polarity and partial charge is to use the dipole arrow (above, middle).

- When using dipole arrows, the arrow points to the partial negative charged region and a crossed line (looks like + on the end of the arrow) is used to indicate the partial positive charged region.

The space-filling model (above, right) not only shows the region that the molecule's electrons occupy, but is also shaded to indicate the electron distribution.

- The area where electrons spend more time and therefore has a partial negative charge is shaded red.
- The area that is electron deficient has a partial positive charge and is shaded blue.

Electronegativity

The relative ability of an atom in a bond to attract electrons is called its \qquad .

- The more electronegative atom in the bonded pair will have a stronger attraction to the shared electrons, the electrons will spend a bit more time in the vicinity of that atom, therefore the atom will have a partial negative charge.
- The less electronegative atom in the bond will have a partial positive charge.

Electronegativity Values

Source: Wikimedia Commons, Author: Adblocker, CC-BY-SA, http://creativecommons.org/licenses/by-sa/3.0/legalcode
Note that there is a periodic trend in electronegativity values of the \mathbf{s} - and \mathbf{p}-block elements; electronegativity increases going from left to right (in a row) and bottom to top (in a column).

You can determine which atom in a polar bond is partially positive and which is partially negative by comparing the electronegativity values of the two atoms.

Example: Consider the line bond structure of hydrogen monobromide (HBr).

Understanding Check: Bromine monofluoride (BrF) exists as a brown gas and is used as an algaecide, fungicide, and disinfectant in some industrial applications. Draw the line bond structure of bromine monofluoride.
a) Predict which atom is partially positive and which atom is partially negative.
b) Add the $\boldsymbol{\delta}^{+}$or $\boldsymbol{\delta}^{\boldsymbol{-}}$ symbols to the appropriate atom.
c) Add a dipole arrow below the line bond structure to indicate the polarity.

The degree of bond polarization depends on the \qquad in electronegativities between the two bonded atoms.

- Greater differences in the abilities of the bonded atoms to attract the shared electrons results in more polarized bonds.

Example: The electronegativity of hydrogen, fluorine, and bromine are $2.20,3.98,2.96$, respectively. Which bond is more polarized, the $\mathbf{H}-\mathrm{F}$ or $\mathbf{H - B r}$ bond?

H-F: \quad The difference in electronegativity between F and $\mathrm{H}: \quad 3.98-2.20=\mathbf{1 . 7 8}$
$\mathbf{H - B r}$: The difference in electronegativity between Br and $\mathrm{H}: ~ 2.96-2.20=\mathbf{0 . 7 6}$
Since there is a greater difference in electronegativity between F and H vs. Br and H , the $\mathbf{H}-\mathrm{F}$ bond is \qquad polarized than the $\mathrm{H}-\mathrm{Br}$ bond.

Summary of Bond Polarity

We can classify covalent bonds as being either \qquad or \qquad .

- Polar bonds occur because of unequal sharing of electrons in covalent bonds when two un-like atoms (such as $\mathrm{H}-\mathrm{Br}$ or $\mathrm{H}-\mathrm{Cl}$) are bonded together.
- Nonpolar bonds occur when the electrons are shared evenly between two like atoms (such as $\mathrm{H}-\mathrm{H}$ or $\mathrm{F}-\mathrm{F}$).

The Polarity of Molecules

Similar to the concept of bond polarity, when electrons are not symmetrically distributed in a molecule, it results in a polar \qquad ; a molecule with one end that has a partial negative charge and one end that has a partial positive charge.

The existence and degree of polarity (strength of the dipole) in molecules has implications in many of the chemistry concepts that you will learn throughout this course.

For example, one type of force responsible for attracting molecules to other molecules that is, in part, responsible for whether the molecules exist close to each other in the liquid or solid phase instead of the gas phase is called the dipole-dipole force.

- The partially positive $\left(\boldsymbol{\delta}^{+}\right)$end of one molecule's dipole is attracted to the partially negative $\left(\boldsymbol{\delta}^{-}\right)$ end of another molecule's dipole (and vice versa) by an electrostatic attraction as illustrated below.

In this video, you will learn how to determine if a molecule is polar or nonpolar based on both the existence (or not) of \qquad and its molecular \qquad .

I will show you a method for determining the polarity of a molecules for each of our molecular size categories (diatomic, small, and large molecules).

The Polarity of Diatomic Molecules

Molecular Size Category	Description	Example(s)	
Diatomic Molecule	Molecule contains only two atoms	H_{2}	HCl

Since diatomic molecules contain only one bond, the polarity of the molecule depends only on the polarity of that bond.

- A \qquad diatomic molecule, such as H_{2}, contains like-atoms and a nonpolar bond, therefore the molecule is \qquad .
- A \qquad diatomic molecule, such as HCl , contains two un-like atoms and a polar bond, therefore the molecule is \qquad .

Understanding Check:

Determining the Polarity of Diatomic Molecules
Categorize each of the diatomic molecules listed below as polar or nonpolar.
a) O_{2}
b) carbon monoxide (CO)
c) N_{2}
d) nitrogen monoxide (NO)

The Polarity of Small Molecules

Molecular Size Category	Description	Example(s)	
Small Molecule	Molecule has one central atom with all other atoms bonded to the central atom	CH_{4}	$\mathrm{H}_{2} \mathrm{O}$

Small molecules contain more than one bond.
The individual bonds within a molecule can be polar and/or nonpolar.
Just because a small molecule contains polar bonds does not necessarily mean that it is a polar molecule.

In order to determine if a small molecule is polar, we must look at what happens when we $\underline{a d d} \boldsymbol{u} \boldsymbol{p}$ all of the dipoles.

Dipoles are physical quantities that not only have a magnitude (amount of charge), but also have a direction.

An analogous physical quantity that you are familiar with is velocity. When you drive your car, to completely describe your path you would use both the speed (miles per hour) and the direction you are traveling.

Another physical quantity with both magnitude and direction is a force. When you pull on an object, how fast and where the object moves depends on how hard you pull and in what direction you pull.

Quantities with both magnitude and direction are called vector quantities.
Covalent bond electric dipoles are vector quantities; they have both magnitude (based on differences in electronegativity of the bonded atoms) and direction (based on bond angles).

Before we discuss "adding up" dipole vectors, let's add up some vector quantities of which you have prior knowledge. We will consider adding a couple of force vectors:

Top: Two equal tensions (represented by the red vector arrows of the same length) are exerted in opposite directions. The blue box does not move because the forces are "balanced" or "cancel"; they add up to zero.

Middle: The two tension forces are in opposite directions, however the force pulling to the right is larger (represented by a larger vector arrow). The blue box moves to the right because the forces are not "balanced" and do not "cancel" they do not add up to zero.

Bottom: The two tension forces are equal but they are not oriented in exactly opposite directions. The blue box moves downward because the forces are not "balanced" and do not "cancel" - they do not add up to zero.

To determine if a small molecule is polar:

We must look at what happens when we \qquad up all the dipoles.

Example: CO_{2}

There are 2 polar bonds in a CO_{2} molecule.
This results in two \qquad .

- The oxygens have a \qquad negative charge.

- The carbon has a partial positive charge.

Since the molecule is \qquad , the dipoles cancel each other and the molecule is \qquad .

- All symmetric small molecules are nonpolar.

Let's look at what happens when we add up all the dipoles in another molecule:

Example: $\mathbf{H}_{2} \mathrm{O}$

There are 2 polar bonds in an $\mathrm{H}_{2} \mathrm{O}$ molecule.
This results in two dipoles.

- The oxygen has a partially negative charge.

- The hydrogens have a partially positive charge.

Since the molecule is not symmetric, the dipoles do not cancel each other and the molecule is
\qquad .

Since dipoles in nonsymmetric molecules do not cancel each other out, they add up to yield a molecule with a dipole.
Nonsymmetric small molecules with polar bonds are polar molecules.

General Rule to Know if a molecule is Symmetric or Nonsymmetric:
Symmetric molecules have the central atom surrounded by \qquad electron groups. Examples of symmetric and nonsymmetric molecules:

CO_{2}	CH_{4}	$\mathrm{CH}_{3} \mathrm{~F}$	NH_{3}
$: \mathrm{O}=\mathrm{C}=\mathrm{O}:$			
Symmetric (Nonpolar)	Symmetric (Nonpolar)	Nonsymmetric (Polar)	Nonsymmetric (Polar)

Polarity of Small Molecules Summary

Understanding Check:
 Determining the Polarity of Small Molecules

 Categorize each of the small molecules listed below as polar or nonpolar. Note that you will need to begin with the line bond structure of a molecule in order to determine its polarity.a) NF_{3}
b) $\mathrm{H}_{2} \mathrm{~S}$
c) O_{3}
d) CS_{2}
e) CCl_{4}

The Polarity of Large Molecules

Molecular Size Category	Description	Example(s)
Large Molecule	Larger than Small Molecule; there is not just one single, central atom with all the other atoms bonded to it	$\mathrm{C}_{3} \mathrm{H}_{8}$

In this course, we will be working with large molecules (organic and biochemistry).
Large molecules will be considered polar (or have polar regions) if they have \qquad bonds.

- The important highly polar covalent bonds, especially in organic and biochemistry, are those in which either hydrogen or carbon atoms are covalently attached to nitrogen, oxygen, fluorine, or chlorine atoms.

Example:

Cyclohexane

No highly polar bonds
Nonpolar
vs. Cyclohexanol

Two highly polar bonds
(C-O and O-H)
Polar

Understanding Check: Determining the Polarity of Large Molecules

The compound shown below has been used to kill any insect larvae present in cereal and dried fruit.

This molecule is \qquad .
a) polar
b) nonpolar

Formal Charge

There is one more phenomenon that results in the uneven distribution of charge.
We will use the concept of " \qquad " to account for electrically-charged regions within molecules (and polyatomic ions).
The formal charge concept involves identifying \qquad in molecules (or in polyatomic ions) that have an excess or deficiency of electrons.

- An excess of electrons on a particular atom means that there are more electrons in the vicinity of an atom than there are protons in the atom. If there is one extra electron in the vicinity of a particular atom, the formal charge of the atom would be 1-.
- Conversely, when we say that an atom is electron deficient, this means that there are fewer electrons in the vicinity of a particular atom than there are protons in the atom. If an atom has a deficiency of one electron (one more proton than electrons), the formal charge of the atom would be $1+$.

What Do You Need to Know About Formal Charge?

We will soon be focusing on organic biomolecules. Biomolecules consist primarily of $\mathrm{C}, \mathrm{H}, \mathrm{O}$, and N .

- In the compounds that you will come across in this course, carbon and hydrogen atoms will never have a formal charge.
- Oxygen and nitrogen may or may not have a formal charge.

I will only need you to be able to determine the formal charge on two elements -
\qquad and \qquad .

1) The Formal Charge on Oxygen:

- Oxygen has a formal charge of $\mathbf{1}$ - when it has just \qquad single bond (three lone pairs). - $\ddot{\mathrm{O}}:-$
- In all other cases that we discuss in this course, oxygen will not have a formal charge (formal charge $=$ zero .
- Examples:

$-\ddot{O}-$

2) The Formal Charge on Nitrogen:

- Nitrogen will have no formal charge when it has one or more lone pairs on it.

:N三
- In \qquad other cases, nitrogen has a $1+$ formal charge.

Determination of the formal charge of oxygen and nitrogen is summarized in the thought-map flowchart shown below.

OPTIONAL: If you are interested in learning the details of how formal charges are assigned to oxygen, nitrogen, and other atoms based on their bonding patterns, you can find that information in Appendix 3 of your textbook.

Example: The line bond structure of the nitrate ion $\left(\mathrm{NO}_{3}{ }^{-}\right)$is shown below. Add the formal charge (as a superscript) to the line bond structure next to any oxygen or nitrogen atom that has a non zero formal charge.

The nitrogen has no lone pairs, therefore it has a formal charge of $\mathbf{1 +}$ (or +).

The oxygens below and to the right of the nitrogen have just one single bond, therefore they have a formal charge of 1- (or -).

The oxygen to the left of the nitrogen does not have just one single bond (it has a double bond), therefore it has no formal charge (formal charge = zero).

Understanding Check: The line bond structure glycine, an amino acid present in many proteins, is shown below. Assign formal charges to the nitrogen and each oxygen atom in this compound.

Understanding Check: Aspartic acid is one of the 20 common amino acids that make up the proteins in our bodies. The condensed structure of the aspartic acid is shown below. Add the formal charge (as a superscript) next to any oxygen or nitrogen atom in the condensed structure that has a non zero formal charge.

Summary

In the last two videos, you learned two ways to predict the distribution of charge:
Molecular Polarity: Because of the unequal sharing of electrons, regions of a molecule can have partial charge. These charged regions have a partial positive charge $\left(\boldsymbol{\delta}^{+}\right)$or partial negative charge ($\boldsymbol{\delta}^{-}$).
Formal Charge: A region in the vicinity of a particular atom in a compound can have formal charge because of an excess or deficiency of electron(s) at that atom.
Both the polarity and presence of formal charges in molecules are important in understanding how compounds interact with each other, and also in understanding the forces within large biomolecules such as DNA, RNA, proteins, and carbohydrates. These forces are crucial for the biological molecules maintaining their shape and biological function.

Noncovalent Interactions

Ionic compounds exist as crystalline solids at room temperature because the ions are held together by ionic chemical bonds.

Molecular compounds can also exist as crystalline solids.

- Example: $\mathrm{H}_{2} \mathrm{O}$ (ice or snow flakes)
$\mathrm{H}_{2} \mathrm{O}$ molecules are not ions, so what forces are responsible for holding $\mathrm{H}_{2} \mathrm{O}$ molecules, or other molecules, together in their solid states?

The answer is that there are electrostatic attractive forces called \qquad $\underline{\square}$ that attract molecules to other molecules.

Noncovalent interactions are quite different from the covalent bonding forces that are present within molecules and polyatomic ions.

- \qquad bonding forces result from shared electrons.
- Noncovalent interactions, as the name implies, do not involve the sharing of electrons; they are strictly electrostatic attractions.

In this video, you will learn about five types of noncovalent interactions.

1) Hydrogen Bonding

Hydrogen bonding is the result of the electrostatic attraction between the partial positive charged end of a particularly strong polar bond ($\mathrm{O}-\mathrm{H}, \mathrm{N}-\mathrm{H}$, or $\mathrm{F}-\mathrm{H}$) and the negative charge of a lone pair of electrons on a very electronegative atom (O, N, or F).

Example: Hydrogen bonding is the major force responsible for $\mathrm{H}_{2} \mathrm{O}$, a relatively small and light molecule, existing in the liquid phase instead of the gaseous phase at room temperature.

On the Left: Hydrogen bonds (as dashed lines) in a ball and stick model of an ice crystal.

Understanding Check:

The line bond structures of ammonia and acetone are shown below:

ammonia

a. Can hydrogen bonding occur between two ammonia molecules?
b. Can hydrogen bonding occur between two acetone molecules?
c. Can hydrogen bonding occur between an ammonia molecule and an acetone molecule?

2) Dipole-Dipole Forces

Polar molecules are attracted to other polar molecules by a type of noncovalent interaction called the
\qquad force.

The partially positive $\left(\boldsymbol{\delta}^{+}\right)$end of one molecule's dipole is electrostatically attracted to the partially negative ($\boldsymbol{\delta}^{\boldsymbol{-}}$) end of another molecule's dipole (and vice versa).

Example: Diethyl Ether

Understanding Check:

a. Can a dipole-dipole force occur between two $\mathrm{H}_{2} \mathrm{O}$ molecules?
b. Can a dipole-dipole force occur between two methane $\left(\mathrm{CH}_{4}\right)$ molecules?
c. Can a dipole-dipole force occur between two acetone molecules?

It is noncovalent interactions that hold molecules together such that they exist in the solid or liquid phases instead of the gaseous phase.

Whether a substance exists in the gas, liquid, or solid phase is determined by a \qquad between noncovalent interactions (working to keep the particles close to one another) and temperature (kinetic energy working to distribute the particles randomly in their container).

- If the noncovalent interactions are dominant, then the substance will exist in the solid or liquid phase.
- If the temperature/kinetic energy can overcome the noncovalent interactions, then the substance will exist in the gaseous phase.

It was observed that nonpolar molecules such as $\mathrm{CO}_{2}, \mathrm{O}_{2}$, and N_{2}, which are not capable of interacting through dipole-dipole forces or hydrogen bonding, can be cooled to temperatures at which they exist in the liquid and solid phases.
In 1930, Fritz London, along with R. Eisenschitz, came up with a model to explain this observation.

3) London Dispersion Forces

The explanation is based on our third type of noncovalent interaction, which came to be known as London dispersion forces, named in honor of Fritz London.
London dispersion forces are caused by an "instantaneous" dipole in one molecule \qquad the formation of a "temporary" dipole in another molecule.

molecules, polar and nonpolar, contain electrons $\overline{\text { and will therefore be attracted to each other through }}$ London dispersion forces.

The \qquad a molecule is, the easier (lower in energy) it is to polarize its electrons, and therefore, the stronger is its London dispersion force interactions.

- This trend can be observed by noting the boiling points of the molecules in the table below:

Effect of Molecular Size on London Dispersion Forces			
Molecule Name	Condensed Structure	Boiling Point $\left({ }^{\circ} \mathrm{C}\right)$	Phase at Room Temperature
methane	CH_{4}	-164	gas
ethane	$\mathrm{CH}_{3} \mathrm{CH}_{3}$	-89	gas
propane	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$	-42	gas
butane	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	0	gas
pentane	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	36	liquid

Understanding Check:

a. Can London dispersion forces occur between two CBr_{4} molecules?
b. Can London dispersion forces occur between two $\mathrm{H}_{2} \mathrm{O}$ molecules?
c. Which of the following substances is predicted to have the higher boiling point:

$$
\begin{gathered}
\text { decane }\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) \\
\text { or } \\
\text { nonane }\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)
\end{gathered}
$$

4) Ion-Dipole Interactions

An ion-dipole interaction, as the name implies, is the electrostatic attractive interaction between an ion (or formal charge) and the \qquad of a polar molecule.

The attraction could be between an anion (or negative formal charge) and the partially positive end $\left(\boldsymbol{\delta}^{+}\right)$of a dipole, or vice versa, between a cation (or positive formal charge) and the partially negative end $\left(\boldsymbol{\delta}^{-}\right)$of a dipole.

The attraction could be between an anion (or negative formal charge) and the partially positive end $\boldsymbol{\delta}^{+}$) of a dipole, or vice versa, between a cation (or positive formal charge) and the partially negative end $\left(\boldsymbol{\delta}^{-}\right)$of a dipole.

Examples: Sodium cations or chloride anions interacting with polar water molecules.

Understanding Check:

a. Can an ion-dipole interaction occur between ammonium $\left(\mathrm{NH}_{4}{ }^{+}\right)$and $\mathrm{H}_{2} \mathrm{O}$?
b. Can an ion-dipole interaction occur between bromide $\left(\mathrm{Br}^{-}\right)$and I_{2} ?

5) Salt Bridge Interactions

A salt bridge is the electrostatic attractive interaction between a negative formal charge and a positive formal charge in protein.

Salt bridges are one of the noncovalent interactions that are responsible for the way a protein folds up onto itself to give it the shape that is necessary for it to perform its biological function.

Summary of Noncovalent Interactions

In this video, you learned about five types of noncovalent interactions.
When these interactions occur between molecules (as opposed to monatomic or polyatomic ions), they are sometimes referred to as intermolecular forces.

Noncovalent interactions cause molecules to be attracted to each other and can result in molecular compounds existing as liquids or solids.

In the case of large molecules or polyatomic ions that can fold back upon themselves, noncovalent interactions can occur between two regions within an individual particle.

Summary of Noncovalent Interactions

Noncovalent Interaction	Interaction Between:
Hydrogen Bonding Electrostatic attractive force between the partially positive charged hydrogen end of an $\mathrm{O}-\mathrm{H}, \mathrm{N}-\mathrm{H}$, or $\mathrm{F}-\mathrm{H}$ bond and the negative charge of a lone pair on an O, F, or N .	
Dipole-Dipole Electrostatic attractive force between two polar molecules.	
London Dispersion Forces Electrostatic attractive force between any two molecules.	
Ion-Dipole Electrostatic attractive force between a dipole and an ion or formal charge. The partially positive charge of a dipole is attracted to a negatively charged ion or a negative formal charge. The partially negative charge of a dipole is attracted to a positively charged ion or positive formal charge.	
Salt Bridge Electrostatic attractive force between a negative formal charge and a positive formal charge in protein.	Protein Protein Formal Attractive Charge Force Charge

Organic chemistry is the chemistry of \qquad -containing compounds.

Hydrocarbons

Hydrocarbons contain only \qquad and \qquad atoms.
Hydrocarbons are the main source of energy used by humans. Hydrocarbons are burned in a chemical process called combustion in order to do various types of work or to generate heat.

The majority of the hydrocarbons on earth exists as crude oil (or petroleum), a mixture of various hydrocarbon molecules and small amounts of other substances. Crude oil is considered a "fossil fuel" because it is formed from huge amounts of dead organisms, primarily zooplankton and algae, that have been buried under sedimentary rock and exposed to high temperature and pressure. Under those conditions and in the absence of oxygen, the molecules from the dead organisms are converted to petroleum through a series of chemical reactions.
Fossil fuel is called a non-renewable energy source since its process of formation occurs over millions of years. The hydrocarbon molecules in crude oil are further separated (refined) into various materials such as gasoline, petroleum jelly, paraffin wax, diesel fuel, asphalt, and baby oil.
Hydrocarbons can be categorized into the four subcategories, shown in the table below, based on their chemical bonding patterns.

Category	Defining Feature	Saturation	Example
alkane	all single bonds	saturated	ethane $\mathrm{CH}_{3}-\mathrm{CH}_{3}$
alkene	at least one carboncarbon double bond	unsaturated	ethene $\mathrm{CH}_{2}=\mathrm{CH}_{2}$
alkyne	at least one carboncarbon triple bond	unsaturated	ethyne $\mathrm{CH} \equiv \mathrm{CH}$
aromatic	alternating double and single bonds in a cyclic hydrocarbon	unsaturated	benzene

Hydrocarbons are also classified as being either \qquad (all single bonds) or \qquad (contains one or more carbon-carbon double or triple bonds).
Another way that hydrocarbons are classified by their bonding pattern is either as normal, branched, or cyclic.

Example of a branched hydrocarbon:

The line bond, condensed, and skeletal structures for isopentane are shown below.

Line Bond Structure

Condensed Structure

Skeletal Structure

In isopentane, there are four carbons bonded in a linear sequence.
There is one carbon that " \qquad " from the linear sequence, therefore isopentane is classified as a branched hydrocarbon.

Example of a normal hydrocarbon:

The line bond, condensed, and skeletal structures for propane are shown below.

Line Bond Structure

Condensed Structure

Skeletal Structure

In propane, \qquad of the carbons are bonded in a linear sequence, therefore propane is classified as a normal hydrocarbon.
For both normal and branched alkanes, if " \boldsymbol{n} " is the number of carbon atoms in the molecule, then the alkane will have the molecular formula of $\mathrm{C}_{n} \mathrm{H}_{(2 n+2)}$.

" n " (the number of carbon atoms) $=5$
The molecular formula is $\mathrm{C}_{5} \mathrm{H}_{(2 \cdot 5+2)}=\mathbf{C}_{5} \mathbf{H}_{12}$

isopentane

(a branched hydrocarbon)

$" \boldsymbol{n} "=3$
The molecular formula is $\mathrm{C}_{3} \mathrm{H}_{(2 \cdot 3+2)}=\mathbf{C}_{3} \mathbf{H}_{8}$

Example of a cyclic hydrocarbon:

The line bond, condensed, and skeletal structures for cyclohexane are shown below.

Line Bond Structure

Condensed Structure

Skeletal Structure

When the carbons in a hydrocarbon molecule are bonded together such that they form a \qquad , we call it a cyclic hydrocarbon.

Abstract

Alkanes Alkanes are molecules that consist only of carbon and hydrogen and contain only single bonds. The primary source of alkanes is crude oil and natural gas. Natural gas is formed in the same way as crude oil, except that the original source of organics is from buried plants and animals. It is composed primarily of methane $\left(\mathrm{CH}_{4}\right)$ and ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$, but also has significant amounts of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$, butane $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)$, pentane $\left(\mathrm{C}_{5} \mathrm{H}_{12}\right)$, other hydrocarbons, and some non hydrocarbon gases. Alkanes with $4-12$ carbons are the major component of gasoline. Gasoline that is high in branched alkanes is preferred because the branched molecules reduce engine "knocking." The "octane rating" of gasoline is related to the amounts and types of branched alkanes. Gasoline also contains small amounts of alkenes. Currently in the US, refineries are required to add alcohol (a renewable fuel source) to gasoline at a concentration of 10%. Diesel fuel is composed of alkane molecules with $9-16$ carbons (75%) and aromatic hydrocarbons (25%). Alkane molecules with more than sixteen carbon atoms are used for fuel oil (kerosene) and lubricating oil. Paraffin wax is composed primarily of alkane molecules with 20-40 carbon atoms. Paraffin wax is used for candles, electrical insulation, and lubrication.

Naming Alkanes

IUPAC rules, devised by the International Union of Pure and Applied Chemistry, are a widely used method of naming organic compounds.

Using the IUPAC rules involves identifying an alkane's \qquad (the longest continuous chain of carbon atoms in the molecule) and \qquad (atoms or groups of atoms attached to the parent chain).

In alkanes, the substituents, called \qquad , are constructed solely of carbon and hydrogen atoms.

Method for Naming Normal and Branched Alkanes

Step 1. Name the parent chain.

For normal and branched alkanes, the parent chain is the longest, continuous chain of carbons atoms.

The parent chain is named by combining a prefix, that specifies the number of carbon atoms in the parent chain, with the " \qquad " suffix.

Example: If a linear or branched alkane has three carbon atoms in the parent chain, the parent chain name is propane

In a normal (unbranched) alkane, there are no substituents, and the molecule's name is identical to the parent chain name.

- Example: The name for the normal alkane with four carbons is

Prefixes for Naming Parent Chains

Number of Carbons in Parent Chain	Naming Prefix
1	meth
2	eth
3	prop
4	but
5	pent
6	hex
7	hept
8	oct
9	non
10	dec

Step 2. Name any alkyl group substituents.
Alkyl group substituents are comprised of the carbons and hydrogens that "branch" from the parent chain.

In the molecule drawn below (a branched alkane), the parent chain has four carbons and one alkyl group substituent.

Alkyl group substituents are named based on the \qquad of \qquad in the substituent.

If there is one carbon in the substituent, we call it a
\qquad group.

If there are two carbons in the substituent, we call it an
\qquad group.

When three carbons are contained in a substituent, then there are two distinct bonding patterns that are possible.

If a carbon on the end of the substituent is bonded to the parent chain, we call the substituent a \qquad group.

If the carbon in the center of the substituent is bonded to the parent chain, we call the substituent an \qquad group.

There are multiple, correct ways to draw propyl groups in structural formulas.

condensed formula

skeletal formula

There are multiple, correct ways to draw isopropyl groups in structural formulas.

condensed formula

skeletal formula

The condensed structures of alkyl group substituents with 1-4 carbon atoms are shown on the right.

I ask my students to memorize the top four on the list (methyl through butyl).

- Check with your instructor to see which ones you need to memorize.

Step 3. Determine the point of attachment of alkyl group(s) to the parent chain.

In order to uniquely name molecules, the name must indicate to which parent chain-carbon a substituent is attached.

- For example, there are two different molecules that both have a 5-carbon parent chain and one methyl group substituent.

Alkyl Groups		
Number of Carbon Atoms	Alkyl Group Name	Condensed Structure
1	methyl	$-\mathrm{CH}_{3}$
2	ethyl	$-\mathrm{CH}_{2} \mathrm{CH}_{3}$
3	propyl	$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
3	isopropyl	
4	butyl	$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
4	isobutyl	
4	sec-butyl	
4	tert-butyl (or t-butyl)	

Since there are two ends of the parent chain, we begin numbering from the end of the parent chain that is \qquad to a substituent.

For example, the parent chain carbons are assigned position numbers for alkane shown below.

In the alkane shown above, note that the point of attachment of the methyl group substituent is to the carbon at position number " 2 " on the parent chain.

Step 4. Construct the name of the alkane by placing the alkyl groups in alphabetical order and specifying their position numbers, followed by the name of the parent chain.
Step 4A: List the alkyl groups along with their position numbers, in \qquad order.

- Write the position number(s) in front of the substituent(s).
- In our example molecule, we write: 2-methyl.

WHEN NEEDED: Add the labels di, tri, or tetra in front of the alkyl group name if two, three, or four (respectively) identical substituents are present. Not needed in this example.

Step 4B: Write the parent chain name behind the list of alkyl groups.

- In our example, we have only one substituent: 2-methyl.
- The parent chain (five carbons) is pentane.

We write the IUPAC name of this molecule as: 2-methylpentane.

Example: Give the IUPAC name for the alkane shown below.

Step 1. Name the parent chain.
The parent chain (seven carbons) is heptane.

Step 3. Determine the point of attachment of alkyl group(s) to the parent chain.

Step 4. Construct the name of the alkane by placing the alkyl groups in alphabetical order and specifying their position numbers, followed by the name of the parent chain.

3-ethyl-2-methylheptane

Example: Give the IUPAC name for the alkane shown below.

Step 1. Name the parent chain.
The parent chain (eight carbons) is octane.

Step 2. Name any alkyl group substituents.

Step 3. Determine the point of attachment of alkyl group(s) to the parent chain.

Step 4. Construct the name of the alkane by placing the alkyl groups in alphabetical order and specifying their position numbers, followed by the name of the parent chain.
WHEN NEEDED: Add the labels di, tri, or tetra in front of the alkyl group name if two, three, or four (respectively) identical substituents are present.
We will use the "di" prefix for the methyl groups (dimethyl)
Since one of the methyl groups is on carbon number $\mathbf{2}$ and the other is on carbon number $\mathbf{3}$, we write 2,3-dimethyl.

Place a comma between position numbers; note that we used "2,3-"
Place a dash between position numbers and letters.
NOTE:
Alphabetize using the alkyl group name only; disregard the Greek prefixes (di, tri, tetra).

5-ethyl-2,3-dimethyloctane

Common Errors

Do not assume that the parent chain position numbers always start with carbon number 1 as the left-most parent carbon.

There is often many different ways to draw the same molecule.
For example, 2-methylpentane can be correctly drawn as either of the structures shown below.

There is no molecule called 4-methylpentane.
The parent chain is the longest, continuous chain of carbons atoms, NOT necessarily the carbon chain that is drawn horizontally in a single line.

For the molecule shown below, you may be temped to use octane for the parent chain (shaded blue), and then name the molecule 3-propyloctane.

The correct way to think about naming this molecule is shown below.

4	5	6	7	8
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$				
$!$				
$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$				
3				

The name of this molecule is 4-ethylnonane.

Summary for Naming Normal and Branched Alkanes

Step 1. Name the parent chain.

- For normal and branched alkanes, the parent chain is the longest, continuous chain of carbons atoms.
Step 2. Name any alkyl group substituents.
Step 3. Determine the point of attachment of alkyl group(s) to the parent chain.
- In order to assign "position numbers" to the substituents, the carbons in the parent chain are numbered. Begin numbering from the end of the parent chain that is nearest to a substituent.
Step 4. Construct the name of the alkane by placing the alkyl groups in alphabetical order and specifying their position numbers, followed by the name of the parent chain.
- List the alkyl groups along with their position numbers, in alphabetical order.
- Add the labels di, tri, or tetra in front of the alkyl group name if two, three, or four (respectively) identical substituents are present.
- Alphabetize using the alkyl group name only; disregard the Greek prefixes (di, tri, tetra).
- Place a comma between position numbers, and a dash between position numbers and letters.
- Write the parent chain name behind the list of alkyl groups.

Understanding Check: Give the correct IUPAC name for these molecules.

Understanding Check: Give the correct IUPAC name the alkane shown below.

Drawing the Structure of an Alkane from its Name
Example: Draw the condensed and skeletal structure for 2,2-dimethyl-4-propyloctane.

condensed structure

skeletal structure

Understanding Check: Draw the condensed and skeletal structure for 6-isopropyl-2,3-dimethylnonane.

Cycloalkanes

Some alkanes contain carbon atoms bonded, not in a linear sequence, but in a "ring" pattern.
These alkanes are called \qquad .

- Example of a cycloalkane: cyclohexane (shown below).

Line Bond Structure

Condensed Structure

Skeletal Structure

It is very common to see five- and six-carbon rings that occur in nature. The reason for this is that the bond angles in 5 - and 6 -carbon rings is fairly close to the 110° bond angles expected in molecules with AB_{4} geometry.

In addition to the line bond, condensed, skeletal, and ball-and-stick representations, another structural representation called a " \qquad - \qquad " is also used for cycloalkanes.

- Side-view structures contain information about the three-dimensional arrangement of the atoms. The ball-and-stick model and a side-view structure for cyclohexane are shown below.

ball-and-stick model

side-view structure

Note that in the ball-and-stick model (left), the ring of carbons (carbon atoms shaded black) is oriented horizontally. Each carbon is bonded to two hydrogen atoms. From each ring-carbon, one of these two bonds is oriented in a direction pointing above the ring structure (bonds to the red-shaded hydrogens), and the other bond is oriented in a direction pointing below the ring structure (bonds to the blue-shaded hydrogens).

It is convenient to express this three-dimensional information in the side-view structural formula. The actual bond angles are shown in the ball-and-stick models and are implied in the side-view representation.

In side-view structures, bold lines are used to indicate the perspective when viewing the ring. The ring is depicted as being oriented horizontally with the bold edges toward the viewer. The two bonds that are oriented upwards or downwards from the ring-carbons are drawn vertically. The hydrogen atoms in red font correspond to the hydrogens shown as red spheres in the ball and stick model; likewise the hydrogen atoms in the blue font correspond to the hydrogens shown as blue spheres in the ball-and-stick model.

Structural Representations of Cycloalkane Rings

	Cyclopropane	Cyclobutane	Cyclopentane	Cyclohexane
Line Bond Structure				
Condensed Structure				
Skeletal Structure				\square
Side-View Structure				
Ball-andStick Model				

Naming Cycloalkanes

Step 1. Name the parent chain.
For cycloalkanes, the parent chain is the \qquad of carbon atoms.

- The parent chain names for ring structures with 3 to 8 carbon atoms are shown on the right.

Note that these names are based on the names used for the parent chains of branched alkanes, however the term " \qquad " is used as a prefix.

Common Error: A common mistake made by first-semester students is the failure to differentiate cyclic and noncyclic structures.

- For example, see the difference between hexane and cyclohexane below:

Cyclohexane
$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$

Hexane

Step 2. Name any alkyl groups substituents.
The alkyl groups are named in the same way as we did for branched alkanes (methyl, ethyl, propyl, isopropyl, etc.).

Step 3. Determine the point of attachment of alkyl group(s) to the parent chain.

We use the following rules for assigning position numbers to the ring-carbons.

- If there is only \qquad substituent, a position number is not used.
- Name the molecule by placing the alkyl group substituent name in front of the parent chain name; no further steps are needed.
- For example, consider the molecule drawn to the right with a single, methyl group substituent attached to a six-carbon ring.

We name this molecule methylcyclohexane.

- If there is more than one substituent, assign position numbers to the alkyl groups.
- For identical substituents, arbitrarily assign one of them to position number one. Then, beginning with carbon number 1, number the other carbons in the direction (clockwise or counterclockwise) that gives the \qquad sum of position numbers.
- Example:

1,3-dimethylcyclohexane (correct)
vs. 1,5-dimethylcyclohexane
(incorrect)

- When substituents are non identical, the ring-carbon attached to the substituent that comes first in alphabetical order is assigned position number 1.
- For example, the molecule drawn below has non identical substituents.

We assign the position number 1 to the ring-carbon that is bonded to the ethyl group because ethyl comes before methyl alphabetically.

We number the ring-carbons in the counter-clockwise direction in order to result in the smallest sum of position numbers.

1-ethyl-3-methyl

Step 4. Construct the name of the alkane by placing the alkyl groups in alphabetical order and specifying their position numbers, followed by the name of the parent chain.

- Step 4 is used in the exact same way for cycloalkanes as for branched alkanes.
- Let's name the cycloalkanes from our last two examples.

1,3-dimethylcyclohexane

1-ethyl-3-methylcyclohexane

Understanding Check:

The cycloalkane molecule shown below exists as a colorless gas at room temperature. What is the IUPAC system name for this molecule?

Understanding Check:

Draw the line bond, condensed, and skeletal structures of the following cycloalkanes:
a. 1,1-dimethylcyclobutane
b. 1-methyl-3-propylcyclopentane
c. 1,4-diethylcyclohexane

Isomers

Isomers are molecules that have the \qquad molecular \qquad , but differ in the way the atoms are arranged.

You will learn about two types of isomers:

1) Constitutional Isomers
2) Stereoisomers

Constitutional Isomers

Molecules that have the same molecular formula, but different atomic connections are called
\qquad . \qquad .
Example: Consider the three constitutional isomers that have the molecular formula of $\mathrm{C}_{5} \mathrm{H}_{12}$.

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	CH3	
pentane	2-methylbutane	

Understanding Check: Draw the constitutional isomers for $\mathrm{C}_{4} \mathrm{H}_{10}$

Understanding Check: Draw and name the five constitutional isomers of $\mathrm{C}_{6} \mathrm{H}_{14}$

Conformations

The infinite number of shapes that a molecule can take, because of the rotation around bonds, are called
\qquad -

Example: A few of the infinite conformations of butane resulting from rotation about the single bond between carbon number 2 and carbon number 3 .

Common Error Warning: Do not confuse conformations with constitutional isomers! The different conformations of a molecule have the same molecular formula and have the same atomic connections; whereas constitutional isomers have the same molecular formula yet different atomic connections.

Stereoisomers

In cycloalkanes, the free rotation around the carbon-carbon single bonds is \qquad because hydrogens and/or substituents bonded to ring-carbons are too large to rotate through the center of the ring structure.

The restricted rotation results in the existence of a special type of \qquad .

Stereoisomers are molecules that:

- have the same molecular formula
- have the same atomic connections
- have a different 3-dimensional shape

So far the definition of stereoisomers is the same as conformations - but the next item makes them quite different.

- cannot be converted from one to another without breaking and reforming bonds It is not possible for one stereoisomer to take the shape of another stereoisomer by rotation around a bond.

Geometric Isomers

When stereoisomers exist because of restricted bond rotation, the stereoisomers are called
\qquad isomers.

Examples:

Geometric isomers come in pairs - one is the " \qquad -" and one is the " \qquad $-"$ isomer.

When cycloalkanes have \qquad substituents, each on a different ring-carbon, then there are two geometric isomers.

For cycloalkanes, a cis geometric isomer has both substituents oriented in the same direction (either both pointing above the ring structure or both pointing below the ring structure).
Conversely, a trans geometric isomer has the two substituents oriented in opposite directions (one pointing above the ring structure and the other pointing below the ring structure).
two ways to draw cis cyclic compounds:

two ways to draw trans cyclic compounds:

To visualize the cycloalkane geometric isomers, we must use ball-and-stick representations or draw side view structures; the three dimensional information in the cis vs. trans geometries cannot be visualized using our standard line bond, condensed, or skeletal structures.
Because alkyl group substituents cannot rotate through the center of the ring, the trans and cis isomers of cycloalkanes are two different molecules; they have slightly different physical properties (density, melting points, vapor pressure, etc.) and different chemical properties.

There are only slight differences in many properties because the isomers are very similar (but not identical).

- One important difference in the properties of some geometric isomers is their bioactivity.

Understanding Check

Using the templates below, complete the side view structures for the cis and trans isomers of 1,2 dimethylcyclopentane.

Understanding Check

Which of the following molecules have cis and trans isomers? There may be more that one correct selection.
a) 1,2-dimethylcyclopentane
b) 1-ethyl-2-propylcyclobutane
c) methylcyclohexane
d) 1,1-dimethylcylcohexane

Unsaturated Hydrocarbons

Review: Hydrocarbons can be categorized into the four subcategories:

Category	Defining Feature	Saturation	Example
alkane	all single bonds	saturated	ethane $\mathrm{CH}_{3}-\mathrm{CH}_{3}$
alkene	at least one carboncarbon double bond	unsaturated	ethene $\mathrm{CH}_{2}=\mathrm{CH}_{2}$
alkyne	at least one carboncarbon triple bond	unsaturated	ethyne $\mathrm{CH} \equiv \mathrm{CH}$
aromatic	alternating double and single bonds in a cyclic hydrocarbon	unsaturated	benzene

Unsaturated hydrocarbons contain one or more carbon-carbon \qquad or \qquad bonds.

Alkenes

\qquad are molecules that consist only of carbon and hydrogen atoms and contain at least one carbon-carbon double bond.

Systemic Method for Naming Alkenes:

Step 1. Find and name the parent chain.

The parent chain is the longest, continuous chain of carbon atoms that \qquad the double bond.

The parent chain is named by combining a numbering prefix that specifies the number of carbon atoms in the parent chain, with the "- \qquad " suffix, which identifies the molecule as an alkene.

This parent chain numbering prefixes are the same as were used for alkanes, however we use the "ene" suffix.

- Example: If an alkene has three carbon atoms in the parent chain, the parent chain name is propene.

For alkenes with more than three carbons, the position of the double bond must be indicated by adding a position number to the parent chain name.

- Position number $\mathbf{1}$ is assigned to the carbon at the end of the parent chain that is closest to the double bond.
$\stackrel{1}{\mathrm{CH}_{2}}=\stackrel{2}{\mathrm{C}} \mathrm{H}-\stackrel{3}{\mathrm{C}} \mathrm{CH}_{2}-\stackrel{4}{\mathrm{C}_{\mathrm{C}}^{\mathrm{H}}} \mathrm{C}_{2}-\stackrel{5}{\mathrm{CH}_{3}}$
- If the double bond is between carbons number $\mathbf{1}$ and $\mathbf{2}$, the number " $\mathbf{1}$ " is used as a prefix to the parent chain name. For example, in the molecule below, the parent chain is called 1-pentene.
$\stackrel{1}{\mathrm{CH}_{3}}-\stackrel{2}{\mathrm{C}} \mathrm{H}=\stackrel{3}{\mathrm{C}} \mathrm{H}-\stackrel{4}{\mathrm{CH}_{2}}-\stackrel{5}{\mathrm{CH}_{3}}$
- If the double bond is between carbons number $\mathbf{2}$ and $\mathbf{3}$, the number " $\mathbf{2}$ " is used as a prefix to the parent chain name. For example, in the molecule below, the parent chain is called 2-pentene.
- If the double bond is between carbons number 3 and 4 , the number " 3 " is used as a prefix to the parent chain name...etc.

Note that this is different from the method we used for numbering alkanes; for alkanes we assigned position number $\mathbf{1}$ to the carbon on the end of the parent chain that was closest to a substituent.

Step 2. Name any alkyl group substituents.

- Alkyl group substituents are named in the same way as you did for alkanes.

Step 3. Construct the name of the alkene by placing the alkyl groups in alphabetical order and specifying their position numbers, followed by the name of the parent chain.

- This is done the same way as you did with alkanes.
- Remember to use a dash between position numbers and letters.

Example: What is the name of this alkene:

Step 1. Find and name the parent chain.

The parent chain is the longest, continuous chain of carbon atoms that contains the double bond.

- There are seven carbons in the parent chain.
$\mathrm{CH}_{2} \mathrm{CH}_{3}$
$\stackrel{1}{\mathrm{CH}_{3}} \stackrel{2}{\mathrm{C}} \mathrm{H}_{2} \stackrel{3}{\mathrm{C}}=\stackrel{4}{\mathrm{C}} \mathrm{H}_{\mathrm{C}}^{\mathrm{C}} \mathrm{H}_{2} \stackrel{6}{\mathrm{C}} \mathrm{H}_{2} \stackrel{7}{\mathrm{C}} \mathrm{H}_{3}$
Position number $\mathbf{1}$ is assigned to the carbon at the end of the parent chain that is closest to the double bond.
Since the double bond is between carbons number $\mathbf{3}$ and 4, the number " $\mathbf{3}$ " is used as a prefix in the parent chain name.

Parent chain name: 3-heptene
Step 2. Name any alkyl group substituents.
Alkyl group substituents are named in the same way as we did for alkanes.
There is one substituent in this example: ethyl
Step 3. Construct the name of the alkene by placing the alkyl groups in alphabetical order and specifying their position numbers, followed by the name of the parent chain.
The ethyl substituent is attached to carbon number 3, use 3-ethyl.
The name of this molecule is: 3-ethyl-3-heptene

Example: What is the name of this alkene:
Step 1. Find and name the parent chain.

The parent chain is the longest, continuous chain of carbon atoms that contains the double bond.

- There are six carbons in the parent chain.

Position number 1 is assigned to the carbon at the end of the
 parent chain that is closest to the double bond.
Since the double bond is between carbons number $\mathbf{1}$ and $\mathbf{2}$, the number " $\mathbf{1}$ " is used as a prefix in the parent chain name.

Parent chain name: 1-hexene

Step 2. Name any alkyl group substituents.

There is one substituent in this example: methyl
Step 3. Construct the name of the alkene by placing the alkyl groups in alphabetical order and specifying their position numbers, followed by the name of the parent chain.

The methyl substituent is attached to carbon number 5, use 5-methyl.
The name of this molecule is: 5-methyl-1-hexene

Understanding Check: Write the name of this alkene.

Understanding Check: Write the name of this alkene.

Understanding Check

Draw the line bond, condensed, and skeletal structure for each of these alkenes.
a) 2-methyl-1-butene
b) 3-ethyl-4-methyl-3-hexene

Geometric Isomers of Alkenes

Unlike the case for single bonds, there is no rotation around double bonds.
All other bonds to both double-bonded carbon atoms in alkenes are at 120° angles and are on the same
\qquad as the double bond.

- Example: Ethene

Because of the geometry and lack of rotation around double bonded carbons, some alkenes can exist as

\qquad (cis and trans).

- Example: 2-butene

There are two possible geometric arrangements of the two methyl groups attached to the double bonded carbons.

trans-2-butene

cis-2-butene

We identify the cis and trans isomers by noting the positions of alkyl groups on each of the doublebonded carbons relative to an imaginary line passing along the double bond.

When the alkyl groups are on \qquad sides of the imaginary line, we have the trans geometric isomer.

When both of the alkyl groups are on the \qquad side of the imaginary line, we have the cis geometric isomer.

Since the nature of double bonds does not allow free rotation, it is not possible for a trans isomer to rotate and thereby convert to the cis isomer (and vice versa).

I want to elaborate on the inability for cis and trans isomers to interconvert by contrasting geometric isomers and conformations. Conformations of a molecule arise from rotation around single bonds. An infinite number of conformations are possible for an individual molecule. In contrast, geometric isomers are two, distinct molecules that cannot interconvert by rotation around bonds.

In order to differentiate cis vs. trans when using condensed structures for alkenes, the 120° bond angles around the double-bonded carbons are drawn as shown below.

In skeletal structures, the bonds to the alkyl groups that emanate from the double-bonded carbons are oriented as shown below.

There will be two correct ways to draw each cis and each trans isomer.

- For example, the two condensed structures of trans-2-butene shown below are equivalent and equally correct representations of the isomer.

The two condensed structures of cis-2-butene shown below are equivalent.

- The two skeletal structures of trans-2-butene shown below are equivalent and equally correct representations of the isomer.

both are trans-2-butene
The two skeletal structures of cis-2-butene shown below are equivalent.

both are cis-2-butene

Understanding Check

Draw the condensed and skeletal structures for each of the following molecules.
a) trans-2-pentene
b) cis-2-pentene
c) trans-3-hexene
d) cis-3-hexene

Alkynes

Alkynes are hydrocarbon molecules that contain at least one carbon-carbon \qquad bond.

- Like the alkenes, they are unsaturated hydrocarbons.

Naming Alkynes

Alkynes are named in the same way as you did for alkenes; the only difference is that we use the " \qquad $"$ suffix instead of the "ene" suffix.

- Example:

$$
\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3}
$$

Alkyne Molecular Geometry

Alkynes involve a triple bond and the bond angles around the triple-bonded carbons are 180° as illustrated below.

Each of the triple-bonded carbons can have only one other group single bonded to it (octet rule) and this AB_{2} geometry cannot result in geometric (cis/trans) isomers.

Aromatic Hydrocarbons

Aromatic hydrocarbons have alternating single and double bonds between the carbons that form the ring.
The smallest and simplest aromatic hydrocarbon that occurs is called \qquad .

- The line bond, condensed, and skeletal structures of benzene are shown below.

line bond structure

condensed structure

skeletal structures

Naming Aromatic Hydrocarbons

Aromatic hydrocarbons are named using the same method that you used for cycloalkanes; the ring structure is the parent chain.

In this course, we will limit our naming of aromatic hydrocarbons to benzene and benzene rings with substituents.

- Example: The systemic name for the compound shown below is methylbenzene.

methylbenzene

As was the case for cycloalkanes, we do not need to use a position number when there is only one substituent bonded to a ring structure.

Note that sometimes book and journal authors combine (hybridize) skeletal and condensed structures when drawing cyclic compounds.

Example: Compare the skeletal and the skeletal/condensed hybrid structures of methylbenzene:

skeletal

condensed/skeletal hybrid

When cyclic compounds have more than one substituent, position numbers are included (you did so for cycloalkanes). Examples:

1,2-dimethylbenzene (ortho-xylene)

1,3-dimethylbenzene (meta-xylene)

$\underset{\text { (para-xylene) }}{\text { 1,4-dimethylbenzene }}$

The common names are shown in parenthesis under the systemic names.

- When substituents are at positions number 1 and 2, then "ortho-" is used as a prefix in the common names.
- When substituents are at positions number 1 and 3, then "meta-" is used.
- When substituents are at positions number 1 and 4, then "para-" is used.

Some cyclic compounds have \qquad rings.

Fused rings occur when neighboring rings share carbon atoms.

- For example, naphthalene, shown on the right, is an aromatic hydrocarbon that consists of two fused rings. The shared carbon atoms are highlighted red.

naphthalene

Aromatic hydrocarbons that contain fused rings are called polycyclic aromatic hydrocarbons (PAHs).

- Some PAHs are shown in the table on the right.

Number of fused rings		
3	Skeletal Structure	Name
4	Pnthracene	
4		Pentracene
4		

Functional Groups

A \qquad is an atom, group of atoms, or bond that gives a compound a particular set of physical and chemical properties.

Organic compounds are categorized into various \qquad by the functional group(s) that they contain.

You have already seen a couple examples of organic molecule families defined by the type of carboncarbon bond present.

- When a carbon-carbon double bond (functional group) is present, the molecule is assigned to the alkene family.
- In the case of a carbon-carbon triple bond, we assigned the molecule to the alkyne family.

As an introduction to functional groups and families of organic compounds, in this video, I will introduce you to three organic families:

- Alcohols
- Carboxylic Acids
- Esters

The Alcohol Family

Alcohols contains one or more \qquad (-OH) functional groups attached to a hydrocarbon. The general form of an alcohol is shown below with the hydroxyl group highlighted in yellow.

```
Hydrocarbon -Ọ̈-H
```

A specific example of an alcohol is ethanol. The condensed structural formula for ethanol is shown below.

$$
\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{OH}
$$

Ethanol is quite well known for being produced when carbohydrates, with the help of enzymes present in yeast, are used to make to beer, wine, and distilled adult beverages.

The Carboxylic Acid Family

Carboxylic acids contain a \qquad functional group attached to a hydrocarbon.
Carboxyl groups contain both a carbonyl group, which is a carbon double bonded to an oxygen ($\mathbf{C = O}$), and a hydroxyl group ($\mathbf{- O H}$) that are connected to each other and the hydrocarbon (alkyl group) part.

A specific example of a carboxylic acid is acetic acid. The condensed structural formula for acetic acid is shown below.

White vinegar is a mixture composed of 95% water and 5% acetic acid.

The Ester Family

Esters contain a \qquad functional group that is bonded between two hydrocarbon parts.

Carboxylate groups contain both a carbonyl group $(\mathrm{C}=\mathrm{O})$, and an oxygen atom.

The boxes that represent hydrocarbons (alkyl groups) are shaded with different colors because the two hydrocarbon parts are not always identical.

Waxes are examples of esters.

- Waxes are produced in plants and animals; they are esters with relatively large hydrocarbon parts.
- The skeletal structural formula for one of the esters found in beeswax is shown below.

When drawing condensed structures of large molecules, such as the ester shown above, neighboring - CH_{2} - groups can be further condensed in parenthesis as shown below:

Summary of Organic Families and their Functional Groups

Organic Family	Functional Group	Description
Alkene	C=C carbon-carbon double bond	Hydrocarbon with one or more carbon-carbon double bonds.
Alkyne	C \equiv C carbon-carbon triple bond	Hydrocarbon with one or more carbon-carbon triple bonds.
Alcohol	-OH hydroxyl group	One or more hydroxyl groups bonded to a hydrocarbon
Carboxylic Acid	:O: -II carboxyl group	Carboxyl group bonded to a hydrocarbon
Ester	:O: II C-Ö-	Carboxylate group bonded between two hydrocarbons

Noncovalent Interactions Worksheet and Key

Summary of Noncovalent Interactions:

Noncovalent Interaction	Interaction Between:
Hydrogen Bonding Electrostatic attractive force between the partially positive charged hydrogen end of an $\mathrm{O}-\mathrm{H}, \mathrm{N}-\mathrm{H}$, or $\mathrm{F}-\mathrm{H}$ bond and the negative charge of a lone pair on an O, F, or N .	
Dipole-Dipole Electrostatic attractive force between two polar molecules.	
London Dispersion Forces Electrostatic attractive force between any two molecules.	
Ion-Dipole Electrostatic attractive force between a dipole and an ion or formal charge. The partially positive charge of a dipole is attracted to a negatively charged ion or a negative formal charge. The partially negative charge of a dipole is attracted to a positively charged ion or positive formal charge.	
Salt Bridge Electrostatic attractive force between a negative formal charge and a positive formal charge in protein.	Protein Formal Charge Protein Formal Charge

Problems (see the key on the last two pages to check your work)

1) List all of the noncovalent interactions that can occur between the given pairs of molecules.

Molecules	Noncovalent Interaction(s) Which noncovalent interactions occur between these pairs of molecules?
Methane (CH_{4}) and Methane $\left(\mathrm{CH}_{4}\right)$	
 and	
$\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$	
NH_{3} and NH_{3}	
 and	
 and	
HCl and HCl	
CO_{2} and CO_{2}	
CCl_{4} and CCl_{4}	
 and	

2) If the given pairs of substances in the table below were mixed together, list all of the noncovalent interactions that could occur.

Choices:
(A) Hydrogen bonding
(B) Dipole-dipole forces
(C) London dispersion forces
(D) Ion-dipole forces
(E) Salt bridges

Compound Pairs	List of Noncovalent Interactions
NH_{3} and $\mathrm{H}_{2} \mathrm{O}$	
Mg^{2+} and $\mathrm{H}_{2} \mathrm{O}$	
Cl_{2} and H_{2}	
Acetic acid and $\mathrm{H}_{2} \mathrm{O}$ Acetic Acid	
SO_{2} and $\mathrm{H}_{2} \mathrm{O}$	
SO_{2} and $\mathrm{H}_{2} \mathrm{~S}$	
ethane $\left(\mathrm{CH}_{3} \mathrm{CH}_{3}\right)$ and methane $\left(\mathrm{CH}_{4}\right)$	

Key

1) List all of the noncovalent interactions that can occur between the given pairs of molecules.

| Molecules | Noncovalent Interaction(s) |
| :--- | :--- | :--- |
| Methane $\left(\mathrm{CH}_{4}\right)$ and Methane $\left(\mathrm{CH}_{4}\right)$ | London dispersions forces |

2) If the given pairs of substances in the table below were mixed together, list all of the noncovalent interactions that could occur.

Choices:
(A) Hydrogen bonding
(B) Dipole-dipole forces
(C) London dispersion forces
(D) Ion-dipole forces
(E) Salt bridges

Compound Pairs	List of Noncovalent Interactions
NH_{3} and $\mathrm{H}_{2} \mathrm{O}$	A, B, C
Mg^{2+} and $\mathrm{H}_{2} \mathrm{O}$	D (We will limit London dispersion forces to molecules and polyatomic ions; they are too small to be significant in monatomic ions in most applications)
Cl_{2} and H_{2}	C
Acetic acid and $\mathrm{H}_{2} \mathrm{O}$ Acetic Acid	A,B,C
SO_{2} and $\mathrm{H}_{2} \mathrm{O}$	A,B,C,D (There is a formal charge of (1-) on an oxygen in SO_{2}; consider the line bond structure and you will see an oxygen that has just one single bond.)
SO_{2} and $\mathrm{H}_{2} \mathrm{~S}$	B,C,D
ethane $\left(\mathrm{CH}_{3} \mathrm{CH}_{3}\right)$ and methane $\left(\mathrm{CH}_{4}\right)$	C

Alkanes Worksheet and Key

1. Answer the following.
a. What is the general formula for a noncyclic alkane? $\mathrm{C}_{?} \mathrm{H}_{\text {? }}$
b. If a noncyclic alkane contains 15 carbon atoms, how many hydrogen atoms does it contain?
2. Draw the line bond structures of following types of hydrocarbons using four carbon atoms:
a. two noncyclic alkanes
b. two cycloalkanes
3. Give the molecular formula, the line bond structural formula, the condensed structural formula, and the skeletal formula for pentane.

Molecular formula:
Line bond structural formula:

Condensed structural formula:

Skeletal formula:
4. Give the molecular formula, the line bond structural formula, the condensed structural formula, and the skeletal formula for octane.

Molecular formula:

Line bond structural formula:

Condensed structural formula:

Skeletal formula:

5. Give the molecular formula, the line bond structural formula, the condensed structural formula, and the skeletal formula for 4-ethyl-2,3-dimethylheptane.

Molecular formula:

Line bond structural formula:

Condensed structural formula:

Skeletal formula:
6. Give the molecular formula, the line bond structural formula, the condensed structural formula, and the skeletal formula for 3,3-diethyloctane.

Molecular formula:

Line bond structural formula:

Condensed structural formula:

Skeletal formula:

7. What is the systematic name for the following structure?

8. What is the systematic name for the following structure?

9. There are 18 different alkane molecules that all have the molecular formula $\mathrm{C}_{8} \mathrm{H}_{18}$. Molecules with the same molecular formula, but different atomic connections (structural formulas) are called "constitutional isomers". See how many different alkanes, all with the same formula $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$ that you can draw. After you draw them, write their names. You can draw line bond, condensed, or skeletal structures (the key shows skeletal structures).

Alkanes Worksheet Key

1. Answer the following.
a. What is the general formula for a noncyclic alkane? $\mathbf{C}_{\mathbf{n}} \mathbf{H}_{2 \mathbf{n}+2}$
b. If a noncyclic contains 15 carbon atoms, how many hydrogen atoms does it contain? 32
2. Draw the line bond structures of following types of hydrocarbons using four carbon atoms:
a. two noncyclic alkanes

b. two cycloalkanes

3. Give the molecular formula, the line bond structural formula, the condensed structural formula, and the skeletal structure for pentane.

Molecular formula: $\mathrm{C}_{5} \mathrm{H}_{12}$
Line bond structural formula:

Condensed structural formula: $\quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
Skeletal formula:

4. Give the molecular formula, the line bond structural formula, the condensed structural formula, and the skeletal formula for octane.

Molecular formula: $\quad \mathrm{C}_{8} \mathrm{H}_{18}$
Line bond structural formula:

Condensed structural formula:
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
Skeletal formula:
N
5. Give the molecular formula, the line bond structural formula, the condensed structural formula, and the skeletal formula for 4-ethyl-2,3-dimethylheptane.

Molecular formula: $\quad \mathrm{C}_{11} \mathrm{H}_{24}$

Condensed structural formula:

Skeletal formula:

6. Give the molecular formula, the line bond structural formula, the condensed structural formula, and the skeletal formula for 3,3-diethyloctane.

Molecular formula: $\quad \mathrm{C}_{12} \mathrm{H}_{26}$
Line bond structural formula:

Condensed structural formula:

Skeletal formula:

7. What is the systematic name for the following structure?

2-methylbutane
8. What is the systematic name for the following structure?

Note that this is the only "trick question" in this course; the parent chain is the longest continuous chain of carbon atoms, NOT always the chain that is drawn horizontally. The parent chain carbons are shown as black dots and the carbons in substituents (methyl groups) are shown as black squares in the drawing on the right.

3,4,4-trimethylheptane

9. There are 18 different alkane molecules that all have the molecular formula $\mathrm{C}_{8} \mathrm{H}_{18}$. Molecules with the same molecular formula, but different atomic connections (structural formulas) are called "constitutional isomers". See how many different alkanes, all with the same formula $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$ that you can draw. After you draw them, write their names. You can draw line bond, condensed, or skeletal structures (the key shows skeletal structures).
octane

2-methylheptane

4-methylheptane

2,2-dimethylhexane

2,3-dimethylhexane

Continued on next page
2,4-dimethylhexane

2,3,3-trimethylpentane

2,5-dimethylhexane
3,3-dimethylhexane
3,4-dimethylhexane

3-ethylhexane

2,2,3-trimethylpentane

2,2,4-trimethylpentane

2,2,

2,3,4-trimethylpentane

3-ethyl-2-methylpentane

3-ethyl-3-methylpentane

2,2,3,3-tetramethylbutane

Alkenes and Alkynes Worksheet and Key

1. Draw the line bond structures for the following alkenes, cyclic alkenes, and alkynes:
a) noncyclic alkenes that contain 4 carbon atoms (three possible)
b) cyclic alkenes that contain 4 carbon atoms (four possible)
c) alkynes that contain 4 carbon atoms (two possible, neither of them are cyclic alkynes)
2. Draw the line bond structural formula, the condensed structural formula, and the skeletal structural formula for 1-pentene.

Line bond structure:

Condensed structure:

Skeletal formula:
3. Draw the line bond structural formula, the condensed structural formula, and the skeletal structural formula for 2-pentene.

Line bond structure:

Condensed structure:

Skeletal formula:
4. Draw the line bond structural formula, the condensed structural formula, and the skeletal structural formula for 2-methyl-3-heptene.

Line bond structure:

Condensed structure:

Skeletal formula:
5. Draw the line bond structural formula and the condensed structural formula for 3,3-diethyl-1-octyne.

Line bond structure:

Condensed structure:
6. What is the systemic name for the following structure?

7. What is the systemic name for the following structure?

$$
\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}
$$

Alkenes and Alkynes Worksheet Key

1) Draw the line bond structures for the following alkenes, cyclic alkenes, and alkynes:
a) noncyclic alkenes that contain 4 carbon atoms (3 possible)

b) cyclic alkenes that contain 4 carbon atoms (4 possible)

c) alkynes that contain 4 carbon atoms (2 possible, neither of them are cyclic alkynes)

and

2. Draw the line bond structural formula, the condensed structural formula, and the skeletal structural formula for 1-pentene.

Line bond structure:

Condensed structure: $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
Skeletal structure:

3. Draw the line bond structural formula, the condensed structural formula, and the skeletal structural formula for 2-pentene.

Line bond structure:

Condensed structure: $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$
Skeletal structure:

4. Draw the line bond structure, the condensed structural formula, and the skeletal structural formula for 2-methyl-3-heptene.

Condensed structure:

Skeletal structure:

5. Draw the line bond structural formula and the condensed structural formula for 3,3-diethyl-1-octyne.

Line bond structure:

Condensed structure:

6. What is the systemic name for the following structure?

5-methyl-2-heptene
7. What is the systemic name for the following structure?

$$
\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}
$$

Naming and Drawing Alkenes Worksheet and Key

1) Draw and name the cis and trans condensed structure of:

cis condensed structure:	trans condensed structure:
name:	name:

2. Name the following alkenes (include cis- or trans- for the alkenes that when appropriate)
a)

Name: \qquad
b)

$$
\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}
$$

Name: \qquad
c)

Name: \qquad
Be careful to correctly identify carbon \#1......
d)

Name: \qquad
e)

Name: \qquad
f)

Name: \qquad
3. Draw the line bond, condensed, and skeletal structure of the following alkenes.
a) 1-hexene

line-bond structure	condensed structure	skeletal structure

b) 4-isopropyl-2-methyl-1-nonene

line-bond structure	condensed structure	skeletal structure

c) cis-2-hexene

line-bond structure	condensed structure	skeletal structure

d) trans-2-pentene

line-bond structure	condensed structure	skeletal structure

e) cis-2-methyl-3-hexene

line-bond structure	condensed structure	skeletal structure

Key

1) Draw and name the cis and trans condensed structure of:

cis condensed structure:	trans condensed structure:
name: cis-2-pentene	name: trans-2-pentene

2. Name the following alkenes (include cis- or trans- for the alkenes that when appropriate)
a)

Name: \qquad 1- pentene \qquad
b)

Name: ___1- heptene
c)

Name: ___ 7- methyl-3-octene
Note: Carbon \#1 is the carbon nearest to the double bond
d)

Name: \qquad cis-2-butene
e)

Name: \qquad trans-4-nonene
f)

Name: \qquad cis-3-heptene
3. Draw the line bond, condensed, and skeletal structure of the following alkenes.
a) 1-hexene

line-bond structure					condensed structure

b) 4-isopropyl-2-methyl-1-nonene

line-bond structure	condensed structure	skeletal structure
		Note: There are several correct ways to draw many of these skeletal structures.

c) cis-2-hexene

line-bond structure	condensed structure	skeletal structure
 Note: cis/trans is not displayed in linebond structures (only displayed in condensed and skeletal structures).		

d) trans-2-pentene

line-bond structure		

e) cis-2-methyl-3-hexene

line-bond structure	condensed structure	skeletal structure

Chapter 5 Lecture Notes: Gases, Liquids, and Solids

Educational Goals

1. Define and compare the terms specific heat, heat of fusion, and heat of vaporization. Know the equations that involve these concepts and be able to use them in calculations.
2. Understand the terms energy and energy change.
3. Know the definition of pressure, vapor pressure, and atmospheric pressure and be able to convert between pressure units of atm, Torr, and psi.
4. List the variables that describe a gas ($\mathrm{P}, \mathrm{V}, \mathrm{n}$, and T) and be able to write and use the equations for the various gas laws.
5. Explain Dalton's Law of Partial Pressures and define partial pressure.
6. Understand the definitions of density and viscosity. Given the density, and either the mass or volume of a substance, be able to determine the volume or mass (respectively).
7. Know that a liquid in an open container will boil when its vapor pressure is equal to the atmospheric pressure.
8. Describe, compare, and contrast amorphous solids and crystalline solids.
9. Describe the makeup of the four classes of crystalline solids.

So far, you have learned about the underlying, nanometer scale, structure of matter. In chapter 5, you will use your new understanding of matter's nano-scale structure to better understand the macro-scale properties of the world that you can observe directly.

We defined chemistry as the study of matter and how it interacts with energy and with other matter. In the previous chapters, you developed a model of matter. You learned that atoms consist of protons, neutrons, and electrons. You learned how these subatomic particles arrange themselves when they form atoms. Then you saw how atoms can combine to form ionic or covalent compounds. You learned how molecules and ions interact with each other through noncovalent interactions (hydrogen bonding, dipole-dipole forces, London forces, ion-dipole interactions, and salt bridges). In chapter 5 you will learn about how matter interacts with energy.

I will begin chapter 5 by discussing three phases of matter: solid, liquid, and gas. Throughout chapter 5, I will elaborate on the characteristics and properties of these three phases of matter.

Matter

Matter is typically found in one of three different physical \qquad .

These three phases of matter are: solid, liquid, and gas.
At a given temperature:

- solids have fixed shapes and volumes
- liquids have variable shapes and fixed volumes
- gases have variable shapes and volumes.

A fourth, higher energy phase of matter that does not naturally occur at temperatures on earth is called the plasma phase. A plasma is similar to a gas, however it is composed of ions and unbound electrons.

Changing the \qquad of matter, that is, converting matter between solid, liquid, and gas phases is considered a \qquad change because the chemical composition does not change.

Examples of phase changes:

- freezing water to make ice
- boiling water to make steam
- melting iron

In order for a substance to change phases or temperature, \qquad must be \qquad or
\qquad from the substance.

Before we discuss the energetics of temperature and phase changes, let's consider what energy is and how chemical compounds can gain, lose, or store energy.

Energy

Energy can be defined as the ability to do work.
Energy can be found in two forms, \qquad energy and \qquad energy.

- Potential energy is \qquad energy; it has the potential to do work.
- An example of potential energy is the energy that is stored in the chemical bonds of propane. Consider propane fueled barbecues. If propane is mixed with the oxygen molecules in air and a spark is applied, a process called combustion uses the energy that was stored in propane molecules to generate heat. In this example, some of the potential energy in the propane and oxygen molecules is converted to the kinetic energy (motion) of the CO_{2} gas and $\mathrm{H}_{2} \mathrm{O}$ gas that are produced in the combustion process.
- Kinetic energy is the energy of \qquad . Whenever matter is moving, it has kinetic energy.
- Kinetic energy can be thought of as the energy of the motion of atoms or ions.
- You can think of \qquad as being a measure of how \qquad the atoms, ions, or molecules in a substance are moving.

More Kinetic Energy = More Atomic Motion = Higher Temperature

Keep in mind that although a substance is in the liquid or solid phase, the atoms within are moving. In the gas phase, it is easy to imagine the moving particles. Gas particles will move in almost perfectly straight lines until they collide with other particles or with the container walls. In liquids, the particles are much closer to each other than in gases, therefore the particles are colliding with other particles much more often than the particles in a gas. In chapter 3, I mentioned that a chemical bond between two atoms behaves like a spring connecting the atoms as illustrated to the right. Imagine hitting the molecular model on the right with a hammer and seeing the atoms and spring vibrate. That
 vibrational motion is how energy can be stored in chemical bonds.

If a solid compound is at a high temperature, the atoms are vibrating at high speeds. If you touch this hot solid, the vibrating atoms will collide with your skin molecules causing the atoms in your skin to start vibrating at higher speeds, and you experience this as feeling "hot" or "getting burned." If the vibrating atoms in the solid transfer enough energy to the skin, chemical bonds can be broken and a burn injury occurs. When chemical bonds are broken, you can think of that as breaking the tiny springs holding the atoms together. We call this a chemical reaction; you will learn about chemical reactions in chapter 6 .

Another way that molecular substances contain kinetic energy in the motion of atoms is by spinning (rotating). For example, water molecules can $\mathrm{spin} /$ rotate around an axis as shown on the right. The higher the temperature, the faster the spinning motion. Microwave ovens heat food because microwave electromagnetic radiation interacts with the electric dipole of water molecules causing the water molecules to spin faster.

In the case of large molecules, in addition to the entire molecule spinning around an axis, kinetic energy can be present in the rotation of groups of atoms around single bonds (conformational changes).

Energy Changes

It is the \qquad that hold molecules together such that they exist in the solid or liquid phase instead of the gaseous phase.

Example: Hydrogen bonding holding water molecules together in an ice crystal.

Whether a molecular compound exists in the gas, liquid, or solid phase is determined by a between noncovalent interactions (working to keep the molecules close to one another) and temperature (kinetic energy working to distribute the molecules evenly in the container).

- If the noncovalent interactions are dominant, then the substance will exist in the solid or liquid phase.
- If the temperature/kinetic energy can overcome the noncovalent interactions, then the substance will exist in the gaseous phase.

Energy Units

Energy is not something that can be directly measured. For example, we calculate the energy of a moving object by measuring its velocity. We have thermometers to measure temperature, but there is no such thing as an "energometer." Classic, non-electronic thermometers work because the liquid (often mercury or colored-alcohol) in the bulb and the tube expands or contracts as the temperature increases or decreases. Upon an increase in temperature, expansion of liquid in the bulb causes an observable increase in the liquid level of the tube. The opposite process and observation happens for a decrease in temperature.
In electronic thermometers, the electrical current passing through the materials that compose their probe depends on temperature. These devices are calibrated so that the displayed temperature is related to the measured electrical current.

Optical (infrared) thermometers operate by measuring the amount of infrared (IR) light that is emitted from an object. The amount of IR light that an object emits depends on the object's temperature.

The two energy units that you will use in this course are the \qquad (cal) and the \qquad (J).

- The Joule was named in honor of the English physicist and brewer, James Prescott Joule who, along with Lord Kelvin, developed the Kelvin absolute temperature scale.

The calorie energy unit is defined as the amount of energy required to raise the temperature of one gram of water by $1^{\circ} \mathrm{C}$.

The Joule energy unit is defined as the amount of energy required to pass a certain amount of current through a particular material for one second.

The scientific community standardized these two measurements using the agreed
 upon conversion factor that \qquad is equal to exactly \qquad .

Energy Unit Conversion Example: Convert 60.1 calories to Joules.

60.1 cal	4.184 J
	1 cal

Understanding Check: Convert 78 Joules to calories.

"Food Calories" vs. "calories"

Note that nutritionists use the "food \underline{C} alorie" notation with capital " \mathbf{C} " in the spelling and unit.
A food "Calorie" is equal to 1000 calories ($1 \mathrm{Cal}=1000 \mathrm{cal}=1 \mathrm{kcal})$.

- An apple contains about $120 \mathrm{Cal}(=120,000 \mathrm{cal}=120 \mathrm{kcal})$.

Temperature Changes and Phase Changes

One of two things will happen if energy is added or removed from matter (assuming no chemical change takes place):

1) Change the \qquad of the substance.
2) Change the \qquad of the substance.

You can only do \qquad of these at a time.

I will discuss calculations that involve temperature changes or phase changes. Let's begin with temperature changes.

Calculations Involving Temperature Changes

The scientific community agreed that energy \qquad to a substance is assigned \qquad values, and that energy \qquad from a substance is assigned \qquad values.

The amount of energy that must be added (or removed) from one gram of a substance to result in a temperature change of one ${ }^{\circ} \mathrm{C}$ is called the substance's \qquad .

Specific Heats for Various Substances

- We use the symbol " \mathbf{S} " to represent specific heat.
- Since specific heat is the amount of energy transferred per one gram and per $\mathbf{1}^{\circ} \mathrm{C}$ temperature change, its units will be either $\mathbf{c a l} /\left(\mathbf{g}^{\circ} \mathbf{C}\right)$ or $\mathbf{J} /\left(\mathbf{g}^{\circ} \mathbf{C}\right)$.

Substance	Specific Heat (\mathbf{S})
Water $\left(\mathrm{H}_{2} \mathrm{O}\right.$ liquid)	$1.000 \mathrm{cal} /\left(\mathrm{g}^{\circ} \mathrm{C}\right)$
Ice $\left(\mathrm{H}_{2} \mathrm{O}\right.$ solid)	$0.500 \mathrm{cal} /\left(\mathrm{g}^{\circ} \mathrm{C}\right)$
Steam $\left(\mathrm{H}_{2} \mathrm{O}\right.$ gas)	$0.480 \mathrm{cal} /\left(\mathrm{g}^{\circ} \mathrm{C}\right)$
Ethanol (liquid)	$0.586 \mathrm{cal} /\left(\mathrm{g}^{\circ} \mathrm{C}\right)$
Copper (solid)	$0.0925 \mathrm{cal} /\left(\mathrm{g}^{\circ} \mathrm{C}\right)$
Aluminum (solid)	$0.0215 \mathrm{cal} /\left(\mathrm{g}^{\circ} \mathrm{C}\right)$
Gold (solid)	$0.0310 \mathrm{cal} /\left(\mathrm{g}^{\circ} \mathrm{C}\right)$

There exists a mathematical relationship between the amount of energy transferred (heat) to or from a substance and the resulting temperature change.

The relationship between the energy added or removed from a substance and how much its temperature changes is:

$$
\mathbf{Q}=\mathbf{S} \cdot \mathbf{m} \cdot(\Delta \mathbf{T})
$$

In this equation,

- "Q" is used to represent the energy added or removed from a substance (or heat).
- " \mathbf{S} " is the specific heat of the substance.
- " \mathbf{m} " is the mass of the substance.
- " $(\boldsymbol{\Delta} \mathbf{T})$ " is the amount of the \qquad in temperature (in ${ }^{\circ} \mathrm{C}$ units) that occurs when the energy is added or removed from the substance.
- In science, the Greek letter " Δ " is very often used as the phrase "change in."
$(\Delta \mathbf{T})$ is defined as the final temperature minus the initial temperature $\left(\Delta \mathbf{T}=\mathrm{T}_{\text {final }}-\mathrm{T}_{\text {initial }}\right)$.

To be consistent with the convention of assigning positive energy values for energy added to a substance and negative energy values for energy removed from a substance, $(\boldsymbol{\Delta T})$ is always defined as the final temperature minus the initial temperature $\left(\Delta T=T_{\text {final }}-T_{\text {initial }}\right)$.

Note that if energy is added to a substance and a temperature change occurs, the final temperature will always be greater than the initial temperature and therefore $\boldsymbol{\Delta} \mathbf{T}\left(=\mathrm{T}_{\text {final }}-\mathrm{T}_{\text {initial }}\right)$ would be positive. The mass (\mathbf{m}) and specific heat (\mathbf{S}) are both always positive, therefore when $\boldsymbol{\Delta T}$ is also positive, the calculated energy (\mathbf{Q}) will be positive.

$$
\begin{aligned}
& \mathbf{Q}=\mathbf{S} \cdot \mathbf{m} \cdot(\boldsymbol{\Delta} \mathbf{T}) \\
& (+)=(+) \cdot(+) \cdot(+)
\end{aligned}
$$

On the other hand, if energy is removed from a substance and a temperature change occurs, the final temperature will always be less than the initial temperature and $\boldsymbol{\Delta T}\left(=\mathrm{T}_{\text {final }}-\mathrm{T}_{\text {initial }}\right)$ will be negative; in this case the calculated energy (\mathbf{Q}) will be negative.

$$
\begin{aligned}
& \mathbf{Q}=\mathbf{S} \cdot \mathbf{m} \cdot(\mathbf{\Delta} \mathbf{T}) \\
& (-)=(+) \cdot(+) \cdot(-)
\end{aligned}
$$

Example of a Calculation that Involves a Temperature Change

How much energy (calories) is required to be added to 7.00 grams of water that is initially at $37.0^{\circ} \mathrm{C}$ in order to raise the temperature to $65.0^{\circ} \mathrm{C}$?

Example of a Calculation that Involves a Temperature Change

Suppose that 3625 calories of energy is transferred to 245 grams of water that is originally at $22.4^{\circ} \mathrm{C}$:
a) What is the change in temperature $(\boldsymbol{\Delta T})$ of the water?

$$
\begin{aligned}
\frac{Q}{S \cdot m} & =\frac{S \cdot m \cdot(\Delta T)}{S \cdot m} \\
(\Delta T) & =\frac{Q}{S \cdot m}=\frac{3625 \mathrm{cal}}{\left(\frac{1.000 \mathrm{cal}}{\mathrm{~g}^{\circ} \mathrm{C}}\right) 245 \mathrm{~g}}=14.8^{\circ} \mathrm{C}
\end{aligned}
$$

b) What is the final temperature $\left(\mathbf{T}_{\text {final }}\right)$ of the water?

$$
\begin{aligned}
\Delta \mathrm{T} & =\mathrm{T}_{\text {final }}-\mathrm{T}_{\text {initial }} \\
14.8^{\circ} \mathrm{C} & =\mathrm{T}_{\text {final }}-22.4^{\circ} \mathrm{C} \\
\mathrm{~T}_{\text {final }} & =14.8^{\circ} \mathrm{C}+22.4^{\circ} \mathrm{C}=37.2^{\circ} \mathrm{C}
\end{aligned}
$$

Understanding Check

1. How much energy (calories) is required to be added to 12.00 grams of ethanol that is initially at $24.0^{\circ} \mathrm{C}$ in order to raise the temperature to $42.0^{\circ} \mathrm{C}$? (NOTE: You are warming ethanol, not water; use the specific heat of ethanol.)
2. How much energy must be added to 128 grams of ice that is initially at $-54.0^{\circ} \mathrm{C}$ in order to raise the temperature of the ice to its melting point $\left(0.00^{\circ} \mathrm{C}\right)$? (NOTE: You are warming ice, not water. The specific heat of ice is not the same as the specific heat of water; use the specific heat of ice.)
3. How much energy must be removed from 584 grams of water that is initially at $22.0^{\circ} \mathrm{C}$ in order to lower the temperature of the water to its freezing point $\left(0.00{ }^{\circ} \mathrm{C}\right)$?
4. Suppose that 1250 calories of energy transferred to water that was originally at $22.4^{\circ} \mathrm{C}$, raises the temperature of the water to $34.8^{\circ} \mathrm{C}$. What is the mass (\mathbf{m}) of the water that was heated? HINT: Solve $\mathbf{Q}=\mathbf{S} \cdot \mathbf{m} \cdot(\mathbf{\Delta T})$ for mass (\mathbf{m}).

Phase Changes

Adding a sufficient amount of energy to liquids will overcome the noncovalent interactions holding the particles together, to form a gas; we call this boiling. The reverse of this process, changing from gas to liquid, will occur if enough energy is removed from the gas; we call this condensation. Adding a sufficient amount of energy to solids will overcome the forces holding the molecules in place, to form a liquid; we call this melting. The reverse of this process, changing from liquid to solid, will occur if enough energy is removed from the liquid; we call this freezing. Under certain conditions, substances can be converted directly from the solid phase to the gas phase; we call this sublimation. You may have seen this with "dry ice" (solid CO_{2} converting to gaseous CO_{2} without forming liquid CO_{2}).

Calculations Involving Phase Changes

The amount of energy required to \qquad one gram of a substance is called its \qquad of \qquad (abbreviated as $\mathbf{H}_{f u s}$).

- Heats of fusion for substances are determined \qquad ; each substance has a unique heat of fusion.

Examples:

- The heat of fusion for ice is $79.7 \mathrm{cal} / \mathrm{g}$ and the heat of fusion for gold is $15 \mathrm{cal} / \mathrm{g}$.

Since these values are the energy that is required to melt one gram of the substance, the units will be either $\mathrm{cal} / \mathrm{g}$ or J / g.

To do the opposite process, change from one gram of liquid to solid (freezing), the same amount of energy must be removed from the substance, and therefore the \qquad of the heat of fusion value must be changed from positive to \qquad -.

- For example, the amount of energy needed to be removed from water in order to convert it to ice is: $\left(-\mathrm{H}_{\text {fus }}\right)=-79.7 \mathrm{cal} / \mathrm{g}$.

The energy required to convert one gram of a substance from liquid to gas is called its \qquad of
\qquad ($\mathbf{H}_{\text {vap }}$).

- Heats of vaporization for substances are determined experimentally, vary from substance to substance, and are tabulated using energy units per gram.

To do get the energy required to do the opposite process, convert one gram of gas to a liquid (condensation), we change the sign of the heat of vaporization value (from positive to negative) because energy is being remove from the substance.

The heat of fusion and vaporization values (shown in the table on the right) are the amounts of energy needed to melt or vaporize one gram of a substance.

We can use these values to calculate the energy needed to melt or vaporize any amount (mass) of the substance using the equation below.

$$
\Delta \mathbf{E}=(\text { mass }) \bullet\left(\mathbf{H}_{f u s} \text { or } \mathbf{H}_{\text {vap }}\right)
$$

Heats of Fusion and Heats of Vaporization of Some Substances

Substance	heat of fusion $\left(\mathbf{H}_{\text {fus }}\right)$	heat of vaporization $\left(\mathbf{H}_{\text {vap }}\right)$
$\mathrm{H}_{2} \mathrm{O}$	$79.7 \mathrm{cal} / \mathrm{g}$	$540 \mathrm{cal} / \mathrm{g}$
ethanol (ethyl alcohol)	$26.05 \mathrm{cal} / \mathrm{g}$	$230 \mathrm{cal} / \mathrm{g}$
2-propanol (rubbing alcohol)	$21.37 \mathrm{cal} / \mathrm{g}$	$159 \mathrm{cal} / \mathrm{g}$

ΔE, the "change in energy," is the amount of energy that was added to, or removed from the substance in order to change the phase.

- $\boldsymbol{\Delta E}$ is defined as the final energy of the substance (after phase change) minus its energy before the phase was changed ($\left.\Delta \mathrm{E}=\mathrm{E}_{\text {final }}-\mathrm{E}_{\text {initial }}\right)$.
The unit for mass will be the gram (g) since the units for heats of fusion and vaporization in the table are calories per gram.

Example of a Calculation Involving a Phase Change

How much energy is required to melt 46.7 grams of ice that is originally at its melting point $\left(0^{\circ} \mathrm{C}\right)$?
initial state:

solid at $0^{\circ} \mathrm{C}$ (ice)
final state:

liquid at $0^{\circ} \mathrm{C}$ (water)
$\boldsymbol{\Delta E}=($ mass $) \cdot\left(\mathbf{H}_{\text {fus }}\right)$
$\Delta E=(46.7 \mathrm{~g})\left(\frac{79.7 \mathrm{cal}}{\mathrm{g}}\right)=\begin{aligned} & 3720 \mathrm{cal} \\ & \text { or } 3.72 \times 10^{3} \mathrm{cal}\end{aligned}$

Substance	heat of fusion $\left(\mathbf{H}_{\text {fus }}\right)$	heat of vaporization $\left(\mathbf{H}_{\text {vap }}\right)$
$\mathrm{H}_{2} \mathrm{O}$	$79.7 \mathrm{cal} / \mathrm{g}$	$540 \mathrm{cal} / \mathrm{g}$
ethanol (ethyl alcohol)	$26.05 \mathrm{cal} / \mathrm{g}$	$230 \mathrm{cal} / \mathrm{g}$
2-propanol (rubbing alcohol	$21.37 \mathrm{cal} / \mathrm{g}$	$159 \mathrm{cal} / \mathrm{g}$

In order to convert ice to water, energy must be added such that the noncovalent interactions holding the $\mathrm{H}_{2} \mathrm{O}$ molecules in their ice crystalline lattice positions are overcome. That is why the energy of water at $0^{\circ} \mathrm{C}$ is at a higher level than the energy of ice at $0^{\circ} \mathrm{C}$.

The definition of $\boldsymbol{\Delta E}$ as being equal to the final energy minus the initial energy, for example in the previous problem, $\Delta \mathrm{E}=\mathrm{E}_{\text {final }}$ (water) $-\mathrm{E}_{\text {initial }}$ (ice), is consistent with the convention of assigning positive energy values when energy is added to a substance and negative energy values when energy is removed from a substance.

Example of a Calculation Involving a Phase Change

Determine the amount of energy needed to be removed from 50.0 g of water (liquid) that is originally at $0^{\circ} \mathrm{C}$ in order to freeze it.
initial state:

liquid at $0^{\circ} \mathrm{C}$ (water)

final state:

solid at $0^{\circ} \mathrm{C}$ (ice)

Substance	heat of fusion $\left(\mathbf{H}_{\text {fus }}\right)$	heat of vaporization $\left(\mathbf{H}_{\text {vap }}\right)$
$\mathrm{H}_{2} \mathrm{O}$	$79.7 \mathrm{cal} / \mathrm{g}$	$540 \mathrm{cal} / \mathrm{g}$
ethanol (ethyl alcohol)	$26.05 \mathrm{cal} / \mathrm{g}$	$230 \mathrm{cal} / \mathrm{g}$
2-propanol (rubbing alcohol)	$21.37 \mathrm{cal} / \mathrm{g}$	$159 \mathrm{cal} / \mathrm{g}$

Understanding Check

1. How much energy (calories) is required to convert 35 grams of water (originally at its boiling point, $100^{\circ} \mathrm{C}$) into steam?

- NOTE: You are converting from liquid to gas, use the heat of vaporization $\left(\mathbf{H}_{\text {vap }}\right)$ for $\mathrm{H}_{2} \mathrm{O}$.

2. How much energy must be removed from 224 grams of liquid ethanol (originally at its freezing point) in order to solidify it?

Gases

Properties of Gases

Except for the noble gases ($\mathrm{He}, \mathrm{Ne}, \mathrm{Ar}, \mathrm{Kr}, \mathrm{Xe}$, and Ra), gases are composed of \qquad .

Compared to liquids and solids, particles in the gas phase are very far apart from one another.

- It is for this reason that gases have low densities.

Because of the relatively large distances between gas particles, most of the volume occupied by a gas is
\qquad space.

- Another word used for empty space is vacuum.

Since a gas is mostly empty space, uncolored gases are invisible and colored gases are translucent (we can see light through them).

Gases completely fill their container (except for rare exceptions).

- In mixtures of gases (two or more types of gas particles), each gas is distributed evenly throughout the container (except for a few heavy, higher molecular weight gas molecules).

Gaseous particles travel at high speeds in all directions and will mix with other types of gas particles in a process called \qquad .

- Diffusion is the movement of one substance within another substance until it is \qquad distributed.

Gases are easily compressed.

- Compressibility is the ability to make the space a substance occupies become smaller.

Gas Pressure

One parameter that is used to describe gases is \qquad .

- In general, pressure is defined as the amount of \qquad that acts upon a unit \qquad area.

Each collision of a gas particle (shown as a sphere) with the wall of the container produces a force upon the wall (the force is represented as an arrow).

Image source: Wikimedia Commons, Author: Becarlson CC-BY-SA, http://creativecommons.org/icenses/by-sa/3.0/legalcode

Gas pressure is caused by \qquad of gaseous particles with the container walls or other surfaces.

The sum of the forces from all of the collisions divided by the container's inner surface area is the pressure.

The gas particles that surround the earth form the earth's atmosphere and are commonly referred to as air.

- Air is a \qquad of gases.
- The dry air $\left(\mathrm{H}_{2} \mathrm{O}\right.$ vapor excluded) nearest to the surface of the earth contains about 78% nitrogen, 21% oxygen, 1% argon, 0.04% carbon dioxide, and trace amounts of some other gases.
- The percentage of $\mathrm{H}_{2} \mathrm{O}$ vapor varies between 0.001% and 5% depending on local weather conditions.

Wherever there is air, atmospheric pressure exists.
Since the earth's gravity acts on the gas particles, air at lower elevations is more dense (more concentrated) than at higher elevations.

Since there are less gas particles present and therefore less collisions occurring at higher altitudes,

A plot of the relationship between the altitude and atmospheric pressure is shown on the right. Note that the pressure on top of Mt. Everest is equal to about half of the pressure that we experience near sea level. This means that there are about half as many molecules in a liter of air on top of Mt. Everest as there are at sea level; you would inhale half of the amount of oxygen in one breath as you would at sea level. Most mountaineers who climb above 8 km use oxygen tanks/masks so they can maintain safe blood oxygen levels.

Measuring Pressure

The term " \qquad $"$ is used for a device that measures pressure.
Devices used to measure atmospheric pressure are called \qquad .

- Italian physicist and mathematician Evangelista Torricelli is credited with the invention of the barometer in 1643.

Historically, the most common types of barometers involved a column of liquid "supported" by air. In order to minimize the size of the device, mercury - a very high-density liquid - is commonly used. An illustration of a mercury barometer is shown here. The collisions of gas particles in the air with the surface of the mercury force mercury upward in the column. This is balanced by the downward pull of gravity on the mercury in the column. Gravity is relatively constant; however, the pressure of the air varies with elevation and local weather conditions, therefore the height of mercury in the column will change as the air pressure changes.

The height of a column of mercury at sea level is about \qquad ; this value will vary slightly depending on the weather.

Modern manometers include mechanical and electronic instruments. Microfabrication manufacturing technologies have enabled the use of miniaturized manometers in devices such as

An illustration of a mercury barometer.
 wristwatches and mobile phones.

Units of Pressure

The pressure units that we will use in this course are atmospheres (atm), pounds per square inch (psi), millimeters of mercury ($\mathbf{m m} \mathbf{H g}$), and Torr.
The relationships between these units are:
$1 \mathrm{~atm}=760 \mathrm{~mm} \mathrm{Hg}$ (exact, infinite significant figures)
$1 \mathrm{~mm} \mathrm{Hg}=1$ Torr (exact, infinite significant figures)
$1 \mathrm{~atm}=760$ Torr (exact, infinite significant figures)
$1 \mathrm{~atm}=14.7 \mathrm{psi} \quad$ (three significant figures shown here)

Pressure unit conversion example: Convert 757 mm Hg to atmosphere units (atm).
$1 \mathrm{~atm}=760 \mathrm{~mm} \mathrm{Hg} \quad$ (exact, infinite significant figures)

757 mmHg	1 atm
	760 mmHg

Understanding Check: Convert 0.874 atm to Torr.

The Gas Laws

In all but extremely high pressure or very low temperature conditions, gases are very accurately and precisely described using only four parameters:

1) the temperature (\mathbf{T})
2) the volume of the container (\mathbf{V})
3) the pressure (\mathbf{P})
4) the amount of gas particles present (moles)

The gas laws are the mathematical \qquad between the pressure, volume, temperature, and the number of moles of gas particles that are present in a closed container.

1) Boyle's Law

Robert Boyle, a 17th-century Irish natural philosopher, chemist, physicist, and inventor, studied the relationship between the \qquad and \qquad of a gas.

Boyle noticed that the pressure of a gas in a closed container is \qquad proportional to the volume of the container.

- If two parameters are "inversely proportional," when one parameter (volume in this case) decreases, the other parameter (pressure in this case) increases. Furthermore, the increase and decrease (inverse relationship) follows a mathematical equation.

Graphs were not yet in use at the time of Boyle's work, however if the pressure is measured at several different volumes and the data points are plotted, the data points would fall upon the blue curve shown on the right.

The mathematical equation of the curve in this figure is:

$$
\mathrm{P}=(\text { Constant }) \times\left(\frac{1}{\mathrm{~V}}\right)
$$

When observables such as pressure and volume are inversely proportional, a unique situation exists. In order to illustrate this important and useful situation, I will multiply both sides of equation above by (V) so that (\mathbf{V}) cancels on the right-hand side of the equation to give:

$$
P \times V=(\text { constant })
$$

This equation tells us that no matter how the pressure and volume of a gas may be changed, the
\qquad of the pressure and volume never changes (is constant).

The implication of the " $\mathbf{P} \times \mathbf{V}=($ constant $)$ " equation is very useful in order to predict pressure and volume changes to a gas.

Since the product of the pressure and volume of a gaseous system is always constant, the initial and final pressures and volumes are related to each other in what is referred to as Boyle's Law.

$$
\begin{gathered}
\text { Boyle's Law } \\
\mathbf{P}_{1} \cdot \mathbf{V}_{1}=\mathbf{P}_{2} \cdot \mathbf{V}_{2}
\end{gathered}
$$

There are a couple of important things to keep in mind when using Boyle's Law:

1. Boyle's Law is only applicable when the temperature does not change in the process.
2. You can use any volume (or pressure) units, so long as the initial and final volume (or pressure) units are the same so that they will cancel.

Example:

The initial volume of the gas is 3.00 liters and the initial pressure is 1.00 atm .
The piston compressed (at constant temperature) to a new final volume of 1.00 L . What is the final pressure?

Solution: Use Boyle's Law: $\quad \mathbf{P}_{1} \cdot \mathbf{V}_{1}=\mathbf{P}_{\mathbf{2}} \cdot \mathbf{V}_{\mathbf{2}}$

Boyle's Law contains four variables: $\mathrm{P}_{1}, \mathrm{~V}_{1}, \mathrm{P}_{2}$, and V_{2}. When any three of these variables are known, the fourth variable can be found using algebra.

- In this example, we know P_{1}, V_{1}, and V_{2}, and we wish to find the final pressure $\left(\mathbf{P}_{2}\right)$.
- To solve for \mathbf{P}_{2}, we divide both sides of the equation by \mathbf{V}_{2} : $\quad \frac{\mathbf{P}_{1} \cdot \mathbf{V}_{1}}{\mathbf{V}_{2}}=\frac{\mathbf{P}_{2} \cdot \mathbf{V}_{2}}{\mathbf{V}_{2}}$
- V_{2} cancels on the right-hand side; we have isolated the unknown variable $\left(\mathbf{P}_{\mathbf{2}}\right)$:
- Insert the known values of $\mathrm{P}_{1}, \mathrm{~V}_{1}$, and V_{2}, then solve for the final pressure $\left(\mathbf{P}_{2}\right)$:

$$
P_{2}=\frac{P_{1} V_{1}}{V_{2}}=\frac{(1.00 \mathrm{~atm})(3.00 \mathrm{~K})}{(1.00 \mathrm{~K})}=3.00 \mathrm{~atm}
$$

Understanding Check

If 123 mL of gas that has a pressure of 782 Torr is compressed to a final volume of 63 mL , what would be the final pressure of the gas?

2) Charles' Law

Jacques Charles, a French inventor, scientist, mathematician, and balloonist, studied the mathematical relationship between the \qquad and \qquad of a gas.

Charles noticed that the volume of a gas in a closed container is \qquad proportional to the temperature (at constant pressure).

- If two parameters are "directly proportional," this means that when one parameter increases, the other parameter increases by the same factor.

Charles found that if the volume is measured at several different temperatures and the data points are plotted, the data points would fall upon a straight line as shown on the right.

The mathematical equation of the line in this figure is:

$$
\mathrm{V}=(\text { Constant }) \times \mathrm{T}
$$

Temperature

When observables such as volume and temperature are directly proportional, a unique situation exists. In order to illustrate this, I will divide both sides of the equation above by (T) so that (T) cancels on the right-hand side of the equation to give:

$$
\frac{\mathrm{V}}{\mathrm{~T}}=(\text { Constant })
$$

This equation tells us that no matter how the volume and temperature of a gas may be changed, the
\qquad of the volume to temperature never changes (is constant).
Since the ratio of the volume to temperature never changes, the initial and final volumes and temperatures are related to each other in what is referred to

$$
\begin{aligned}
& \text { Charles' Law } \\
& \frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}
\end{aligned}
$$ as Charles' Law.

We must use the absolute temperature scale, kelvin (_), \qquad we are using the gas laws.

- The kelvin scale starts at zero (corresponding to zero kinetic energy) and includes only positive values. Celsius $\left({ }^{\circ} \mathrm{C}\right)$ or fahrenheit $\left({ }^{\circ} \mathrm{F}\right)$ scales cannot be used because they can have negative values. If a negative temperature value was used the equation for Charles' Law, then a negative volume would be calculated; this is problematic because a negative volume makes no sense.

Example problem: The initial volume of gas in a cylinder with a piston is 7.20 liters. The gas is heated from 265 K to 428 K (at constant pressure). What is the final volume?

Solution: Use Charles'Law:

$$
\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}
$$

Charles' Law contains four variables, $\mathrm{V}_{1}, \mathrm{~T}_{1}, \mathrm{~V}_{2}$, and T_{2}. When any three of these variables are known, the fourth variable can be found using algebra.

- In this example, we know $\mathrm{V}_{1}, \mathrm{~T}_{1}$, and T_{2}; we wish to find $\mathbf{V}_{\mathbf{2}}$: $\quad \frac{\mathbf{V}_{\mathbf{1}}}{\mathbf{T}_{\mathbf{1}}}=\frac{\mathbf{V}_{\mathbf{2}}}{\mathbf{T}_{\mathbf{2}}}$
- To solve for V_{2}, we multiply both sides of the equation by T_{2} : $\quad \frac{T_{2} \cdot V_{1}}{T_{1}}=\frac{V_{2} \cdot T_{2}}{T_{2}}$
- \mathbf{T}_{2} cancels on the right-hand side; we have isolated the unknown variable $\left(\mathbf{V}_{\mathbf{2}}\right)$.
- Insert the known values of $\mathrm{V}_{1}, \mathrm{~T}_{1}$, and T_{2} then solve for the final volume $\left(\mathbf{V}_{\mathbf{2}}\right)$:

$$
\mathbf{V}_{2}=\frac{T_{2} \cdot V_{1}}{T_{1}}=\frac{(428 \mathrm{~K}) \cdot(7.20 \mathrm{~L})}{(265 \mathrm{~K})}=11.6 \mathrm{~L}
$$

There are a couple of important things to keep in mind when using Charles' Law:

1. Charles' Law is only applicable when the pressure does not change in the process
2. Temperature must be entered into the Charles' Law equation in kelvins.

- If you are given the initial and/or final temperature in ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$, convert to K before using Charles' Law.

Understanding Check

The initial volume of gas in a cylinder with a piston is 1.80 liters. The gas is cooled from $125{ }^{\circ} \mathrm{C}$ to $22^{\circ} \mathrm{C}$ (at constant pressure). What is the final volume?

- CAUTION: Which temperature units must be used in gas law calculations?

I want to show you another example problem that involves some algebra that you may not have seen before.

Example problem: The initial volume of a gas in a cylinder with a piston is 4.50 L and the initial temperature is 295 K . When the gas is heated, its volume increases to 8.80 L (at constant pressure), what is the final temperature?

Solution: Because the volume and temperature are changing (at constant pressure) we use Charles' Law:

$$
\frac{\mathbf{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathbf{V}_{2}}{\mathrm{~T}_{2}}
$$

The variable that we wish to solve for, \mathbf{T}_{2}, is in the denominator of the fraction. There is a mathematical shortcut called "cross-multiplication" that allows us to simplify the equation.

$$
\text { If } \frac{\mathbf{A}}{\mathbf{B}}=\frac{\mathbf{C}}{\mathbf{D}}\left\langle\frac{\mathbf{A}}{\mathbf{B}}=\frac{\mathbf{C}}{\mathbf{D}}\right\rangle \text {, then } \mathbf{A} \cdot \mathbf{D}=\mathbf{B} \cdot \mathbf{C}
$$

When we apply this to our equation for Charles' law, the variable we wish to solve for, $\mathbf{T}_{\mathbf{2}}$, is $\boldsymbol{n o}$ longer in the denominator of the equation.

$$
\text { Since } \frac{\mathbf{V}_{1}}{T_{1}}=\frac{\mathbf{V}_{2}}{T_{2}} \text {, then } \mathbf{V}_{1} \cdot T_{2}=T_{1} \cdot \mathbf{V}_{2}
$$

- To solve for T_{2}, we divide both sides of the equation by $\mathbf{V}_{1}: \quad \frac{\mathbf{V}_{1} \cdot T_{2}}{\mathbf{K}_{1}}=\frac{\mathbf{T}_{1} \cdot \mathbf{V}_{2}}{\mathbf{V}_{1}}$

$$
T_{2}=\frac{T_{1} \cdot V_{2}}{V_{1}}=\frac{(295 \mathrm{~K}) \cdot(8.80 \mathrm{~L})}{(4.50 \mathrm{~L})}=577 \mathrm{~K}
$$

3) Gay-Lussac's Law

Joseph Luis Gay-Lussac and Guillaume Amonton studied the relationship between the temperature and pressure of a gas.

They noticed that the pressure of a gas in a fixed-volume container is \qquad proportional to the temperature.

Because the pressure and temperature of a gas are directly proportional, the ratio of the pressure to temperature never changes (is constant).

$$
\frac{\mathrm{P}}{\mathrm{~T}}=(\text { Constant })
$$

Since the ratio of pressure to temperature never changes when a gas undergoes a change (at constant volume), the initial and final pressures and temperatures are related to each other in what is referred to as Gay-Lussac's Law.

Gay-Lussac's Law

$$
\frac{\mathbf{P}_{1}}{\mathrm{~T}_{1}}=\frac{\mathbf{P}_{2}}{\mathrm{~T}_{2}}
$$

There are a couple of important things to keep in mind when using Gay-Lussac's Law:

1. It is only applicable when the volume does not change in the process.
2. Temperature must be entered in kelvins.

- If you are given the initial and/or final temperature in ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$, convert to K .

The math and concepts involved in solving Gay-Lussac's Law problems are identical to those of Charles' Law, so instead of showing you an example, I will have you go directly to an Understanding Check problem.

Understanding Check

The initial pressure of gas in a container is 15.7 atm . The gas is heated from 292 K to 525 K . The container's volume does not change. What is the final pressure?

4) The Combined Gas Law

How do we predict the behavior of a gas if all three parameters, temperature, volume, and pressure, undergo changes?
By mathematically combining the three previous gas laws, we get the " \qquad gas law."

$$
\begin{aligned}
& \text { Combined Gas Law } \\
& \frac{\mathbf{P}_{1} \cdot V_{1}}{T_{1}}=\frac{\mathbf{P}_{2} \cdot V_{2}}{T_{2}}
\end{aligned}
$$

Understanding Check: A gas in a cylinder with a piston has an initial pressure of 1.00 atm and an initial volume of 10.0 liters. The gas is cooled from 298 K to 265 K and the piston is compressed to give a final volume of 7.0 L . What is the final pressure?

5) Avogadro's Law

If you were to add more gas to a cylinder below a piston, the volume would increase.

Amadeo Avogadro studied the mathematical relationship between the amount of gas particles present and the volume of the gas.

Avogadro noticed that the \qquad of a gas is directly proportional to the number of \qquad of gas particles (at constant pressure and temperature). Because the volume and number of moles of a gas are directly proportional, the ratio of the volume to the number of moles never changes.

The initial and final number of moles present and volumes are related to each other in what is referred to as Avogadro's Law.

Avogadro's Law

$\frac{V_{1}}{n_{1}}=\frac{V_{2}}{n_{2}}$
" \mathbf{n}_{1} " and " n_{2} " represent the initial and final number of moles of gas particles, respectively.

Understanding Check: 0.56 moles of gas are contained in a cylinder with a piston and the volume of gas is 4.0 L . If 2.00 moles of gas are added to this cylinder (at constant pressure and temperature), what is the final volume?

6) The Ideal Gas Law

In order for a gas to obey the gas laws perfectly, it could not experience any noncovalent interactions and have an infinitely small volume; this hypothetical gas is called an " \qquad gas."

- No real gas perfectly obeys the gas laws, HOWEVER, the gas laws are very reliable in predicting the properties ($\mathrm{P}, \mathrm{V}, \mathrm{T}$, and n) of gaseous systems at all but extremely high pressure or extremely low temperature conditions.

By mathematically combining Avogadro's Law and the Combined Gas Law, we get an equation that shows the relationship between pressure, volume, temperature, and the amount of a gas present (moles). We call this relationship the ideal gas law.

Ideal Gas Law $\mathbf{P} \cdot \mathbf{V}=\mathbf{n} \cdot \mathbf{R} \cdot \mathbf{T}$

In the ideal gas law equation, \mathbf{n} represents the number of moles of gas particles that are present, and \mathbf{R} is called the \qquad -.

The gas constant (\mathbf{R}) is just a number that does not change; its value is a consequence of nature. The value of \mathbf{R} was determined experimentally.

- In this course, we will use the value of \mathbf{R} rounded to three significant figures:

$$
\mathbf{R}=0.0821\left(\frac{\mathbf{L} \cdot \mathbf{a t m}}{\mathrm{~K} \cdot \mathrm{~mole}}\right)
$$

We applied the previous five gas laws to systems where \boldsymbol{a} \qquad occurred.

- For example, when a gas was at an initial state (with \mathbf{P}_{1} and $\mathbf{V}_{\mathbf{1}}$), and then the pressure and volume were changed (at constant temperature), we used Boyle's Law to predict either \mathbf{P}_{2} or $\mathbf{V}_{\mathbf{2}}$ of the final state.

Unlike the previous gas laws, the ideal gas law is used to predict a property ($\mathbf{P}, \mathbf{V}, \mathbf{T}$, or \mathbf{n}) of a gaseous system at any time; \qquad in the system will be involved.

The ideal gas law involves four variable parameters: $\mathbf{P}, \mathbf{V}, \mathbf{T}$, or \mathbf{n}; when three of these four variables are known, we can use the ideal gas law to predict the value of the fourth, unknown variable.

Example: What is the volume of 1.00 moles of a gas at a pressure of 1.00 atm and a "comfortable" room temperature of 295 K ?

Solution: Use the ideal gas law:
Variables:
$P=1.00 \mathrm{~atm}$
$\mathrm{V}=$? ??
$\mathrm{n}=1.00 \mathrm{~mole}$
$\mathrm{T}=295 \mathrm{~K}$

- In this example, we know P, T, and n ; we wish to

$$
\mathbf{P} \cdot \mathbf{V}=\mathbf{n} \cdot \mathbf{R} \cdot \mathbf{T}
$$ solve the ideal gas law equation for the volume (V):

- To solve for \mathbf{V}, we divide both sides of the equation by \mathbf{P} :
- \mathbf{P} cancels on the left side of the equation; we have isolated

$$
\begin{aligned}
\frac{P \cdot V}{P} & =\frac{n \cdot R \cdot T}{P} \\
V & =\frac{n \cdot R \cdot T}{P}
\end{aligned}
$$ the unknown variable (V):

- Insert the known values of $\mathrm{P}, \mathrm{T}, \mathrm{n}$, and R , and then solve for the volume (\mathbf{V}):

$$
\mathrm{V}=\frac{(1.00 \mathrm{~mole}) \cdot(0.0821 \mathrm{~L} \cdot \operatorname{atm}) \cdot(295 \mathrm{~K})}{(1.00 \mathrm{a} t \mathrm{~m})}(\underset{\mathrm{K} \cdot \text { inele })}{ }=24.2 \mathrm{~L}
$$

Because the gas constant has units of ($\mathbf{L} \cdot \mathbf{a t m} / \mathbf{K} \cdot \mathbf{m o l e}$), when using the ideal gas law, the pressure must have atm units, the temperature must have \mathbf{K} units, and the volume must have \mathbf{L} units.

- If you are given \mathbf{P}, \mathbf{V}, or \mathbf{T} in any other units, you must first convert them to units that match the gas constant's units.

Understanding Check

A gas in a 3.80 L container has a pressure of 8.63 atm and a temperature of 295 K . How many moles of gas are present?

7) Dalton's Law

The identity of a gas does not need to be known when using the gas laws. The gas laws work quite well whether the gas is $\mathrm{CO}_{2}, \mathrm{~N}_{2}$, argon, or any other gas.

The reason for this is related to the gas laws' ability to precisely predict the behavior of gases in all but extremely high pressure or low temperature conditions. Under most conditions, real gases behave very similar to ideal gases. This is true because gas particles are far apart from other particles most of the time, and they are moving so fast that when they approach each other and/or collide, they do not experience noncovalent interactions for significant amounts of time.

Another simplification in describing gases results from this situation. Not only are the gas laws applicable to any single type of gas, they work just as well for mixtures of gases.

John Dalton was the first person to report that the gas laws applied equally well to gas mixtures.
Dalton's Law states that the \qquad pressure of a mixture of gases in a container is equal to the \qquad of the pressures that each gas in the mixture would exert if that gas were alone in the container.

Example: a sample of argon in a one-liter container has a pressure of 1.20 atm , a sample of N_{2} in a oneliter container has a pressure of 1.80 atm , and a sample of CO_{2} in a one-liter container has a pressure of 0.90 atm . If these three samples were combined in a one-liter container, the total pressure would be the sum of the pressures that each gas exerted when it was alone in the container.

- Total pressure of the mixture $=1.20 \mathrm{~atm}+1.80 \mathrm{~atm}+0.90 \mathrm{~atm}=3.90 \mathrm{~atm}$

For Dalton's Law to be applicable, the temperature and volume of the gases must not change.
The amount of pressure exerted by an individual gas in a mixture is called that gas's \qquad
\qquad _.

For the mixture described in this example:
The partial pressure of $\mathrm{Ar}=1.20 \mathrm{~atm}$
The partial pressure of $\mathrm{N}_{2}=1.80 \mathrm{~atm}$
The partial pressure of $\mathrm{CO}_{2}=0.90 \mathrm{~atm}$

Understanding Check

A sample of O_{2} gas in 20.0 liter container has a pressure of 625 Torr. In another 20.0 L container, a sample of neon (Ne) gas has a pressure of 127 Torr. If the two gas samples are combined in a 20.0 L container, what would be the pressure of the gas mixture?

Liquids

The major difference between liquids and gases is that the particles are much \qquad

- Noncovalent interactions therefore play a very important role in determining the properties of liquids.

Consider how much closer $\mathrm{H}_{2} \mathrm{O}$ molecules are to each other in the liquid phase vs. the gas phase.

- At its normal boiling point ($100^{\circ} \mathrm{C}$ and 1 atm pressure), the volume of $\mathrm{H}_{2} \mathrm{O}$ gas is about 1600 times greater than the volume of an equal mass of $\mathrm{H}_{2} \mathrm{O}$ in the liquid phase.

Properties of Liquids: Viscosity

You have probably noticed a difference in the way syrup and water behave when you pour them. We often say that syrup is "thicker" than water because it flows more slowly than water. The technical way to make this statement is, "syrup is more viscous than water."

Viscosity is a measure of a substance's \qquad to \qquad .

The nanometer scale explanation for the existence of viscosity is that molecules in a liquid need to "slide" past the molecules that surround them in order for the liquid to flow. Noncovalent interactions attract the molecules to each other and impede their ability to slide past each other.

- The \qquad the noncovalent interactions, the \qquad viscous a liquid is.

Temperature (kinetic energy) aids molecules in overcoming noncovalent interactions in order to more easily slide past each other, therefore a liquid's viscosity is temperature dependent.

- With very few exceptions, the \qquad the \qquad , the \qquad a substance's viscosity.
- You may have observed this if you compared hot and cold syrup's ability to flow (viscosity).

Properties of Liquids: Vapor Pressure

Consider a glass of water that is at room temperature of $\left(\sim 22^{\circ} \mathrm{C}\right)$.
Water slowly evaporates even though it is at a temperature less than its boiling point $\left(100{ }^{\circ} \mathrm{C}\right)$.
You can think of temperature as a measure of the \qquad kinetic energy of a substance.

- I use the word "average" because not every molecule in a sample has the exact same amount of kinetic energy.

Because of random collisions between the water molecules, individual molecules in the glass are constantly gaining and losing energy.

The total energy and the average energy of the water do not change; the water molecules simply exchange energy with each other.

In random events such as collisions of molecules, there is a probability distribution of molecular kinetic energies as shown below.

The horizontal axis shows the molecular kinetic energies.

The vertical axis is the probability of a molecule having a particular kinetic energy.

The probability distribution (shown as a purple curve) has a maximum height at the most probable kinetic energy.
Except at extremely low temperatures, the average kinetic energy of the molecules is very close to the center (peak) of the distribution (indicated by the black arrow).

The average energy depends on the temperature.

Because of the shape of the histogram, a relatively small number of molecules have very low kinetic energy (as indicated by the blue shaded area under the curve) or very high kinetic energy (as indicated by the red shaded area under the curve). These low-probability ends of histogram curves are called "tails." When thinking about the system on the nanometer scale, it is as if each molecule is at its own temperature. Since thermometers are on the macro-scale size, they interact with many millions of molecules and therefore measure the average energy/temperature.

Consider the molecules in the high energy tail (shaded red) of the histogram.

- When some of these molecules happen to be on the surface of the water, they have enough kinetic energy to "break free" from the noncovalent interactions holding them to their neighboring molecules.
- We call this process \qquad .

If a piston were brought into contact with the surface of the liquid, the molecules that are escaping the liquid's surface would exert an upward force on the piston.

The total force from the molecules breaking free from the liquid (per surface area unit) is referred to as the \qquad of a substance.

- The greater the vapor pressure, the \qquad the evaporation rate.

The Temperature Dependence of the Vapor Pressure

At higher temperatures, a greater number of molecules have enough energy to break free of the surface as indicated by the amount of area (shaded red) under the higher temperature histogram (dashed curve).

The vapor pressure of a substance \qquad with \qquad .

Properties of Liquids: Boiling Points

The boiling point of a liquid in an open container is the temperature at which its vapor pressure equals the \qquad pressure.

In closed containers, liquids boil when their vapor pressure equals the pressure of the gas \qquad them.

The temperature at which a liquid boils at 1 atm pressure is called its \qquad boiling point.

- It is no coincidence that the normal boiling point of water is exactly $100^{\circ} \mathrm{C}$; the Celsius scale is based on the normal boiling point and freezing point $\left(0^{\circ} \mathrm{C}\right)$ of water.

Consider the graph of the vapor pressure of water vs. temperature shown below.

The dashed line indicates that the vapor pressure of water at $100^{\circ} \mathrm{C}$ is equal to 760 Torr (1 atm).

This is why water will boil at $100^{\circ} \mathrm{C}$ in an open container at sea-level where the atmospheric pressure is 760 Torr (1 atm).

You may have heard that it takes more time to cook food (in boiling water) at higher elevations.

- This is true because water will boil at a lower temperature as the elevation increases (because the atmospheric pressure decreases).

For example, if you were to cook food in boiling water while in Denver, Colorado (elevation 5280 ft) where the air/atmospheric pressure is about 625 Torr, water boils at about $93^{\circ} \mathrm{C}$, as indicated by the blue dashed lines in graph shown in the figure on the right.

- It would take longer to cook food in boiling water at this elevation than it would at sea level.

Understanding Check

In pressure cookers, the water is boiled at a pressure of about 1500 Torr. Use the graph (shown in the video) to estimate the temperature at which food is cooked in a pressure cooker.

Now that you understand the details of evaporation, let's conclude this subsection on liquids by considering what happens in a capped water bottle.

In closed containers, liquid phase molecules are not only evaporating, gaseous $\mathrm{H}_{2} \mathrm{O}$ molecules are also colliding with the liquid's surface, losing energy, and re-entering the liquid phase (condensation). These processes are illustrated below.

The upward arrows represent evaporation and the downward arrows represent condensation.

If the bottle is open, the $\mathrm{H}_{2} \mathrm{O}$ vapor that leaves the bottle does not return to the liquid phase in the bottle.

Once the bottle is capped, the amount of vapor increases until there are so many $\mathrm{H}_{2} \mathrm{O}$ molecules in the gas phase that they are colliding with the surface and re-entering the liquid (condensing) at the same rate that they are evaporating.

Solids

The major difference between solids and liquids is that the atoms, ions, or molecules that make up a solid cannot move away from their neighboring particles, whereas the particles that make up liquids are able to do so.

- It is for this reason that you are not able to pour solids.
- Although solid phase particles are not able to overcome the noncovalent interactions holding them next to neighboring particles, they do contain kinetic energy in the form of vibrations and, in some cases, conformational changes.

Classification of Solids

Solids can be classified based on whether or not the arrangement of particles is \qquad .

- In \qquad solids, the atoms, ions, or molecules are arranged in an ordered, threedimensional pattern called a crystal lattice.

Illustration of a Crystalline Solid

- In \qquad solids, the particles are not arranged in an ordered pattern.
- The word amorphous is from the Greek "a," without, and "morphé," form.
- An example of an amorphous solid is rubber.
- The molecules in amorphous solids are held to each other by noncovalent interactions.

Illustration of an Amorphous Solid

Types of Crystalline Solids

The four types of crystalline solids, along with their descriptions and some examples, are listed below.

Type	Description	Examples
Ionic Solids	Composed of cations and anions that are arranged in a lattice pattern such that the attraction of unlike charge is maximized and the repulsion of like charge is minimized (ionic bonding).	Table Salt (NaCl$)$ Baking Soda (NaHCO_{3})
Molecular Solids	Composed of molecules that are arranged in a lattice pattern such that the attraction of intermolecular forces are maximized.	Ice Table Sugar (Sucrose)
Covalent Network Solids	The entire bulk of the solid is composed of atoms that are all covalently bonded to their neighbors.	Diamond Silica
Metallic Solids	The nuclei and their core electrons are in lattice positions, and the valence electrons are dispersed throughout the entire crystal.	Gold Aluminum

I have discussed the first two types of crystalline solids listed in the table in previous chapters: ionic solids and molecular solids.

I will now introduce you to two other types of crystalline solids: covalent network solids and metallic solids.

Covalent Network Solids

In covalent network solids, the entire bulk of the solid is composed of atoms that are all covalently bonded to their \qquad .

- The covalent bonding pattern extends throughout the entire crystal.

Very few substances exist as covalent networks.
Diamond is a material that exists as a covalent network.

Pure diamond is composed of carbon atoms that are each covalently bonded to four other carbon atoms.

This bonding pattern (AB_{4} geometry class, 110° bond angles) is shown on the right.

Image source: Wikimedia Commons, Author: Itub
CC-BY-SA, http://creativecommons.org/licenses/by-sa/3.0/legalcode

Another example of a covalent network solid is quartz.

- Quartz is composed of silicon (Si) and oxygen atoms.

Metallic Solids

You have learned about two types of chemical bonds: ionic bonds and covalent bonds. I have not yet presented a model of how metal atoms are held together in the solid state.

There is one other type of chemical bonding called
\qquad bonding.

- Metal atoms form crystals.

An Atomic Force Microscope Image of the Surface of Solid Gold (Each bright spot is a gold atom.)

Image source: Virginia Technical Institute, Physics
Dept. Showcase (with permission)
Author: Prof. Chenggang Tao
In metallic bonding, the nuclei and their core electrons are arranged in a lattice pattern, and the
\qquad electrons are dispersed throughout the \qquad crystal.

The image below is a two-dimensional model that illustrates how the nuclei, core electrons, and valence electrons are arranged in metals.

The mobile valence electrons in metallic bonding are sometimes referred to as a "sea of electrons."

Each metal nucleus with its core electrons has an overall
\qquad charge and is called a "cationic center."

The \qquad _
attraction between the negative charge of the sea of electrons and the positive cationic centers is responsible for holding the particles together in metals.

A model of the positive "cationic" centers and the sea of electrons (purple shaded area) is shown on the right.

Properties of Metallic Substances

Metallic substances are solid at room temperature with one exception; mercury exists as a liquid.
Metallic solids are \qquad .

- Malleable substances can be hammered or beaten into thin sheets.

The reason metals can be flattened without breaking (shattering), can be visualized in the cationic centers/sea of electrons model as shown below.

When a layer of cationic centers is shifted by hammering, the sea of electrons is still present to hold the solid together.
The opposite of "malleable" is "brittle." Brittle substances shatter when hammered or crushed.

- Ionic compounds are brittle because shifting the ion positions would put cations next to other cations and anions next to other anions and result in a strong electrostatic repulsion.
- Covalent networks are brittle because the covalent bonds can be broken when hammered or crushed.

Metallic solids are \qquad .

- Ductile substances can be drawn or pulled through a series of increasingly smaller holes to produce wire.

Metallic substances are good conductors of electricity.

- The relative ability for electrons to move through a substance is called its electrical
\qquad _.
- The opposite of electrical conductivity is electrical resistance.

The reason metals are good conductors of electricity can be visualized in the cationic centers/sea of electrons model.

When the positive and negative terminals of a battery (or other power source) are connected to opposite sides of a metal, the mobile valence electrons will be attracted (and move) to the positive terminal of the battery. The negative terminal will supply new electrons that will also move through the metal toward the positive terminal of the battery. This is called an electrical circuit. The rate of electron flow depends on the resistance of the material in the circuit and the voltage of the battery or power source.

Summary of Solids

Calculations for Temperature and Phase Change Worksheet

The heat of fusion of ice is $79.7 \mathrm{cal} / \mathrm{g}$.
The heat of vaporization of water is $540 \mathrm{cal} / \mathrm{g}$.
Report the answer using the correct number of significant figures!

1. How much energy is required to melt 100.0 grams of ice?

Answer: 7970 cal
2. How much energy is required to vaporize 234.5 g of water?

Answer: 1.3×10^{5} cal
3. If 30.6 calories are required to vaporize 25 g of a substance, what is the heat of vaporization of that substance?

Answer: $1.2 \mathrm{cal} / \mathrm{g}$
4. How much energy is removed from 500.0 g of water when the temperature is lowered by $1.10^{\circ} \mathrm{C}$?

Answer: - $\mathbf{5 5 0} \mathbf{c a l}$ (or - $\mathbf{- 2 . 3 0 \times 1 0} \mathbf{~} \mathbf{3}^{\mathbf{3}}$)
5. How much energy is required to raise the temperature of 1000.0 g of water from $23.00^{\circ} \mathrm{C}$ to $26.00^{\circ} \mathrm{C}$?

Answer: 3.00×10^{3} cal (or $1.26 \times 10^{4} \mathrm{~J}$)
6. The specific heat of copper is $\left(0.0924 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}\right)$, how much energy is required to raise the temperature of 10.0 g of copper by $100.0^{\circ} \mathrm{C}$?

Answer: 92.4 cal
7. If 25.6 J of energy raised 786 g of a substance from $20.0^{\circ} \mathrm{C}$ to $35.0^{\circ} \mathrm{C}$, what is the specific heat of the substance (S)?

Answer: $2.17 \times 10^{-3} \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$

Gas Laws Worksheet

Charles's Law (temperature, volume)

1) A 550.0 mL sample of nitrogen gas is warmed from $77{ }^{\circ} \mathrm{C}$ to $86^{\circ} \mathrm{C}$. Find its new volume if the pressure remains constant.

564 ml
2) A gas occupies 1.00 L at $0.00^{\circ} \mathrm{C}$. What is the volume at $333.0^{\circ} \mathrm{C}$?

2.22 L

Boyle's Law (pressure, volume)
3) Convert 338 L at 63.0 atm to its new volume at 1.00 atm .

21300 L or $2.13 \times 10^{4} \mathrm{~L}$

4) A tank of nitrogen has a volume of 14.0 L and a pressure of 760.0 mm Hg . Find the volume of nitrogen when its pressure is changed to 400.0 torr while the temperature is held constant.

26.6 L

5) What pressure (mm Hg) is required to compress 196.0 liters of air at 1.00 atmosphere into a cylinder whose volume is 26.0 liters?

5730 mmHg

Gay-Lussac's Law (temperature, pressure)

6) A gas has a pressure if 0.0370 atm at $50.0{ }^{\circ} \mathrm{C}$. What is the pressure at $0.00{ }^{\circ} \mathrm{C}$?

.0313 atm

7) If a gas in a closed container, with an original temperature of $25.0^{\circ} \mathrm{C}$, is pressurized from 15.0 atmospheres to 16.0 atmospheres, what would the final temperature of the gas be?

318 K

Use the combined gas law to solve the following problems:

8) If I initially have a gas at a pressure if 12 atm , a volume of 23 liters, and a temperature of 200.0 K , and then I raise the pressure to 14 atm and increase the temperature to 300.0 K , what is the new volume of the gas?
30. L
9) A gas takes up a volume of 17 liters, has a pressure of 2.3 atm , and a temperature of 299 K . If I raise the temperature to 350 K and lower the pressure to 1.5 atm , what is the new volume of the gas?

31 L

Ideal Gas Law

10) Calculate the pressure, in atmospheres, exerted by each of the following:
a. 250 L of gas containing 1.35 moles at 320 K .
.14 atm
b. 4.75 L of gas containing 0.86 moles at 300 . K .

4.5 atm

11) Calculate the volume, in liters, occupied by each of the following:
a. 2.00 moles of H_{2} at $300 . \mathrm{K}$ and 1.25 atm .

39.4 L

b. 0.425 moles of ammonia gas $\left(\mathrm{NH}_{3}\right)$ at 0.724 atm and $37^{\circ} \mathrm{C}$

14.9 L

12) Determine the number of moles contained in each of the following gas systems:
a. $1.25 \mathrm{~L} \mathrm{of}_{2}$ at 1.06 atm and $250 . \mathrm{K}$

. 0646 moles

b. 0.80 L of ammonia gas $\left(\mathrm{NH}_{3}\right)$ at 0.925 atm and $27^{\circ} \mathrm{C}$

. 030 moles

Chapter 6 Lecture Notes: Chemical Reactions

Educational Goals

1. Define the term "chemical reaction."
2. Given the reactants and products in a chemical reaction, write and balance chemical equations.
3. Use stoichiometric calculations to determine the theoretical yield and percent yield of a reaction.
4. Identify redox reactions and determine which species is oxidized and which is reduced.
5. Understand and identify the four general types of reactions.
6. Identify combustion, hydrogenation of alkenes, hydrolysis of esters, hydration of alkenes, and dehydration of alcohol reactions.
7. Given the reactants for combustion, hydrogenation of alkenes, hydrolysis of esters, hydration of alkenes, or dehydration of alcohol reactions, be able to predict and draw structural formulas of the products.
8. Describe the difference in energy changes $(\Delta \mathrm{G})$ for spontaneous and nonspontaneous reactions, and list the factors that affect the rate of a chemical reaction.

In chapter 5 you learned about physical changes. In chapter 6 you will learn about chemical changes that occur in processes called chemical reactions. Chemical reactions occur in nature and in man-made events. A series of chemical reactions occurs in plants as they convert carbon dioxide and water molecules into the carbohydrate molecules that we eat and oxygen molecules that we breathe. Chemical reactions are used for propulsion in automobile engines and rocket thrusters. Some chemical reactions occur very quickly, as in explosions, and some reactions very slowly, as in the rusting of a nail. Chemistry is the study of how matter interacts with energy and/or other matter; one way this happens is in chemical reactions.

A chemical reaction is a process in which chemical bond(s) are broken and/or new bonds are made, such that one or more \qquad are formed.

Example: One of the rocket engines in the space shuttle uses a chemical reaction in which oxygen gas and hydrogen gas are changed into gaseous $\mathrm{H}_{2} \mathrm{O}$ molecules.

- To describe the chemical reaction, we say, "oxygen gas reacts with hydrogen gas to produce gaseous $\mathrm{H}_{2} \mathrm{O}$."

Scientists often write a chemical \qquad to describe a chemical reaction.

- Chemical equations are similar to mathematical addition equations, except in chemical equations an arrow (\rightarrow) is used instead of an equal $(=)$ sign.
- For example, the "unbalanced" chemical equation for the reaction of oxygen and hydrogen to produce $\mathrm{H}_{2} \mathrm{O}$ vapor is:

$$
\mathbf{H}_{2}+\mathrm{O}_{2} \rightarrow \mathbf{H}_{2} \mathrm{O}
$$

When writing chemical equations, we often indicate the \qquad of each reactant and product in parenthesis after its chemical formula.

- One of the following states is used: gas (g), liquid (\boldsymbol{l}), solid (\boldsymbol{s}), or aqueous (aq).
- Aqueous (aq) indicates that the substance is dissolved in water.
- For our rocket fuel example, we write:

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

The substances on the left-hand side of the reaction arrow (\rightarrow) are referred to as the \qquad .

The substances on the right-hand side of the reaction arrow are referred to as the \qquad .

In the rocket fuel chemical reaction, we began with two reactants $\left(\mathrm{O}_{2}\right.$ and $\left.\mathrm{H}_{2}\right)$, and ended with one product $\left(\mathrm{H}_{2} \mathrm{O}\right)$.

Antoine Lavoisier and his wife, Marie-Anne Pierette Paulze, and Mikhail Lomonosov are credited for proposing and verifying the law of conservation of mass.

- This law states that matter is neither created nor destroyed in a chemical reaction, only the chemical bonding changes.

The law of conservation of mass requires that the \qquad number of atoms of each element appear on \qquad of the chemical equation; when this is applied to a chemical equation, we say that the equation is " \qquad ."

In our rocket fuel chemical equation, we need to have at least $\underline{\boldsymbol{w} \boldsymbol{w} \boldsymbol{O}} \mathrm{H}_{2} \mathrm{O}$ molecules on the right-hand side to "balance" the two oxygen atoms on the left-hand side (in O_{2}).

We use a \qquad and re-write the equation as:

$$
\mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(g)
$$

The coefficients indicate the multiples of each reactant and each product needed in order to have a balanced equation.

- If no coefficient appears for a substance, this implies that the coefficient is "__
\qquad ."

Because I added a coefficient of " 2 " to $\mathrm{H}_{2} \mathrm{O}$, the oxygen atoms are now balanced; there are two oxygen atoms on each side of the equation.

Is this equation completely balanced now?

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

The equation is not yet balanced.

There are two hydrogen atoms on the reactant side (on the left) of the equation and the two $\mathrm{H}_{2} \mathrm{O}$ molecules on the product side (right-hand side) contain a total of four hydrogen atoms (two hydrogens for each $\mathrm{H}_{2} \mathrm{O}$).
We need to use another coefficient to balance the equation.

- We need two H_{2} molecules on the reactant side in order to balance the chemical equation:

$$
2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

In this reaction, it takes \qquad H_{2} molecules to react with \qquad O_{2} molecule to produce \qquad $\mathrm{H}_{2} \mathrm{O}$ molecules.
I told you that a chemical reaction is a process in which chemical bond(s) are broken and/or new bonds are made such that one or more new substances are formed.

- Consider how this occurred in our reaction of rocket fuel.

In order to produce two $\mathrm{H}_{2} \mathrm{O}$ molecules, two $\mathrm{H}-\mathrm{H}$ bonds and the $\mathrm{O}-\mathrm{O}$ double bond must break and four new O-H bonds must be made.

The exact order of bond breaking and making in chemical reactions is called the reaction mechanism. The details of the particular reaction mechanism for our reaction of rocket fuel and many other chemical reactions are not completely known and remain an active area of research in academia and industry.

Observational Evidence of Chemical Reactions

When reactants are converted into new substances, several macro-scale observations may present evidence that a chemical reaction has occurred.

1) A \qquad change is evidence of a chemical reaction.
Many substances absorb visible light and therefore appear with a particular color. As a colored reactant is converted to product(s), the color of the reactant disappears. Chemical reactions always involve the formation of one or more new substances called product(s). If a product absorbs visible light, a new color will appear.

This is the basis of the color change seen in the chemical reaction that occurs when a nail "rusts."

$4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$

The reactants are iron metal and oxygen gas. Although iron metal does not absorb visible light, it does reflect it, and therefore has a "silver" appearance. The iron metal nail reacts with O_{2} in the air to form $\mathrm{Fe}_{2} \mathrm{O}_{3}$ (rust). $\mathrm{Fe}_{2} \mathrm{O}_{3}$ absorbs all colors of visible light, a bit more strongly in the blue region, and therefore has a dark brown/red color.

Image source: Wikimedia Commons, Authors: Walter J. Pilsak (left, CC-BY-SA
http://creativecommons.org/licenses/by-sa/3.0/legalcode)
2) The formation of a \qquad is evidence of a chemical reaction.

- Example: Epoxy adhesives involve a chemical reaction of two liquid reactants that form a new, solid product substance.

Image source: Wikimedia Commons, Author: Taktoa, CC-BY-SA, http://creativecommons.org/licenses/by-sa/3.0/legalcode), boxes with arrows added.

- Another example of a reaction in which a new phase is formed is the reaction of aqueous acetic acid (white vinegar) with sodium bicarbonate (baking soda).

Image source: Wikimedia Commons, Author: Katerha, CC-BY, http://creativecommons.org/licenses/by/2.0/legalcode
3) Observation of a \qquad change is evidence of a chemical reaction.

- Example: A "thermite" reaction.

Image Source: Wikimedia Commons, Author: Nikthestunned, CC-BY-SA, http://creativecommons.org/licenses/by-sa/3.0/legalcode
4) Observation of the emission of \qquad is evidence of a chemical reaction.

- Examples of this are the thermite reaction that I just discussed and a chemical reaction that occurs in fireflies.

Image source: Wikimedia Commons, Author: Emmanuelm at en wikipedia, CC-BY, http://creativecommons.org/licenses/by/2.0/legalcode
In a series of two reactions, a molecule called firefly luciferin is converted to oxyluciferin.

5) Observation of anew \qquad is evidence of a chemical reaction.

- An example of the detection of a new odor from a chemical reaction is "rotting."

6) The appearance of a \qquad is evidence of a chemical reaction.

- Example: The burning (combustion) of methane $\left(\mathrm{CH}_{4}\right)$, in natural gas.

$$
\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Understanding Check

Answer the following questions about the chemical equation shown below:

$$
\mathbf{2} \mathrm{H}_{2}+\mathrm{S}_{2} \rightarrow \mathbf{2} \mathbf{H}_{2} \mathrm{~S}
$$

a. What are the reactants?
b. What is the product?
c. What is the number " 2 " in front of the $\mathrm{H}_{2}\left(\right.$ and $\left.\mathrm{H}_{2} \mathrm{~S}\right)$ called?
d. Is the reaction balanced?
e. Why is there not a coefficient for S_{2} ?
f. How many hydrogen atoms are needed to produce two $\mathrm{H}_{2} \mathrm{~S}$ molecules?
g. How many sulfur atoms are needed to produce two $\mathrm{H}_{2} \mathrm{~S}$ molecules?
h. How many hydrogen molecules are needed to produce two $\mathrm{H}_{2} \mathrm{~S}$ molecules?
i. How many sulfur molecules are needed to produce two $\mathrm{H}_{2} \mathrm{~S}$ molecules?

Balancing Chemical Equations

Matter is neither created nor destroyed in a chemical reaction.

- Therefore, the same \qquad of atoms of each element appear on both
\qquad of a balanced chemical equation.

I introduced you to the law of conservation of mass and the need to balance chemical equations in the previous video.

- Some students are able to balance chemical equations "in their heads" by inspection of the unbalanced equation. This approach often involves trial and error placement of coefficients.
- Other students prefer a systematic, methodical approach.

In this video, I will provide you with a systematic method for balancing equations.

Whether you use the inspection (trial and error) approach or the systematic method, the end result is the same balanced equation.

There are three steps involved in the systematic balancing method:
Step 1: Make a table that lists the elements that are present and count all atoms on each side of the unbalanced equation.

- If $\mathbf{H}_{\mathbf{2}}$ or $\mathbf{O}_{\mathbf{2}}$ is present, list these elements last.
- A polyatomic ion may be counted as one "element" if it appears on both sides of the equation.

Step 2: Balance an element in the table by adding coefficient(s) to the equation (start with the first element on the list).

Step 3: Recount each atom and update the table, then repeat Steps 2 and 3 for all elements as needed until the equation is balanced.

We will go right to an example problem where we will use these steps.

Take notes here - fill in the table and coefficients while watching the video.
Example: Balance the equation for the following reaction:
\qquad $\mathrm{H}_{2}(\mathrm{~g})+$ \qquad $\mathrm{O}_{2}(\mathrm{~g}) \rightarrow$ \qquad $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Amount on Reactant Side	Element	Amount on Product Side
	O	
	H	

Take notes here - fill in the table and coefficients while watching the video.
Example: Balance the following chemical equation:
$\ldots \quad \mathrm{Mg}(s)+\ldots \mathrm{O}_{2}(g) \quad \rightarrow \quad \mathrm{MgO}(s)$

Amount on Reactant Side	Element	Amount on Product Side
	$\mathbf{M g}$	
	\mathbf{O}	

Next, I want to show you and example problem that illustrates the short-cut that you can use when the same polyatomic ion appears on the reaction side and product side of the equation.

When I gave you the three steps involved in the systematic balancing method, I gave you a couple of instructions for performing "Step 1" that will save time and make balancing a bit simpler.

Step 1: Make a table that lists the elements that are present and count all atoms on each side of the unbalanced equation.

- If \mathbf{H}_{2} or \mathbf{O}_{2} is present, list these elements last.
- A polyatomic ion may be counted as one "element" if it appears on both sides of the equation.

Let's take a look at how this second instruction works.

Take notes here - fill in the table and coefficients while watching the video.
Example: Balance the following chemical equation.

$$
\ldots \mathrm{Al}(s)+\ldots \mathrm{FeSO}_{4}(a q) \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(a q)+\ldots \quad \mathrm{Fe}(s)
$$

Amount on Reactant Side	Element	Amount on Product Side
	$\left(\mathrm{SO}_{4}\right)$	
	Al	
	Fe	

Step 1: Make a table that lists the elements that are present and count all atoms on each side of the unbalanced equation.

- If $\mathbf{H}_{\mathbf{2}} \mathbf{o r} \mathbf{O}_{\mathbf{2}}$ is present, list these elements last.

When $\mathbf{H}_{\mathbf{2}}$ or $\mathbf{O}_{\mathbf{2}}$ are present, we list hydrogen and oxygen last because $\mathbf{H}_{\mathbf{2}}$ and $\mathbf{O}_{\mathbf{2}}$ consist of only one type of element, and therefore when a coefficient is added to these molecules, it will not change the number of atoms of other elements that have already been balanced.

Take notes here - fill in the table and coefficients while watching the video.
Example: Balance the following chemical equation.

Amount on Reactant Side	Element	Amount on Product Side
	\mathbf{C}	
	\mathbf{H}	
	\mathbf{O}	

Sometimes two coefficients must be \qquad applied in order to balance an element.

Take notes here - fill in the table and coefficients while watching the video.
Example: Balance the following chemical equation.
$\ldots \quad \mathrm{Al}(s)+\ldots \mathrm{O}_{2}(g) \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(s)$

Amount on Reactant Side	Element	Amount on Product Side
	$\mathbf{A l}$	
	\mathbf{O}	

When you are asked to balance an equation, for example:
\qquad $\mathbf{N}_{2}+$ \qquad $\mathrm{O}_{2} \rightarrow$ \qquad $\mathrm{N}_{2} \mathrm{O}$
Avoid making the following mistakes:

1. Do not change the formula of a reactant or product:

$$
\mathbf{N}_{2}+\mathbf{O}_{2} \rightarrow \mathbf{N}_{2} \mathbf{O}_{2}
$$

- By changing the product from $\mathbf{N}_{2} \mathbf{O}$ to $\mathbf{N}_{2} \mathbf{O}_{2}$, you are not balancing the equation for the given reaction. The formation of $\mathbf{N}_{2} \mathbf{O}_{2}$ may or may not occur, however it is not the reaction whose equation you were asked to balance.

2) Do not add new reactants or products.

$$
\mathbf{N}_{2}+\mathbf{O}_{2} \rightarrow \mathbf{N}_{2} \mathrm{O}+\mathbf{O}
$$

- By adding a new product (\mathbf{O}), you are not balancing the equation for the reaction that you were asked to balance .

3) Do not use multiples of the coefficients when writing the balanced equation.

We would not write: $\mathbf{4} \mathbf{N}_{\mathbf{2}}+\mathbf{2} \mathrm{O}_{\mathbf{2}} \rightarrow \mathbf{4} \mathbf{N}_{\mathbf{2}} \mathrm{O}$

- Although the equation above is balanced, the convention for balancing equations is to use the lowest set of coefficients. To get this set, we divide each coefficient by the greatest common factor of all coefficients. The greatest common factor of the coefficients in our equation is $\mathbf{2}$, so the correct balanced equation is written as:

$$
2 \mathbf{N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathbf{N}_{2} \mathrm{O}
$$

4) When chemical reactions are described in words, you should identify the following diatomic molecules that are referred to by their element's names:

$$
\mathbf{H}_{2}, \mathbf{N}_{2}, \mathbf{O}_{2}, \mathbf{F}_{2}, \mathbf{C l}_{2}, \mathbf{B r}_{2} \text {, and } \mathbf{I}_{2}
$$

When uncombined with other elements in compounds, these elements exist as diatomic molecules.

- These elements are highlighted in the periodic table shown below.
- Except for \mathbf{H}_{2}, these substances can be remembered by the upside-down "L" pattern seen in their periodic table positions.

When describing our example reaction, $\mathbf{2} \mathbf{N}_{\mathbf{2}}+\mathbf{O}_{\mathbf{2}} \rightarrow \mathbf{2} \mathbf{N}_{\mathbf{2}} \mathbf{O}$, in words, we would say, "nitrogen reacts with oxygen to produce (or form) dinitrogen monoxide."

- Note that oxygen also exists as O_{3}, however O_{3} is called "ozone."

Understanding Check

Balance the following chemical equations:
a. $\mathrm{Fe}+\mathrm{O}_{2} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}$
b. $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow \mathrm{HCl}$
c. $\mathrm{Ag}+\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{Ag}_{2} \mathrm{~S}+\mathrm{H}_{2}$
d. $\mathrm{CH}_{4}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
e. $\mathrm{HgO} \rightarrow \mathrm{Hg}+\mathrm{O}_{2}$
f. $\mathrm{Co}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Co}_{2} \mathrm{O}_{3}+\mathrm{H}_{2}$

Understanding Check

Write balanced chemical equations for each of the following equation descriptions. You do not need to include the states of the reactants or products.

IMPORTANT NOTE: Before attempting to balance the equations, you must first convert the compound names into the correct chemical formulas. If you begin to struggle with that, you may wish to go back to chapter 3 and re-work the naming problems.
a. Aluminum metal reacts with copper(II) chloride to produce aluminum chloride and copper metal.
b. Lead(II) nitrate reacts with sodium bromide to produce lead(II) bromide and sodium nitrate.

- HINT: Since you have the same polyatomic ion (nitrate) on both sides of the equation you can use the shortcut that was listed in Step \#1 of our balancing method.
c. Zinc metal reacts with oxygen gas to produce zinc oxide.
- Oxygen is one of the diatomic molecules that are referred to by their element's name.
d. Aluminum sulfate reacts with barium iodide to produce aluminum iodide and barium sulfate.
e. At temperatures reached during baking, sodium bicarbonate (baking soda) decomposes (reacts) to produce sodium carbonate, carbon dioxide, and dihydrogen monoxide.
- Bicarbonate is a polyatomic ion (not the same as the carbonate polyatomic ion).
f. Sodium metal reacts with water to produce sodium hydroxide and hydrogen gas.
g. Lead(IV) sulfide reacts with oxygen gas to produce lead(IV) oxide and sulfur dioxide.

Stoichiometric Calculations for Chemical Reactions

Stoichiometry is the calculation of the \qquad of reactants and/or products in a chemical reaction.

The calculated values allow us to predict how much product(s) will be produced from a given amount of reactant(s), or conversely, how much reactant(s) will be needed in order to produce a desired amount of product.

Before we do stoichiometric calculations with chemicals, let's do a similar problem with something with which we are all familiar - food!!!

I will use the formation of a grilled cheese sandwich as an analogy to a chemical reaction.

If this was an actual chemical reaction we would say, "two slices of bread react with one slice of cheese to produce one cheese sandwich."

Question \#1: Suppose you want to make as many cheese sandwiches as possible for lunch. If you have 20 slices of bread, how many slices of cheese do you need? \qquad
Question \#2: If you have an unlimited supply of cheese slices, how may sandwiches can you make from the 20 slices of bread? \qquad
When we do stoichiometry calculations for real reactions, the first thing that we need to have is a balanced chemical equation. For the sandwich analogy, the balanced equation is shown below.

$$
2 \mathbf{B}+\mathbf{C} \rightarrow \mathbf{B}_{2} \mathbf{C}
$$

B represents a slice of bread, \mathbf{C} represents a slice of cheese, and a sandwich "compound" is therefore a "B2C."

The \qquad between the amounts of reactants used and/or products formed can be found from the \qquad in the balanced chemical equations.

- It is for this reason that coefficients are sometimes referred to as "stoichiometric coefficients."

We treat stoichiometry problems like unit conversation problems.

- In Question \#1, you converted from units of "slices of bread" to units of "slices of cheese."

Question \#1: Suppose you want to make as many cheese sandwiches as possible for lunch. If you have 20 slices of bread, how many slices of cheese do you need? $\mathbf{1 0}$ slices of cheese

20 slices of bread	1 slice of cheese
	2 slices of bread_

- In Question \#2, you converted from units of "slices of bread" to units of "sandwiches."

Question \#2: If you have an unlimited supply of cheese slices, how may sandwiches can you make from the 20 slices of bread? $\mathbf{1 0}$ sandwiches

20 slices of bread	1 sandwich
	2 slices of bread_

I used the formation of a cheese sandwich analogy because you are quite familiar with making sandwiches; now we will move on to work on real chemical reactions.

The coefficients in the balanced equation represent the ratios in which reactants are consumed and products are made in a chemical reaction.

- For example, consider the reaction for the combustion of methane.

- Use the balanced chemical equation to answer these questions:

1) How many $\mathrm{H}_{2} \mathrm{O}$ molecules are produced from $1 \mathrm{CH}_{4}$ molecule? \qquad
2) How many O_{2} molecules are needed to produce $2 \mathrm{H}_{2} \mathrm{O}$ molecules? \qquad
3) How many CH_{4} molecules are needed to react with $2 \mathrm{O}_{2}$ molecules? \qquad
In practice, scientists and technicians usually work with very large numbers of particles, not just a few molecules or ions.

It is more practical to consider the coefficients to represent the ratios in which \qquad of substances are used and produced in a chemical reaction.

1) How many moles of $\mathrm{H}_{2} \mathrm{O}$ are produced from $\mathbf{1}$ mole of CH_{4} ? $\underline{\mathbf{2} \text { moles }}$
2) How many moles of O_{2} are needed to produce $\mathbf{2}$ moles of $\mathrm{H}_{2} \mathrm{O}$? 2 moles
3) How many moles of CH_{4} are needed to react with $\mathbf{2}$ moles of O_{2} ? $\mathbf{1}$ mole

Your understanding of the coefficients in chemical equations will help you to construct conversion factors and use them in stoichiometric calculations.

Example: For the combustion of methane reaction, how many moles of $\mathrm{H}_{2} \mathrm{O}$ can be produced from 2.84 moles of methane $\left(\mathrm{CH}_{4}\right)$? Assume you have an unlimited supply of O_{2}.

- We will approach stoichiometry problems just as we did with \qquad problems using our factor-label method.
- In this problem, we are converting from units of "moles of CH_{4} " to units of "moles of $\mathbf{H}_{2} \mathbf{O}$."

In some stoichiometry problems, like the example problem just completed, you will be given a certain amount of one reactant and an unlimited supply of the other reactant(s), and then asked to calculate how much product could be made.

In other stoichiometry problems, you may need to calculate how much of one reactant would be needed to react with a given amount of another reactant as in the example that follows.

Example: For the combustion of methane reaction, how many moles of O_{2} will be needed to react with 6.93 moles of CH_{4} ?

- In this problem, we are converting from units of "moles of $\mathbf{C H}_{4}$ " to units of "moles of \mathbf{O}_{2}."
- Get the relationship between moles of CH_{4} and moles of O_{2} from the coefficients in the chemical equation.

Sometimes stoichiometry problems involve the calculation of how much of one reactant would be needed to produce a specified amount of product.

Example: For the combustion of methane reaction, how many moles of O_{2} will be needed to produce 1.74 moles of $\mathrm{H}_{2} \mathrm{O}$? Assume that there is an unlimited supply of CH_{4}.

- In this problem, we are converting from units of "moles of $\mathbf{H}_{\mathbf{2}} \mathbf{O}$ " to units of "moles of \mathbf{O}_{2}."

$$
\begin{aligned}
& \mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \quad \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g) \\
& \begin{array}{l|l|}
1.74 \text { moles } \mathrm{H}_{2} \mathrm{O} & 2 \text { moles } \mathrm{O}_{2} \\
\hline & 2 \text { moles } \mathrm{H}_{2} \mathrm{O}
\end{array}=\mathbf{1 . 7 4} \text { moles } \mathrm{O}_{2}
\end{aligned}
$$

Understanding Check

In a combustion reaction, propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ reacts with oxygen to produce CO_{2} and $\mathrm{H}_{2} \mathrm{O}$.

$$
\mathrm{C}_{3} \mathrm{H}_{8}(g)+\mathbf{5} \mathrm{O}_{2}(g) \rightarrow \mathbf{3} \mathrm{CO}_{2}(g)+\mathbf{4} \mathrm{H}_{2} \mathrm{O}(g)
$$

a) How many moles of $\mathrm{H}_{2} \mathrm{O}$ can be produced from 1.32 moles of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$?

- Assume there is an unlimited supply of O_{2}.
b) How many moles of O_{2} will be needed to react with 12.6 moles of $\mathrm{C}_{3} \mathrm{H}_{8}$?
c) How many moles of O_{2} will be needed to produce 0.843 moles of $\mathrm{H}_{2} \mathrm{O}$?
- Assume there is an unlimited supply of $\mathrm{C}_{3} \mathrm{H}_{8}$.

In the previous stoichiometry problems, we were given the number of moles of a particular product or reactant and asked to calculate the number of moles of another product or reactant involved in the reaction. We did so by using the ratios of the substances' coefficients as conversion factors. This process is shown in the schematic diagram below.

We cannot directly measure the number of moles on a balance in the lab.
In practice, we usually know the number of \qquad of a reactant or product and wish to determine the number of grams of another reactant needed or the number of grams of a product in a reaction.

Because the coefficients that we use as conversion factors in stoichiometric calculations are the ratios of moles, we must first convert all masses (grams) to moles, do the stoichiometric calculations, and then convert the calculated number of moles for the substance of interest into grams. This three-step process is shown in the schematic diagram below.

Example: For the combustion of propane: $\mathrm{C}_{3} \mathrm{H}_{8}(g)+\mathbf{5} \mathrm{O}_{2}(g) \rightarrow \mathbf{3} \mathrm{CO}_{2}(g)+\mathbf{4} \mathrm{H}_{2} \mathrm{O}(g)$
How many grams of $\mathrm{H}_{2} \mathrm{O}$ can be produced from 29.0 grams of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$?

- Assume you have an unlimited supply of O_{2}.

Alternative Solution: You may feel comfortable enough to use the short cut where all three of the conversions above are combined into one equation:

Step \# 1 Step \# $2 \quad$ Step \# 3

29.0 grams $\mathrm{C}_{3} \mathrm{H}_{8}$	$\mathbf{1}$ mole $\mathrm{C}_{3} \mathrm{H}_{8}$	$\mathbf{4}$ moles $\mathrm{H}_{2} \mathrm{O}$	18.02 grams $\mathrm{H}_{2} \mathrm{O}$	$=\mathbf{4 7 . 4}$ grams $\mathbf{H}_{2} \mathbf{O}$
	44.11 grams $\mathrm{C}_{3} \mathrm{H}_{8}$	$\mathbf{1}$ mole $\mathrm{C}_{3} \mathrm{H}_{8}$	1 mole $\mathrm{H}_{2} \mathrm{O}$	

Example: For the combustion of propane: $\mathrm{C}_{3} \mathrm{H}_{8}(g)+\mathbf{5} \mathrm{O}_{2}(g) \rightarrow \mathbf{3} \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(g)$
How many grams of O_{2} will be needed to produce 50.0 grams of $\mathrm{H}_{2} \mathrm{O}$?

- Assume that you have an unlimited supply of $\mathrm{C}_{3} \mathrm{H}_{8}$.

Alternative Solution: You may feel comfortable enough to use the short cut where all three of the conversions above are combined into one equation:

Step \# 1 Step \# $2 \quad$ Step \# 3

Understanding Check

For the combustion of propane: $\mathrm{C}_{3} \mathrm{H}_{8}(g)+\mathbf{5} \mathrm{O}_{2}(g) \rightarrow \mathbf{3} \mathrm{CO}_{2}(g)+\mathbf{4} \mathrm{H}_{2} \mathrm{O}(g)$
How many grams of O_{2} will be needed to react with 70.0 grams of $\mathrm{C}_{3} \mathrm{H}_{8}$?

Energy Changes in Chemical Reactions

All chemical reactions involve changes in \qquad .
Some reactions \qquad energy as heat, light, electricity, and/or mechanical energy (work).
The energy that is released in a chemical reaction comes from \qquad energy contained in the
\qquad .
Examples of reactions that produce heat and light are combustion reactions (burning).

- We call reactions that release energy, in the form of heat, \qquad reactions.

Combustion reactions can also produce mechanical energy; another way to state this is, "combustion reactions can do work."

- For example, when combustion occurs in the cylinder/piston system of an internal combustion engine, a sudden increase in the number of moles of gas present (produced in the reaction) causes a large increase in pressure within the cylinder, which then moves the piston. The piston is coupled to a shaft that rotates and ultimately rotates the wheels. Examples of reactions that release electrical energy are the reactions that occur in various types of batteries.

Some reactions must continuously \qquad energy in order to occur.

- Example: The formation of hydrogen and oxygen gas (at room temperature) from water.

$$
2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow 2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g)
$$

- Note that this is the reverse of the rocket fuel reaction that I discussed earlier. The conversion of oxygen and hydrogen to $\mathrm{H}_{2} \mathrm{O}$ releases energy; so it makes sense that the reverse reaction, converting $\mathrm{H}_{2} \mathrm{O}$ to hydrogen and oxygen would require energy.
- The conversion of water to hydrogen and oxygen gas can be done by adding electrical energy to water in a process called electrolysis.

In a battery that is submerged in water, $\mathrm{H}_{2} \mathrm{O}(l)$ is converted to $\mathrm{O}_{2}(\mathrm{~g})$ at one terminal and $\mathrm{H}_{2}(g)$ at the other terminal.

Spontaneity of Chemical Reactions

Recall the important law that is central to understanding nature: matter tends to exist in the lowest possible energy state.

We applied this law to understand why light is emitted from atoms and why most substances exist as molecules or ions instead of as isolated atoms.

This is a universal law, therefore it also applies to chemical reactions.
Chemical reactions can occur when the total energy of the products is less than the total energy of the reactants.

When a chemical reaction can continue to occur without an external input of energy, we say the reaction is
\qquad .

Let's examine the concepts of reaction energy and spontaneity by examining a reaction that we are now familiar with - the combustion of propane gas.

$$
\mathrm{C}_{3} \mathrm{H}_{8}(g)+5 \mathrm{O}_{2}(g) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Many of us have used propane gas in outdoor lanterns and barbecues. We know that once we use a spark or match to start the reaction, that the combustion reaction continues to occur without an external input of energy. It is therefore a spontaneous reaction.

Let's think about the change in energy $(\Delta \mathbf{E})$ in the combustion of propane.
The total energy (\mathbf{E}) is the sum of kinetic energy $\left(\mathbf{E}_{\mathbf{k}}\right)$ and potential energy $\left(\mathbf{E}_{\mathbf{p}}\right)$.

$$
\mathbf{E}=\mathbf{E}_{\mathbf{k}}+\mathbf{E}_{\mathbf{p}}
$$

A particle's kinetic energy comes from its motion.
Potential energy is stored in a substance's \qquad bonds (and noncovalent interactions).

- \qquad chemical bonds (or noncovalent interactions) \qquad energy.
- \qquad new chemical bonds (or noncovalent interactions) \qquad energy.

For the combustion of propane reaction, in the reactants, potential energy is stored in $\mathrm{C}-\mathrm{C}$ bonds, $\mathrm{C}-\mathrm{H}$ bonds, and the O-O bonds.

During the reaction, chemical bonds in the reactants are broken and new chemical bonds ($\mathrm{C}-\mathrm{O}$ and $\mathrm{O}-\mathrm{H}$) are formed in the products.

In the products, potential energy is stored in $\mathrm{C}-\mathrm{O}$ bonds, and $\mathrm{O}-\mathrm{O}$ bonds.
We all know, from our familiarity with the combustion of propane gas, that energy is released in this reaction.

- The amount of energy released in the reaction is equal to the \qquad in potential energy $\left(\Delta \mathbf{E}_{\mathbf{p}}\right)$ between the products ($\mathbf{E}_{\boldsymbol{p} \text { products }}$) and reactants ($\mathbf{E}_{\mathbf{p} \text { reactants }}$):

$$
\text { Energy Released }\left(\Delta \mathbf{E}_{p}\right)=\left(\mathbf{E}_{p \text { products }}\right)-\left(\mathbf{E}_{p \text { reactants }}\right)
$$

This released energy does not just vanish into a hole in the universe! Energy is never created or destroyed, it only changes its form.

The energy released in the reaction is converted to kinetic energy in the products, and then is often transferred to surrounding matter such as air (or the items cooking on the grill).

In the case of similar reactions that happen in internal combustion engines, some of the energy that is released goes into mechanical work (moving the car), and the remainder goes into warming of the engine, and then finally into warming of the air that contacts the car's engine and radiator. The ratio of energy that goes into moving the car to the total energy released by the reaction is called the engine efficiency. In the case of reactions that occur in batteries, most of the energy released in a reaction goes into kinetic energy of electrons moving through an electrical circuit; the remainder of the energy goes into warming the battery and surroundings.

The field of study called thermodynamics often deals with calculating the energy changes in chemical reactions. These energetic calculations are useful for predicting how chemical systems will behave under various conditions because matter tends to exist in the lowest possible energy state. For example, the combustion of propane reaction occurs because the bonding arrangement of atoms in the products is at a lower energy than that of the reactants.

Energy calculations are only useful when they involve properties (variables) that can be directly measured (such as temperature, moles of each substance, volume, and pressure).

When using the temperature and pressure as variables in energy calculations, we refer to the calculated energy as " \qquad " abbreviated with the symbol "G."

- The details of the difference between total energy (\mathbf{E}) and free energy (\mathbf{G}) are beyond the scope of this course.
- For our purposes, you can consider the free energy (\mathbf{G}) and total energy (\mathbf{E}) to be \qquad .
- Matter tends to exist in the lowest possible free energy state, therefore chemical reactions will occur when the total free energy of the products is less than the total free energy of the reactants.

Let's consider the combustion of propane in terms of free energy (G).

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

The figure shown below illustrates the difference in free energy between the products and the reactants for this reaction.

This figure is an energy level diagram, similar to the energy level diagrams that you saw in chapter 3, with higher energy toward the top.

The amount of free energy present in the reactants alone ($\mathbf{G}_{\text {reactants }}$) is indicated by the upper dashed line (blue in the video).

The amount of free energy contained in products alone ($\mathbf{G}_{\text {products }}$) is indicated by the lower dashed line (green in the video).

The \qquad in free energy ($\Delta \mathbf{G}$) for reaction is equal to the difference in free energy
 between the products ($\mathbf{G}_{\text {products }}$) and the reactants ($\mathbf{G}_{\text {reactants }}$):

$$
\Delta G=\left(G_{\text {products }}\right)-\left(G_{\text {reactants }}\right)
$$

Note the use of our convention of defining change ($\boldsymbol{\Delta}$) as the final state (products only) minus the initial state (reactants only).

The free energy of the products for the combustion of propane is less than the free energy of the reactants as indicated by their positions in the energy level diagram.

When the free energy of the products of a reaction is less than the free energy of the reactants, we say that the reaction is exergonic.

Chemical reactions will occur spontaneously when the free energy of the product(s) is less than the free energy of the reactant(s).

$$
\Delta \mathbf{G}=\left(\mathbf{G}_{\text {pomatas }}\right)-\left(\mathbf{G}_{\text {roatatats }}\right)
$$

When the free energy of the products of a reaction is less than the free energy of the reactants, the change in free energy ($\Delta \mathbf{G}$) will have a \qquad value.

Summary of Spontaneity of Reactions

When a chemical reaction can continue to occur without an external input of energy, we say the reaction is spontaneous.

The following statements are true for spontaneous reactions:

- The free energy $(\Delta \mathbf{G})$ the products of the reaction is less than the free energy of the reactants.
- The sign of $\Delta \mathbf{G}$ is negative.

Understanding Check

Determine if the following reactions are spontaneous or non-spontaneous.

1. $2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(g), \Delta \mathbf{G}=-54,640$ calories (per mole of product formed)
2. $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow 2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g), \Delta \mathbf{G}=56,670$ calories (per mole of products formed)
3. The rusting of an iron nail: $4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}$
(HINT: Have you ever observed a rusty nail?)

Rates of Chemical Reactions

Knowing if the value of $\Delta \mathbf{G}$ is negative or positive allows us to predict whether or not a reaction is spontaneous, however it does not give us any information about how quickly a reaction happens.

Some reactions happen very quickly, for example, the explosions of fireworks.
Some reactions happen so slowly that you cannot tell that the reaction is occurring even when viewed for a few hours, for example the rusting of a nail.

To understand the factors that determine and influence how quickly chemical reactions happen, we must consider the energy during the process of converting reactants to products. We will do so using a graph of the free energy as the reaction progresses.

Let's consider a generalized chemical reaction where molecule A reacts with molecule B to produce molecule C and molecule D:

$$
A+B \rightarrow C+D
$$

$$
A+B \rightarrow C+D
$$

We plot the free energy (G) on the vertical axis. The horizontal axis indicates the progress of the reaction (process of converting reactants to products). The curve (purple in the video) represents the free energy during the reaction process.

We begin on the left where we have the reactants only.

The free energy of the reactants ($\mathrm{G}_{\text {reactants }}$) are indicated by the horizontal dashed line (blue in the video).

As the reaction progresses, we move from left to right on the horizontal axis. Originally molecule \mathbf{A} and molecule B are fairly far apart from each other. As the reaction progresses, \mathbf{A} and \mathbf{B} must be on a collision course with each other. In order for molecule A to react with molecule \mathbf{B}, they must eventually collide.
As A and \mathbf{B} approach each other, the free energy increases because of factors such as electrostatic repulsion between the electrons on the reactants, changes in molecular geometry, and disruption of noncovalent interactions.

- This increase in energy can be seen in the free energy curve (purple in video) as the reaction progresses.

At some point, the free energy reaches a maximum value (peak) as indicated by the yellow star in the figure (below).

At this point, the matter no longer exists as individual reactant molecules (A and B), nor has it been converted to product molecules (\mathbf{C} and \mathbf{D}).

The matter exists in what we call a transition state, where the bonds in the reactants have not all been completely broken and/or the new bonds in the products have not been completely formed.

The free energy of the transition state is indicated by the top dashed line (red in the video).
As the reaction progresses past the transition state, new bonds are formed in the product molecules \mathbf{C} and \mathbf{D}, and bond angles and bond distances relax to their low energy geometries, and the product molecules move apart from each other.
All of these processes result in lowering the free energy as can be seen in the figure as the reaction progresses from the transition state to the products.

- The free energy of the products is indicated by the bottom dashed line (green in the video).

In this example, the free energy of the products is less than the free energy of the reactants, therefore $\Delta \mathbf{G}$ is negative and the reaction is spontaneous.

The amount of free energy needed to progress from reactants to the transition state is called the
\qquad (\mathbf{E}_{a}).

Progress of the Reaction
The \qquad of chemical reactions (how quickly the reactions happen) depend on the activation energy.

The \qquad the activation energy, the \qquad the reaction rate.

Example: The energy level diagrams for two spontaneous reactions are shown below. Which reaction has a faster rate?

Reaction 1: $A+B \rightarrow C$

Reaction 2: $\mathrm{E}+\mathrm{F} \rightarrow \mathrm{G}$

Solution: Compare the activation energies. The lower the activation energy, the faster the reaction rate.

Because Reaction 2 has a lower activation energy, it has the faster reaction rate.

The Temperature Dependence of Reaction Rates

The reaction energy level diagram shows an increase in free energy as the reaction progresses from reactants to the maximum energy peak at the transition state.

You just learned that this increase in energy is referred to as the activation energy.

If the temperature of the reactants is increased, the reactants can more readily overcome the activation energy and therefore more readily be converted to products.

For this reason, the reaction rate depends on the \qquad .

- As the temperature increases, the reaction rate increases.
- In general, for every $10^{\circ} \mathrm{C}$ increase in temperature, the reaction rate doubles.
- Conversely, for every $10^{\circ} \mathrm{C}$ decrease in temperature, the reaction rate decreases by a factor of one-half.
- This is one of the reasons that we keep food refrigerated; the lower temperature slows the reactions that are involved in the decomposition of food and bacterial growth.

Catalysis

Another way to change the rate of a chemical reaction is to use a \qquad .

A catalyst can be any substance that increases the rate of a chemical reaction.
Unlike reactants, catalysts are \qquad in a reaction.

Living organisms produce catalysts consisting of large molecules, usually proteins, that are called
\qquad .

- Humans have thousands of chemical reactions that must occur in order to sustain life. Many of these reactions would happen too slowly to be useful if not catalyzed by enzymes. For example, an enzyme called amylase, present in our saliva, catalyzes the digestion reaction of starch.

Industrial processes often use \qquad of substances such as metals to catalyze reactions.

For example, catalytic converters use platinum or rhodium surfaces as catalysts to remove poisonous by-products (carbon monoxide, nitrogen oxides, and unreacted hydrocarbons) produced in the incomplete combustion of fossil fuels.

The Inside of a Catalytic Converter

\qquad the \qquad energy.

In the catalyzed reaction, the reactants require less energy to overcome the activation energy and are therefore converted to products at a faster rate.

You will learn more details of how catalysts lower the activation energy when I discuss enzymes in chapter 13.

Beach Balls in a Lake Analogy for Rates of Reactions

I want to end this video by giving you an analogous model to help you understand how temperature and catalysts effect the rate of chemical reactions. The process that I will use to model chemical reactions is beach

$$
\text { Beach balls (in the lake) } \longrightarrow \text { Beach-balls (out of the lake) }
$$

The Temperature Dependence of the Reaction Rate

In this model, the height of the lake's shoreline represents the activation energy.
Increasing the size of the waves in the lake is analogous to raising the temperature of a chemical reaction. Larger waves cause the beach-balls to leave the lake at a faster rate as shown in the illustration below:

Lower Temperature

Higher Temperature

The Effect of Catalysts on the Reaction Rate

Again, the height of the lake's shoreline represents the activation energy.
The presence of a catalyst is analogous to lowering the shoreline, and results in the beach-balls leaving the lake at faster rate as shown in the illustration below:

Catalyzed Reaction

Summary of Rates of Chemical Reactions

The reaction rate is a measure of how quickly a reaction occurs.
The rates of chemical reactions depend on the activation energy and the temperature.
The lower the activation energy, the faster the reaction rate.
As the temperature increases, the reaction rate increases.

- In general, the reaction rate doubles with every $10^{\circ} \mathrm{C}$ increase in temperature.

Catalysts increase the rate of a reaction by decreasing the activation energy $\left(\mathbf{E}_{a}\right)$.

General Types of Chemical Reactions

Many reactions can be categorized into one of four general types based solely on changes in the bonding pattern (not the identity of the reactants or products).

The educational goal for this section is that, given one of these four types of reactions, you will be able to name the category in which it belongs.

1) SYNTHESIS REACTIONS

A \qquad reaction is one in which a single compound is formed from two or more substances. The general form of a synthesis reaction is:

$$
A+B \rightarrow A B
$$

Where \mathbf{A} represents an element or compound, \mathbf{B} represents another element or compound, and $\mathbf{A B}$ is the compound formed from \mathbf{A} and \mathbf{B}. An example of a synthesis reaction is the reaction that occurs between sodium metal and oxygen gas $\left(\mathrm{O}_{2}\right)$:

$$
4 \mathrm{Na}(s)+\mathbf{O}_{2}(g) \rightarrow 2 \mathrm{Na}_{2} \mathrm{O}(s)
$$

2) DECOMPOSITION REACTIONS

A \qquad reaction is a reaction in which a single reactant breaks down into two or more substances. The general form of a decomposition reaction is:

$$
A B \rightarrow A+B
$$

- It is simply the reverse of a synthesis reaction.

An example of a decomposition reaction is the thermal (heat induced) decomposition of mercury(II) oxide:

$$
2 \mathbf{H g O}(s) \rightarrow 2 \mathbf{H g}(l)+\mathbf{O}_{2}(g)
$$

Note that the key to identifying a decomposition reaction is that one reactant species is converted to two or more product species. In our example, we start the reaction with just one reactant present, $\mathrm{HgO}(s)$; after the reaction occurs, there are two different substances, $\mathrm{Hg}(l)$ and $\mathrm{O}_{2}(g)$.

3) SINGLE-REPLACEMENT REACTIONS

In a \qquad reaction, an element replaces another element from a compound.
The general form of a single-replacement reaction, where \mathbf{A} replaces \mathbf{B}, is:

$$
A+B X \rightarrow A X+B
$$

\mathbf{A} and \mathbf{B} represent different elements, $\mathbf{B X}$ represents a compound made from \mathbf{B} and \mathbf{X}, and $\mathbf{A X}$ is the compound made of \mathbf{A} and \mathbf{X}. Before reacting, element \mathbf{A} is alone and element \mathbf{B} is in compound $\mathbf{B X}$. After the reaction, element \mathbf{B} is alone and element \mathbf{A} is in compound $\mathbf{A X}$.

An example of a single-replacement reaction is:

$$
\mathbf{C u}(s)+\mathbf{A g N O}_{3}(a q) \rightarrow \mathbf{C u}\left(\mathbf{N O}_{3}\right)_{2}(a q)+\mathbf{A g}(s)
$$

In this reaction, copper metal $(\mathrm{Cu}(s))$ replaces the silver ion $\left(\mathrm{Ag}^{+}\right)$in silver nitrate.

4) DOUBLE-REPLACEMENT REACTIONS

In a \qquad reaction, two substances "switch partners." The general form of a single replacement reaction, where $\mathbf{A X}$ and $\mathbf{B Y}$ switch partners, is:

$$
A X+B Y \rightarrow A Y+B X
$$

Double-replacement reactions occur in aqueous solutions. You will learn more about doublereplacement reactions when I discuss solutions in chapter 7. An example of a double-replacement reaction is the reaction of sodium chloride and silver nitrate:

$$
\mathbf{N a C l}(a q)+\mathbf{A g N O}_{3}(a q) \rightarrow \mathbf{N a N O}_{3}(a q)+\mathbf{A g C l}(s)
$$

Understanding Check

Categorize each of the following reactions as either: synthesis, decomposition, single-replacement, or double-replacement.
a. $2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow 2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g)$
b. $\mathrm{KBr}(a q)+\mathrm{AgNO}_{3}(a q) \rightarrow \mathrm{KNO}_{3}(a q)+\mathrm{AgBr}(s)$
c. $2 \mathrm{Mg}(s)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{MgO}(s)$
d. $\mathrm{Mg}(s)+2 \mathrm{HCl}(a q) \rightarrow \mathrm{MgCl}_{2}(a q)+\mathrm{H}_{2}(g)$

Redox Reactions

The term "redox" is an abbreviated combination (portmanteau) of the words " \qquad " and
\qquad ."

In a redox chemical reaction, an oxidation and a reduction occur \qquad .

Many of the reactions that I have used as examples in previous sections are redox reactions. Redox reactions often occur in biological systems. For example, the series of chemical reactions in which we metabolize food and the series of chemical reactions called photosynthesis both contain many redox reactions.

Oxidation is the \qquad of \qquad (s) by an atom, ion, or molecule.

Reduction is the \qquad of electron(s) by an atom, ion, or molecule.

In a redox reaction, electrons are \qquad from one atom, ion, or molecule to another atom, ion, or molecule.

- The electron(s) that are "lost" by the oxidized species are "gained" by the reduced species.

A useful mnemonic to differentiate oxidation and reduction is the term "OILRIG" (ㅇxidation is the $\underline{\text { Loss }}$ of electrons; \underline{R} eduction is the $\underline{\text { Gain }}$ of electrons).

Redox Reactions of Inorganic Compounds

It is possible to identify redox reactions for \qquad compounds by inspecting the chemical equation and determining if electrons are transferred from one species to another.

- One atom or ion in a reactant will lose electron(s) and therefore its \qquad will increase (in the positive direction) by one charge unit for every electron that is lost.
- The electron(s) that are lost are transferred to another reactant.
- The charge of the atom or ion in the reactant that gains the electron(s) will decrease (toward negative values) by one charge unit for every electron that is gained.

Example: Let's consider the reaction of sodium metal and oxygen:

$$
4 \mathrm{Na}(s)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{Na}_{2} \mathrm{O}(s)
$$

To determine if electrons are transferred from one species to another, you must understand that the
\qquad of any pure \qquad or \qquad is always \qquad $!$

- This fact will help you to determine the charge of each atom or ion in the reactants and products, and then to know if the charge of the species changed during the reaction.
- This change in the charge of an atom or ion is an indication that a redox reaction occurred.

FILL IN THE TABLE BELOW AS I DO SO IN THE VIDEO:

Oxidation or Reduction	Reactant	Charge in Reactant	Element	Product	Charge in Product
			sodium		
			oxygen		

$\mathrm{Na}(s)$ and $\mathrm{O}_{2}(g)$ are pure elements. Because the total charge of any pure element or compound is always ZERO, and these two substances are each composed of only one type of element, the charge of each of the atoms in a piece of pure sodium metal or a sample of pure oxygen gas is equal to ZERO.

Now let's consider the charges on sodium and oxygen in the $\mathbf{N a}_{2} \mathbf{O}(s)$ product.
Since sodium oxide $\left(\mathrm{Na}_{2} \mathrm{O}\right)$ is a compound, it has a total charge $=$ ZERO. We also must recognize that sodium oxide is an ionic compound (we know this because there is a metal in the compound).

Although the total charge of $\mathrm{Na}_{2} \mathrm{O}$ is ZERO, the sodium cations and oxygen anions are charged particles; the charge of a sodium ion is always $1+$, the charge of an oxide ion is always $2-$.

- Note that ions combine in a ratio such that the total charge of a compound = ZERO; that is why sodium oxide has the formula $\mathrm{Na}_{2} \mathrm{O}$.

Now we will examine how electrons are transferred from one reactant to the other in the reaction.
We will do so by considering what happens to the charge of sodium and oxygen as they are converted from reactants to products.

- As a reactant, sodium exists as $\mathrm{Na}(s)$ and has a charge of ZERO.
- In the product $\left(\mathrm{Na}_{2} \mathrm{O}\right)$, each sodium has a charge of $\mathbf{1 +}$.
- Since the charge of sodium \qquad in the reaction, we can conclude that each sodium must have \qquad one electron:

$$
\mathrm{Na}^{\mathrm{o}} \rightarrow \mathrm{Na}^{+}+e^{-}
$$

When a species loses electron(s), we call that oxidation. Sodium was oxidized in this reaction.
An oxidation cannot occur without a reduction; the electron(s) will be transferred to another atom or ion.

Where did the electron that sodium lost go?
Since oxygen is the only other reactant, it must have been transferred to the oxygen! Let's verify this by looking for a change in the charge of oxygen in the reaction process.

- In the reactant, oxygen exists as O_{2} and has a charge of ZERO.
- In the product $\left(\mathrm{Na}_{2} \mathrm{O}\right)$, oxygen has a charge of 2-.

Because the charge of oxygen \qquad (by two) in the reaction, we can conclude that each oxygen (in O_{2}) must have \qquad (two) electrons:

$$
\mathrm{O}^{\circ}+2 e^{-} \rightarrow \mathrm{O}^{2-}
$$

When a species gains electron(s), we call that reduction. Oxygen was reduced in this reaction.
The fact that each oxygen gains two electrons and each sodium only loses one electron is accounted for in the balanced chemical equation.

- Four sodium atoms react with two oxygen atoms (in O_{2}). The ratio of sodium atoms to oxygen atoms is 2:1. Two sodium atoms are required to reduce each oxygen atom.

Example Problem

Answer the questions for the reaction of magnesium metal and chlorine gas.

$$
\mathrm{Mg}(s)+\mathrm{Cl}_{2}(g) \rightarrow \mathrm{MgCl}_{2}(s)
$$

a) What is the charge of each of the magnesium atoms in the reactant $[\mathrm{Mg}(s)]$? $\mathbf{0}$ (ZERO)
b) What is the charge of each of the magnesium ions in the product? 2+
c) Did each magnesium atom gain or lose electron(s) in this reaction? If so, how many? lost $\mathbf{2} \boldsymbol{e}^{-}$

$$
\mathrm{Mg}^{\mathrm{o}} \rightarrow \mathrm{Mg}^{2+}
$$

d) Was magnesium oxidized or reduced? oxidized
e) What is the charge of each of the chlorine atoms in the reactant $\left[\mathrm{Cl}_{2}(g)\right]$? $\mathbf{0}$ (ZERO)
f) What is the charge of the each of the chloride ions in the product? 1-
g) Did each chlorine atom gain or lose electron(s) in this reaction? If so, how many? gained $\mathbf{1} \boldsymbol{e}^{-}$

$$
\mathrm{Cl}^{\circ}+e-\rightarrow \mathrm{Cl}^{-}
$$

h) Was chlorine oxidized or reduced? reduced

Summary of Redox Reactions of Inorganic Compounds

It is possible to identify redox reactions for inorganic compounds by inspecting the chemical equation and determining if electrons are transferred from one species to another.

- If the charge of an atom or ion in a reactant was increased (toward positive) in the conversion of reactants to products, an oxidation occurred.
- If the charge of an atom or ion in a reactant was decreased (toward negative) in the conversion of reactants to products, a reduction occurred.

Understanding Check

Answer the questions that follow for the reaction of lithium metal and bromine gas:

$$
2 \mathrm{Li}(s)+\operatorname{Br}_{2}(g) \rightarrow 2 \operatorname{LiBr}(s)
$$

a. What is the charge of each of the lithium atoms in the reactant $[\operatorname{Li}(s)]$?
b. What is the charge of each of the lithium ions in the product?
c. Did each lithium gain or lose electron(s) in this reaction? If so, how many?
d. Was lithium oxidized or reduced?
e. What is the charge of each of the bromine atoms in the reactant $\left[\operatorname{Br}_{2}(g)\right]$?
f. What is the charge of each of the bromide ions in the product?
g. Did each bromine gain or lose electron(s) in this reaction? If so, how many?
h. Was bromine oxidized or reduced?

Redox Reactions of Covalent Compounds

We identified redox reactions for inorganic compounds by inspecting the chemical equation and determining if there was a change in the charge of atoms or ions. The transfer of electrons to or from covalent compounds is not as easily recognized as was the case for elements and ionic compounds in inorganic redox reactions.

For covalent compounds, such as organic and biological compounds, the gaining and losing of electrons is the result of a gain or loss of bond(s) to \qquad atoms or \qquad atoms.

For our purposes, oxidation and reduction for covalent compounds can be identified as follows:

- An atom in a covalent compound is oxidized if it gains bond(s) to oxygen and/or loses bond(s) to hydrogen.
- An atom in a covalent compound is reduced if it loses bond(s) to oxygen and/or gains bond(s) to hydrogen.

An example of a redox reaction for covalent compounds is the combustion of hydrocarbons.

- In the "complete combustion" of hydrocarbons, the hydrocarbon molecules react with oxygen gas $\left(\mathrm{O}_{2}\right)$ to form carbon dioxide and $\mathrm{H}_{2} \mathrm{O}$ vapor. When there is an insufficient supply of O_{2}, "incomplete combustion" occurs and other products, such as carbon monoxide, are formed. In this course, when the term "combustion" is used, we will consider that to mean "complete combustion."

A specific example of the combustion of a hydrocarbon is the reaction of methane and oxygen gas:

$$
\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)
$$

$$
\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)
$$

Let's use our criteria for oxidation and reduction of covalent compounds to determine which species was oxidized and which was reduced in this reaction.

- Carbon is bonded to four hydrogen atoms and to zero oxygen atoms as a reactant (in CH_{4}).
- After reacting, carbon is bonded to zero hydrogens and two oxygens.

This change in carbon's bonding matches our criteria for the oxidation of a covalent compound.
An atom in an covalent compound is oxidized if it gains bond(s) to oxygen and/or loses bond(s) to hydrogen.

The carbon in methane was oxidized in this reaction.

Let's consider oxygen next. Each oxygen atom in O_{2} is bonded to one other oxygen atom and zero hydrogen atoms before reacting.
After the reaction, oxygen appears in both products.

- The oxygen in CO_{2} is bonded to zero other oxygen atoms (it lost a bond to oxygen in the reaction).
- The oxygen in $\mathrm{H}_{2} \mathrm{O}$ is bonded to zero other oxygen atoms and to two hydrogen atoms (it lost a bond to oxygen and gained two bonds to hydrogen).

All of these changes in oxygen's bonding match our criteria for the reduction of a covalent compound.
An atom in a covalent compound is reduced if it loses bond(s) to oxygen and/or gains bond(s) to hydrogen.
The oxygens in $\mathbf{O}_{2}(\mathbf{g})$ were reduced in this reaction.

An example of a redox reaction that is involved in biological systems is the reduction of $\mathrm{NAD}^{+} /$oxidation of lactate.

- This is an important reaction that's involved in the metabolism of food.

We can use our criteria for oxidation and reduction of organic compounds to determine which species was oxidized and which was reduced in this reaction.

Let's consider the change that occurred for $\mathbf{N A D}^{+}$.

NADH

Look at the carbon indicated by the arrow at the very top of the six membered ring of the NAD^{+}. This carbon is bonded to one hydrogen atom as a reactant (in NAD^{+}). After reacting, this same carbon is bonded to two hydrogens.

This change in that carbon's bonding matches our criteria for the reduction of an organic compound.

An atom in a covalent compound is reduced if it loses bond(s) to oxygen and/or gains bond(s) to hydrogen.

This carbon in NAD^{+}was reduced in this reaction. We often alternatively state this as, " NAD^{+}was reduced."

Now, let's consider the change that occurred for lactate.

A carbon and an oxygen in lactate were oxidized in this reaction. We often alternatively state this as, "lactate was oxidized."

Understanding Check

Indicate which atoms in the reactants in each of the following reactions were oxidized and which were reduced.
a. $2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(g)$
b. ethene $+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow$ ethane

Some Industrial Uses of Redox Reactions

It is estimated that 50% of the world's population eat food that is grown using nitrogen fertilizers ${ }^{1}$.

- The fertilizer industry employs the reduction of N_{2} (from air) and the oxidation of H_{2} in order to make ammonia $\left(\mathrm{NH}_{3}\right)$ in a process called nitrogen fixation.

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}
$$

- Ammonia is either used directly or as a starting material for the synthesis of other nitrogenous fertilizers.

Many metals are mined as cations in ionic compounds (metal oxides, metal sulfides, metal carbonates, or metals combined with other anions) and then the metal cations are reduced to pure metals in an industrial process called smelting.

- For example, iron(II) oxide, copper nitrate, and lead sulfide, are converted to pure iron, copper, and lead, respectively. The reducing agent is usually carbon monoxide.

Electroplating processes use redox reactions to apply a thin coat of metal on another metal or conductive material.

- You may have heard the term "gold plated."
- In gold plating, silver or copper is often used as the base metal. The base metal is submerged in water containing dissolved gold cyanide (AuCN). As electrons are supplied to the base metal from the power source, they are transferred to the gold ions (reduction) and pure gold metal is deposited/plated on the base metal's surface.
- This process is used in the jewelry business and is also an important step in the manufacture of electronic devices such the electrical connectors on microchips.
${ }^{1}$ Erisman, Jan Willem; MA Sutton, J Galloway, Z Klimont, W Winiwarter (October 2008). "How a century of ammonia synthesis changed the world", Nature Geoscience 1 (10): 636.

Cathodic corrosion protection is a process that combines a small quantity of a more easily oxidized metal (called the sacrificial metal) with the metal that is to be protected from oxidation.

- Metal oxidation is also called corrosion.
- In cathodic protection, the sacrificial metal corrodes before the protected metal.
- An example of cathodic protection is galvanized steel.
- In the galvanization process, a thin layer of zinc is applied to steel (iron) as a sacrificial metal.

The process called "bleaching" uses fairly strong oxidizing agents.

- Oxidizing agents accept electrons from the species that is being oxidized.
- The substance that is commonly referred to as liquid bleach uses the hypochlorite ion $\left(\mathrm{ClO}^{-}\right)$as an oxidizing agent.
- Bleach removes electrons from the molecules that make up "stains" or infectious agents.
- In the case of stains, when oxidized by bleach, they no longer absorb visible light and therefore can no longer be seen.
- Other bleaching methods use oxidizing agents such as hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ instead of hypochlorite.

Biochemical Redox Reactions

You will learn about the chemistry of biological systems (biochemistry) in the later chapters. You will see many redox reactions occurring in biology.
Biological systems employ a series of chemical reactions in order to get energy from food molecules in the cellular respiration process.

- Many of these reactions are redox reactions.

The energy in food molecules originates from the sun. Sunlight is converted to chemical energy (in the form of carbohydrate molecules) in a series of chemical reactions called photosynthesis.

- Many of the reactions of photosynthesis are redox reactions.

Summary of Redox Reactions

Oxidation is the loss of electron(s) by an atom, ion, or molecule in a chemical reaction.
Reduction is the gain of electrons by an atom, ion, or molecule in a chemical reaction.
It is possible to identify redox reactions for inorganic compounds by inspecting the chemical equation and determining if electrons are transferred from one species to another.

- One atom or ion in a reactant will lose electrons and therefore its charge will increase (in the positive direction) by one charge unit for every electron that is lost.
- The charge of the atom or ion in the reactant that gains the electron(s) will decrease (toward negative values) by one charge unit for every electron that is gained.

For covalent compounds such as organic molecules:

- An atom in a covalent compound is oxidized if it gains bond(s) to oxygen and/or loses bond(s) to hydrogen.
- An atom in a covalent compound is reduced if it loses bond(s) to oxygen and/or gains bond(s) to hydrogen.

Redox Reaction Terminology

The reactant that was oxidized is sometimes referred to as the "reducing agent" because it transferred its electron(s) to the reactant that was reduced.

Conversely, the reactant that was reduced is sometimes referred to as the "oxidizing agent" because it accepted electron(s)from the reactant that was oxidized.

Reactions of Organic Molecules

In this remainder of this chapter, I will discuss four classes of organic reactions that involve the families of organic molecules that you were introduced to in chapter 4: hydrocarbons, alcohols, carboxylic acids, and esters.
Before we begin, let's review the structure of alcohols, carboxylic acids, and esters.

Review of families of Organic Molecules

The Alcohol Family

Alcohols contains one or more \qquad (-OH) functional groups attached to a hydrocarbon.

The general form of an alcohol is shown below with the hydroxyl group highlighted in yellow.

$$
\text { Hydrocarbon - } \ddot{O}-\mathrm{H}
$$

The Carboxylic Acid Family

Carboxylic acids contain a \qquad functional group attached to a hydrocarbon.

Carboxyl groups contain both a carbonyl group, which is a carbon double bonded to an oxygen $(\mathbf{C}=\mathbf{O})$, and a hydroxyl group $(\mathbf{- O H})$ that are connected to each other and the hydrocarbon (alkyl group) part.

The Ester Family

Esters contain a \qquad functional group that is bonded between two hydrocarbon parts.
Carboxylate groups contain both a carbonyl group $(\mathrm{C}=\mathrm{O})$, and an oxygen atom.

The boxes that represent hydrocarbons (alkyl groups) are shaded with different colors because the two hydrocarbon parts are not always identical.

Reactions of Organic Molecules

The four classes of organic reactions to be studied in this section are:

1. Hydrogenation: Reduction of Alkenes

2. Hydrolysis of Esters
3. Hydration of Alkenes
4. Dehydration of Alcohols

The educational goal for this section is, if you are given the specific reactant(s) for any of these four classes of reactions, you should be able to predict (draw) the product(s).
A good way to do this is to know the "general form" of the organic reaction.
I will elaborate on what is meant by the "general form" of an organic reaction when I discuss the hydrogenation (the reduction of alkenes).

1) Hydrogenation: Reduction of Alkenes

Alkenes and other unsaturated hydrocarbons react with hydrogen gas $\left(\mathbf{H}_{2}\right)$ in a reaction called
\qquad .

In the presence of a catalyst, such as platinum, a hydrogen atom from $\mathbf{H}_{\mathbf{2}}$ is added to each of the double bonded carbon atoms in the alkene to produce the corresponding \qquad .

- Hydrogen gas acts as a reducing agent; the carbon atoms in an alkene are reduced (they gain hydrogen atoms).

The general form for the hydrogenation of alkenes reaction is shown below.

Alkene

Alkane

The general form of an equation contains the generic structures of products and reactants.

- For example, in the general form for the hydrogenation equation above, a generic structure representing any alkene is drawn as the reactant and a generic structure representing any alkane is drawn for the product.
- The boxes represent any hydrocarbon (alkyl group) or a hydrogen atom, and are shaded with different colors (in the video) to indicate that the hydrocarbon parts may or may not be identical.

Specific Example of Hydrogenation: Hydrogenation of 3-methyl-3-heptene

Specific Example of Hydrogenation: Hydrogenation of propene

Knowing the "general form" of an organic reaction allows you to predict and draw the product(s) when given specific reactant(s).

Alkene

Alkane

Example: Draw and name the product of the following reaction:

Before I ask you to try a couple of problems on your own, I want to show you another way to predict the product for hydrogenation of alkene reactions. This method will be useful in several other types of reactions that you will learn.

In the hydrogenation reaction, we made new bonds to both of the atoms (carbons) that were connected to each other with a double bond.

Chemical reactions where new bonds are formed to atoms at each end of a double bond occur so frequently that organic chemist have a special name for it: "addition across a double bond."

Products for reactions where addition across a double bond occurs can be easily predicted by learning the following method of "flipping" bonds.

Addition Across a Double Bond

Step \#1: Draw the H-H directly above the double bond.

Step \#2: Flip one of the bonds from the double bond up to the \mathbf{H}

Understanding Check

Draw and name the product formed when each of the alkenes listed below react with H_{2}.
a. 1-butene
b. cis-2-butene
c. trans-2-pentene

Water is a reactant or product in a number of reactions important to organic and biochemistry.
The next three classes of organic reactions involve a water molecule as either a reactant or product.

2) Hydrolysis of Esters

In a \qquad reaction, water (hydro) is used to break (lyse) a bond in a molecule.

The hydrolysis of esters reaction occurs in nature and has industrial uses.

- Example: Triglycerides (fats) are esters and undergo hydrolysis reactions in the digestion process.

In the hydrolysis of an ester, a water molecule breaks a bond in the ester to form a \qquad and an \qquad .

- The general form of the hydrolysis of esters reaction is shown below:

Knowing the "general form" of the hydrolysis of esters, and then identifying the hydrocarbon parts will allow you to predict and draw the carboxylic acid and alcohol products when given a specific ester reactant.

I want to show you another way to predict the products for hydrolysis of ester reactions.

Step 1: Draw the structural formula of the ester and identify the hydrocarbon parts.

Step 2: Break (lyse) the carbonoxygen single bond between the carbonyl carbon and the oxygen. The carbonyl carbon is the carbon that is double bonded to an oxygen.

Step 3: Add the $\mathbf{-} \mathbf{O H}$ from the water to the carbonyl carbon and then add the \mathbf{H} from the water to the oxygen on the other fragment.

When you use these three steps, it will result in the correct carboxylic acid and alcohol.

Example: Predict the products of the hydrolysis of the ester shown here.

Solution:

Step 1: Draw the structural formula of the ester and identify the hydrocarbon parts.

Step 2: Break (lyse) the carbonoxygen single bond between the carbonyl carbon and the oxygen. The carbonyl carbon is the carbon that is double bonded to an oxygen.

Step 3: Add the $-\mathbf{O H}$ from the water to the carbonyl carbon and then add the \mathbf{H} from the water to the oxygen on the other fragment.

Understanding Check

Draw the structural formulas of both products in the hydrolysis of ethyl butanoate:

ethyl butanoate

3) Hydration of Alkenes

In \qquad of alkene reactions, alkenes react with water molecules to produce alcohols.

The general form for the hydration of an alkene reaction is shown below:

Alkene
Alcohol

- A hydrogen atom from $\mathbf{H}_{2} \mathbf{O}$ is added to one of the double bonded carbon atoms and the $-\mathbf{O H}$ from the $\mathbf{H}_{2} \mathbf{O}$ is added to the other double bonded carbon atom in the alkene to produce the corresponding alcohol.
- The double bond in the alkene is converted to a single bond in the alcohol.

A specific example of the hydration of alkenes reaction is the reaction of ethene and $\mathbf{H}_{2} \mathbf{O}$:

You may have noticed the similarity of this hydration reaction to the hydrogenation of alkenes.
Hydration reactions are another example of reactions in which a molecule is added across a double bond.
In the hydration of alkenes reaction, water is added across the double bond of an alkene, therefore we can use the bond flipping method to predict the structure of the alcohol that is produced.
EXAMPLE: Addition of $\mathrm{H}_{2} \mathrm{O}$ across a double bond. Add $\mathrm{H}_{2} \mathrm{O}$ across the double bond of ethene (hydration of ethene).

Step 1: Draw the molecule to be added across the double bond and the molecule with the double bond as shown here:

Step \#1:
Draw the $\mathrm{H}-\mathrm{OH}$ directly above the double bond.
Steps 2 and 3: Flip the bonds as shown below to get the product of the reaction.

Understanding Check

Predict the product formed by the hydration of this alkene:

4) Dehydration of Alcohols

Dehydration of alcohols is the reverse of hydration of alkenes.
$\mathrm{H}_{2} \mathrm{O}$ is \qquad from an alcohol to form an alkene.

- A hydroxyl group $(-\mathbf{O H})$ is removed from a carbon atom and an \mathbf{H} is removed from a carbon that is
\qquad to the carbon that was bonded to the hydroxyl group. A double bond forms between these two carbons.

The general form for the dehydration of an alcohol reaction is shown below:

Since this reaction is the reverse of the hydration of alkenes reaction, we can flip the bonds in the opposite order to that which we used when we added water across the alkene double bond.

Doing so can be very helpful in determining the alkene product in a dehydration of alcohol reaction.
I will use the dehydration of propyl alcohol as an example. Beginning with the structure of the alcohol, perform the following two steps:

Understanding Check

Name and draw the condensed structural formula for the alkene that is produced when ethyl alcohol undergoes a dehydration reaction:

Summary of Classes of Organic Reactions

Organic Reaction Class	Reactant(s)	Product(s)
Hydrogenation of Alkenes	Alkene $+\mathrm{H}_{2}$	Alkane
Hydrolysis of Esters	Ester $+\mathrm{H}_{2} \mathrm{O}$	Carboxylate ion + Alcohol
Dehydration of Alcohols	Alcohol	Alkene $+\mathrm{H}_{2} \mathrm{O}$
Hydration of Alkenes	Alkene $+\mathrm{H}_{2} \mathrm{O}$	Alcohol

Recommendation: Work on the "Chapter 6 Reactions Worksheet" as soon as you can.

- You can find this worksheet in the lecture notes package or on the website.

Balancing Equations Worksheet and Key

1. Answer the following questions about the chemical equation shown below:

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

a) What are the reactants?
b) What is the product?
c) What do we call the number " 2 " in front of the $\mathrm{H}_{2}\left(\right.$ and $\left.\mathrm{H}_{2} \mathrm{O}\right)$?
d) Is the reaction balanced?
e) Why is there not a coefficient for O_{2} ? .
f) How many hydrogen atoms are needed to produce two $\mathrm{H}_{2} \mathrm{O}$ molecules?
g) How many oxygen atoms are needed to produce two $\mathrm{H}_{2} \mathrm{O}$ molecules?
h) How many hydrogen molecules are needed to produce two $\mathrm{H}_{2} \mathrm{O}$ molecules?
i) How many oxygen molecules are needed to produce two $\mathrm{H}_{2} \mathrm{O}$ molecules?
j) Write the "word equation" that you would use to describe this reaction.

- Use words in a sentence, not formulas or an arrow. Ignore the coefficients.

2. Balance the following chemical equations:
a) $\mathrm{Fe}+\mathrm{O}_{2} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}$
b) $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow \mathrm{HCl}$
c) $\mathrm{Ag}+\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{Ag}_{2} \mathrm{~S}+\mathrm{H}_{2}$
d) $\mathrm{CH}_{4}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
e) $\mathrm{HgO} \rightarrow \mathrm{Hg}+\mathrm{O}_{2}$
f) $\mathrm{Co}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Co}_{2} \mathrm{O}_{3}+\mathrm{H}_{2}$
3. Write balanced chemical equations for each of the following descriptions of a chemical reaction.

- You do not need to include the phases of the reactants or products.

IMPORTANT NOTE: Before attempting to balance the equations, you must first convert the compound names into the correct chemical formulas. If you begin to struggle with that, you may wish to go back to Chapter 3 and re-work the naming problems.
a) Aluminum metal reacts with copper(II) chloride to produce aluminum chloride and copper metal.
b) Lead(II) nitrate reacts with sodium bromide to produce lead(II) bromide and sodium nitrate.

- HINT: Since you have the same polyatomic ion (nitrate) on both sides of the equation you can use the shortcut that was listed in Step \#1 of our balancing method.
c) Zinc metal reacts with oxygen gas to produce zinc oxide
(Recall that oxygen is one of the diatomic molecules that are referred to by their element's name).
d) Aluminum sulfate reacts with barium iodide to produce aluminum iodide and barium sulfate.
e) At temperatures reached during baking, sodium bicarbonate (baking soda) decomposes (reacts) to produce sodium carbonate, carbon dioxide, and dihydrogen monoxide.
- Recall that bicarbonate is a polyatomic ion (not the same as the carbonate polyatomic ion).
f) Sodium metal reacts with water to produce sodium hydroxide and hydrogen gas.
g) Lead(IV) sulfide reacts with oxygen gas to produce lead(IV) oxide and sulfur dioxide.
h) Zinc metal reacts with phosphoric acid to produce zinc phosphate and hydrogen gas. (NOTE: the formula of phosphoric acid is $\mathrm{H}_{3} \mathrm{PO}_{4}$)

SEE NEXT PAGE FOR THE ANSWER KEY

ANSWER KEY

1. Answer the following questions about the chemical equation shown below:

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

a) What are the reactants? H_{2} and O_{2}
b) What is the product? $\mathrm{H}_{2} \mathrm{O}$
c) What is the number " 2 " in front of the $\mathrm{H}_{2}\left(\right.$ and $\left.\mathrm{H}_{2} \mathrm{O}\right)$ called? Coefficient
d) Is the reaction balanced? Yes
e) Why is there not a coefficient in for O_{2} ? When the coefficient would be " 1 ", it is omitted.
f) How many hydrogen atoms are needed to produce two $\mathrm{H}_{2} \mathrm{O}$ molecules? 4
g) How many oxygen atoms are needed to produce two $\mathrm{H}_{2} \mathrm{O}$ molecules? 2
h) How many hydrogen molecules are needed to produce two $\mathrm{H}_{2} \mathrm{O}$ molecules? 2
i) How many oxygen molecules are needed to produce two $\mathrm{H}_{2} \mathrm{O}$ molecules? 1
j) Write the "word equation" that you would use to describe this reaction.

- Use words in a sentence, not formulas or an arrow. Ignore the coefficients. Hydrogen reacts with oxygen to produce dihydrogen monoxide (or water). or Hydrogen plus oxygen produces dihydrogen monoxide (or water).
- You can write "forms" instead of "produces"

2. Balance the following chemical equations:
a) $4 \mathrm{Fe}+\mathbf{3 \mathrm { O } _ { 2 }} \rightarrow \mathbf{2 \mathrm { Fe } _ { 2 } \mathrm { O } _ { 3 }}$
b) $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow \mathbf{2} \mathrm{HCl}$
c) $2 \mathrm{Ag}+\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{Ag}_{2} \mathrm{~S}+\mathrm{H}_{2}$
d) $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
e) $\mathbf{2 H g O} \rightarrow \mathbf{2 H g}+\mathrm{O}_{2}$
f) $\mathbf{2} \mathrm{Co}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Co}_{2} \mathrm{O}_{3}+\mathbf{3} \mathrm{H}_{2}$
3. Write balanced chemical equations for each of the following descriptions of a chemical reaction.

- You do not need to include the phases of the reactants or products.

IMPORTANT NOTE: Before attempting to balance the equations, you must first convert the compound names into the correct chemical formulas. If you begin to struggle with that, you may wish to go back to Chapter 3 and re-work the naming problems.
a) Aluminum metal reacts with copper(II) chloride to produce aluminum chloride and copper metal.

$$
2 \mathrm{Al}+3 \mathrm{CuCl}_{2} \rightarrow 2 \mathrm{AlCl}_{3}+\mathbf{3 C u}
$$

b) Lead(II) nitrate reacts with sodium bromide to produce lead(II) bromide and sodium nitrate.

- HINT: Since you have the same polyatomic ion (nitrate) on both sides of the equation you can use the shortcut that was listed in Step \#1 of our balancing method.

$$
\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NaBr} \rightarrow \mathrm{PbBr}_{2}+2 \mathrm{NaNO}_{3}
$$

c) Zinc metal reacts with oxygen gas to produce zinc oxide
(Recall that oxygen is one of the diatomic molecules that are referred to by their element's name).

$$
2 \mathrm{Zn}+\mathrm{O}_{2} \rightarrow \mathbf{2} \mathrm{ZnO}
$$

d) Aluminum sulfate reacts with barium iodide to produce aluminum iodide and barium sulfate.

$$
\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathbf{3} \mathrm{BaI}_{2} \rightarrow \mathbf{2} \mathrm{AlI}_{3}+\mathbf{3} \mathrm{BaSO}_{4}
$$

e) At temperatures reached during baking, sodium bicarbonate (baking soda) decomposes (reacts) to produce sodium carbonate, carbon dioxide, and dihydrogen monoxide.

- Recall that bicarbonate is a polyatomic ion (not the same as the carbonate polyatomic ion).

$$
2 \mathrm{NaHCO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

f) Sodium metal reacts with water to produce sodium hydroxide and hydrogen gas.

$$
\mathbf{2} \mathrm{Na}+\mathbf{2} \mathrm{H}_{2} \mathrm{O} \rightarrow \mathbf{2} \mathrm{NaOH}+\mathrm{H}_{2}
$$

g) Lead(IV) sulfide reacts with oxygen gas to produce lead(IV) oxide and sulfur dioxide.

$$
\mathrm{PbS}_{2}+\mathbf{3} \mathrm{O}_{2} \rightarrow \mathrm{PbO}_{2}+\mathbf{2} \mathrm{SO}_{2}
$$

h) Zinc metal reacts with phosphoric acid to produce zinc phosphate and hydrogen gas.
(NOTE: the formula of phosphoric acid is $\mathrm{H}_{3} \mathrm{PO}_{4}$)

$$
3 \mathrm{Zn}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Zn}_{3}\left(\mathrm{PO}_{4}\right)_{2}+3 \mathrm{H}_{2}
$$

Stoichiometry Worksheet and Key

$$
2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}
$$

1. How many moles of O_{2} will be formed from 1.65 moles of KClO_{3} ?

$$
\begin{array}{l|l|}
1.65 \mathrm{~mol} \mathrm{KClO}_{3} & \ldots \mathrm{~mol} \mathrm{O}_{2} \\
\hline & \ldots \mathrm{~mol} \mathrm{KClO}_{3}
\end{array}=\left[\begin{array}{l}
\mathrm{mol} \mathrm{O}
\end{array}\right.
$$

2. How many moles of KClO_{3} are needed to make 3.50 moles of KCl ?

3. How many moles of KCl will be formed from 2.73 moles of KClO_{3} ?

$$
4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}
$$

4. How many moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are produced when 0.275 moles of Fe is reacted?

$$
\begin{array}{l|l|l}
0.275 \mathrm{~mol} \mathrm{Fe} & & =\ldots \mathrm{mol} \mathrm{Fe}_{2} \mathrm{O}_{3}
\end{array}
$$

5. How many moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are produced when 31.0 moles of O_{2} is reacted?

$$
\begin{array}{l|l|}
& \\
& =
\end{array}
$$

6. How many moles of O_{2} are needed to react with 8.9 moles of Fe ?

$$
2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}
$$

7. How many moles of O_{2} are produced when 1.26 moles of $\mathrm{H}_{2} \mathrm{O}$ is reacted?
8. How many moles of $\mathrm{H}_{2} \mathrm{O}$ are needed to produce 55.7 moles of H_{2} ?
9. If enough $\mathrm{H}_{2} \mathrm{O}$ is reacted to produce 3.40 moles of H_{2}, then how may moles of O_{2} must have been made? (a bit challenging, but just think about it and you can probably figure it out)

$$
2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}
$$

10. How many grams of O_{2} will be formed from 3.76 grams of KClO_{3} ?

$3.76 \mathrm{~g} \mathrm{KClO}_{3}$	$1 \mathrm{~mol} \mathrm{KClO}_{3}$	$\ldots \mathrm{~mol} \mathrm{O}_{2}$	$\ldots \mathrm{~g} \mathrm{O}_{2}$
	$122.55 \mathrm{~g} \mathrm{KClO}_{3}$	$\ldots \mathrm{~mol} \mathrm{KClO}$	\ldots
$\mathrm{mol} \mathrm{O}_{2}$			

11. How many grams of KClO_{3} are needed to make 30.0 grams of KCl ?

30.0 g KCl	$\ldots \mathrm{mol} \mathrm{KCl}^{2}$	$\mathrm{~mol} \mathrm{KClO}_{3}$	$\ldots \mathrm{~g} \mathrm{KClO}_{3}$
	$\ldots \quad \mathrm{~g} \mathrm{KCl}$	$\ldots \mathrm{mol} \mathrm{KCl}$	$\ldots \mathrm{mol} \mathrm{KClO}_{3}$

12. How many grams of KCl will be formed from 2.73 g of KClO_{3} ?

$$
4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}
$$

13. How many grams of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are produced when 42.7 grams of Fe is reacted?

42.7 g Fe	$\ldots \quad \mathrm{mol} \mathrm{Fe}$	$\ldots \mathrm{mol} \mathrm{Fe}_{2} \mathrm{O}_{3}$	$\ldots \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}$
	$\ldots \quad \mathrm{~g} \mathrm{Fe}$	$\ldots \mathrm{mol} \mathrm{Fe}$	$\mathrm{mol} \mathrm{Fe}_{2} \mathrm{O}_{3}$

14. How many grams of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are produced when 17.0 grams of O_{2} is reacted?

15. How many grams of O_{2} are needed to react with 125 grams of Fe ?

\qquad

Some cars can use butane $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)$ as fuel:

$$
2 \mathrm{C}_{4} \mathrm{H}_{10}+13 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}
$$

16. How many grams of CO_{2} are produced from the combustion of 100. grams of butane?

17. How many grams of O_{2} are needed to react with of 100 . grams of butane?

$100 . \mathrm{g} \mathrm{C}_{4} \mathrm{H}_{10}$				
				$=\quad \mathrm{g} \mathrm{O}_{2}$

18 How many grams of $\mathrm{H}_{2} \mathrm{O}$ are produced when 5.38 g of O_{2} is reacted?

KEY

$$
2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}
$$

1. How many moles of O_{2} will be formed from 1.65 moles of KClO_{3} ?

$1.65 \mathrm{~mol} \mathrm{KClO}_{3}$	$\underline{3} \mathrm{~mol} \mathrm{O}_{2}$
$\underline{2} \mathrm{~mol} \mathrm{KClO}$	
3	

2. How many moles of KClO_{3} are needed to make 3.50 moles of KCl ?

3. How many moles of KCl will be formed from 2.73 moles of KClO_{3} ?

$$
4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}
$$

4. How many moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are produced when 0.275 moles of Fe are reacted?

$$
\begin{array}{c|c|}
0.275 \mathrm{~mol} \mathrm{Fe} & 2 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3} \\
\hline & 4 \mathrm{~mol} \mathrm{Fe}
\end{array}=\underline{0.138} \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}
$$

5. How many moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are produced when 31.0 moles of O_{2} are reacted?

$$
\begin{array}{c|c|}
31.0 \mathrm{~mol} \mathrm{O}_{2} & 2 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3} \\
\hline & 3 \mathrm{~mol} \mathrm{O}_{2}
\end{array}=20.7 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}
$$

6. How many moles of O_{2} are needed to react with 8.9 moles of Fe ?

8.9 mol Fe	$3 \mathrm{~mol} \mathrm{O}_{2}$
	4 mol Fe

7. How many moles of O_{2} are produced when 1.26 moles of $\mathrm{H}_{2} \mathrm{O}$ is reacted?

$1.26 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$	$1 \mathrm{~mol} \mathrm{O}_{2}$
	$2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$

8. How many moles of $\mathrm{H}_{2} \mathrm{O}$ are needed to produce 55.7 moles of H_{2} ?

$$
\begin{array}{l|l|}
55.7 \mathrm{~mol} \mathrm{H}_{2} & 2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \\
\hline & 2 \mathrm{~mol} \mathrm{H}_{2}
\end{array}=55.7 \mathrm{~mol} \mathrm{H} \mathrm{H} \mathrm{O}
$$

9. If enough $\mathrm{H}_{2} \mathrm{O}$ is reacted to produce 3.40 moles of H_{2}, then how may moles of O_{2} must have been made? (a bit challenging, but just think about it and you can probably figure it out)

$$
\begin{array}{l|l|}
3.40 \mathrm{~mol} \mathrm{H}_{2} & 1 \mathrm{~mol} \mathrm{O}_{2} \\
\hline & 2 \mathrm{~mol} \mathrm{H}_{2}
\end{array}=\underline{1.70} \mathrm{~mol} \mathrm{O}
$$

$$
2 \mathrm{KClO}_{3} \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}
$$

10. How many grams of O_{2} will be formed from 3.76 grams of KClO_{3} ?

$3.76 \mathrm{~g} \mathrm{KClO}_{3}$	$1 \mathrm{~mol} \mathrm{KClO}_{3}$	$\underline{3} \mathrm{~mol} \mathrm{O}_{2}$	$\underline{32.00 \mathrm{~g} \mathrm{O}_{2}}$
	$122.55 \mathrm{~g} \mathrm{KClO}_{3}$	$\underline{2} \mathrm{~mol} \mathrm{KClO}_{3}$	$\underline{1} \mathrm{~mol} \mathrm{O}$

11. How many grams of KClO_{3} are needed to make 30.0 grams of KCl ?

30.0 g KCl	$\underline{1} \mathrm{~mol} \mathrm{KCl}$	$\underline{2} \mathrm{~mol} \mathrm{KClO}_{3}$	$\underline{122} .55 \mathrm{~g} \mathrm{KClO}^{2}$
	$\underline{74.55} \mathrm{~g} \mathrm{KCl}$	$\underline{2} \mathrm{~mol} \mathrm{KCl}$	$\underline{1} \mathrm{~mol} \mathrm{KClO}_{3}$

12. How many grams of KCl will be formed from $2.73 \mathrm{~g} \mathrm{of}^{\mathrm{KClO}}{ }_{3}$?

$2.73 \mathrm{~g} \mathrm{KClO}_{3}$	$\underline{1} \mathrm{~mol} \mathrm{KCl} \mathrm{O}_{3}$	$\underline{2} \mathrm{~mol} \mathrm{KCl}$	$\underline{74.55 \mathrm{~g}}$	
	$\underline{122.55} \mathrm{~g} \mathrm{KClO}_{3}$	$\underline{2} \mathrm{~mol} \mathrm{KCl} \mathrm{O}$	$\underline{1} \mathrm{~mol} \mathrm{KCl}$	1.66 g KCl

$$
4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}
$$

13. How many grams of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are produced when 42.7 grams of Fe is reacted?

| 42.7 g Fe | $\underline{1} \mathrm{~mole} \mathrm{Fe}$ | $\underline{2} \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}$ | $\underline{159} .70 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}$ |
| :--- | :--- | :--- | :--- | :--- |
| | $\underline{55.85} \mathrm{~g} \mathrm{Fe}$ | $\underline{4} \mathrm{~mol} \mathrm{Fe}$ | $\underline{1} \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}$ |$|=\underline{61.0} \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}$

14. How many grams of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ are produced when 17.0 grams of O_{2} is reacted?

$17.0 \mathrm{~g} \mathrm{O}_{2}$	1 mol O	$\underline{2} \mathrm{~mol} \mathrm{Fe} \mathrm{O}_{3}$	$\underline{159.70 ~ g ~ F e 2 O}$		
	$32.00 \mathrm{~g} \mathrm{O}_{2}$	3 mol O	$1 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}$		56.6 g Fe

15. How many grams of O_{2} are needed to react with 125 grams of Fe ?

| 125 g Fe | $\underline{1 \mathrm{~mol} \mathrm{Fe}}$ | $\underline{3} \mathrm{~mol} \mathrm{O}_{2}$ | $\underline{32.00 \mathrm{~g} \mathrm{O}_{2}}$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | $\underline{55.85} \mathrm{~g} \mathrm{Fe}$ | $\underline{4} \mathrm{~mol} \mathrm{Fe}$ | $\underline{1} \mathrm{~mol} \mathrm{O}$ | $=\underline{53.7} \mathrm{~g} \mathrm{O}_{2}$ |

Some cars can use butane $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)$ as fuel:

$$
2 \mathrm{C}_{4} \mathrm{H}_{10}+13 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}
$$

16. How many grams of CO_{2} are produced from the combustion of 100 . grams of butane?

$$
\begin{array}{l|l|l|l|}
100 . \mathrm{g} \mathrm{C}_{4} \mathrm{H}_{10} & 1 \mathrm{~mol} \mathrm{C}_{4} \mathrm{H}_{10} & 8 \mathrm{~mol} \mathrm{CO}_{2} & 44.01 \mathrm{~g} \mathrm{CO}_{2} \\
\hline & 58.14 \mathrm{~g} \mathrm{C}_{4} \mathrm{H}_{10} & 2 \mathrm{~mol} \mathrm{C}_{4} \mathrm{H}_{10} & 1 \mathrm{~mol} \mathrm{CO}_{2}
\end{array}=303 \mathrm{~g} \mathrm{CO}_{2}
$$

17. How many grams of O_{2} are needed to react with of 100 . grams of butane?

$$
\begin{array}{l|l|l|l|}
100 . \mathrm{g} \mathrm{C}_{4} \mathrm{H}_{10} & 1 \mathrm{~mol} \mathrm{C}_{4} \mathrm{H}_{10} & 13 \mathrm{~mol} \mathrm{O}_{2} & 32.00 \mathrm{~g} \mathrm{O}_{2} \\
\hline & 58.14 \mathrm{~g} \mathrm{C} \mathrm{C}_{4} \mathrm{H}_{10} & 2 \mathrm{~mol} \mathrm{C}_{4} \mathrm{H}_{10} & 1 \mathrm{~mol} \mathrm{O}_{2}
\end{array}=358 \mathrm{~g} \mathrm{O}_{2}
$$

18 How many grams of $\mathrm{H}_{2} \mathrm{O}$ are produced when 5.38 g of O_{2} is reacted?

$5.38 \mathrm{~g} \mathrm{O}_{2}$	$1 \mathrm{~mol} \mathrm{O}_{2}$	$10 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$	$18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
	$32.00 \mathrm{~g} \mathrm{O}_{2}$	$13 \mathrm{~mol} \mathrm{O}_{2}$	1 mol H

Chapter 6 Balancing and Stoichiometry Worksheet and Key

Topics:

- Balancing Equations
- Stoichiometry
- Writing a chemical equation

Practice:

1. In the reaction: $\mathbf{4 L i}(s)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{Li}_{2} \mathrm{O}(s)$
a. what is the product?
b. what are the reactants?
c. what does the " (s) " after the formula of lithium oxide signify?
d. what is the coefficient of the lithium metal?
e. in what phase is the lithium oxide?
2. Define "chemical reaction".
3. List the observations that are evidence of a chemical reaction:
4. Write and balance the chemical equation that relates to each of the following word equations:

Remember that some elements exist as diatomic molecules (oxygen, nitrogen, hydrogen, halogens).
a. solid zinc metal + oxygen gas \rightarrow solid zinc oxide
b. $\mathrm{HCl}(a q)+$ magnesium hydroxide $(a q) \rightarrow$ magnesium chloride $(a q)+$ water
c. $\mathrm{HNO}_{3}(a q)+$ calcium hydroxide $(\mathrm{s}) \rightarrow$ calcium nitrate $(a q)+$ water

5. Balancing and Stoichiometry:

a. $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow \mathrm{HCl}$ (needs balanced)

How many grams of HCl can be produced if $7.25 \mathrm{~g} \mathrm{of}_{\mathrm{Cl}}^{2}$ is reacted with an unlimited supply of H_{2} ?
b. $\mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{Fe}$ (needs balanced)

How many grams of Fe can be produced when 10.0 g of Al is reacted with an excess (unlimited) supply of $\mathrm{Fe}_{2} \mathrm{O}_{3}$?
c. $\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}+\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{PbS}+\mathrm{CH}_{3} \mathrm{COOH} \quad$ (needs balanced)

How many grams of PbS is produced when $5.00 \mathrm{~g} \mathrm{of}_{\mathrm{H}} \mathrm{S}$ is reacted with an excess (unlimited) supply of $\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$?

Chapter 6 Balancing and Stoichiometry Worksheet

Topics:

- Balancing Equations
- Stoichiometry
- Writing a chemical equation

Practice:

1. In the reaction: $\mathbf{4 L i}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Li}_{2} \mathrm{O}(\mathrm{s})$
a. what is the product?
$\mathrm{Li}_{2} \mathrm{O}(s)$
b. what are the reactants?
$\mathrm{Li}(\mathrm{s}) \quad \mathrm{O}_{\mathbf{2}}(\mathrm{g})$
c. what does the " (s) " after the formula of lithium oxide signify?
phase $=$ solid
d. what is the coefficient of the lithium metal?

4
e. in what phase is the lithium oxide?
solid
2. Define "chemical reaction".

Ionic or covalent bonds are made and/or broken, and a new substance is made.
3. List the observations that are evidence of a chemical reaction:

A color change, the formation of a new phase, a new odor, a temperature change, the emission light, or the appearance of a flame.
4. Write and balance the chemical equation that relates to each of the following word equations:

Remember that some elements exist as diatomic molecules (oxygen, nitrogen, hydrogen, halogens).
a. solid zinc metal + oxygen gas \rightarrow solid zinc oxide

$$
2 \mathrm{Zn}(s)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{ZnO}(s)
$$

b. $\mathrm{HCl}(a q)+$ magnesium hydroxide $(a q) \rightarrow$ magnesium chloride $(a q)+$ water

$$
2 \mathrm{HCl}(a q)+\mathrm{Mg}(\mathrm{OH})_{2}(a q) \rightarrow \mathrm{MgCl}_{2}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l)
$$

c. $\mathrm{HNO}_{3}(a q)+$ calcium hydroxide $(\mathrm{s}) \rightarrow$ calcium nitrate $(a q)+$ water

$$
2 \mathrm{HNO}_{3}(a q)+\mathrm{Ca}(\mathrm{OH})_{2}(s) \rightarrow \quad \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l)
$$

5. Balancing and Stoichiometry:

a. $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow \mathbf{2} \mathrm{HCl}$ (needs balanced)

How many grams of HCl can be produced if 7.25 g of Cl_{2} is reacted with an unlimited supply of H_{2} ?

$7.25 \mathrm{~g} \mathrm{Cl}_{2}$	$\underline{1} \mathrm{~mol} \mathrm{Cl}_{2}$	$\underline{2} \mathrm{~mol} \mathrm{HCl}$	$\underline{36.46 \mathrm{~g} \mathrm{HCl}}$
	$\underline{70.90} \mathrm{~g} \mathrm{Cl}_{2}$	$\underline{1} \mathrm{~mol} \mathrm{Cl}_{2}$	$\underline{1} \mathrm{~mol} \mathrm{HCl}$

b. $2 \mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Fe}$ (needs balanced)

How many grams of Fe can be produced when 10.0 g of Al is reacted with an excess (unlimited) supply of $\mathrm{Fe}_{2} \mathrm{O}_{3}$?

c. $\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}+\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{PbS}+2 \mathrm{CH}_{3} \mathrm{COOH} \quad$ (needs balanced)

How many grams of PbS is produced when 5.00 g of $\mathrm{H}_{2} \mathrm{~S}$ is reacted with an excess (unlimited) supply of $\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$?

| 5.00 g | $\underline{1 \mathrm{~mol} \mathrm{H}} \mathrm{H}$ | $\underline{1} \mathrm{~mol} \mathrm{PbS}$ | $\underline{239.27} \quad \mathrm{~g}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | $\underline{34.09} \quad \mathrm{gH}_{2} \mathrm{~S}$ | $\underline{1} \mathrm{~mol} \mathrm{H}_{2} \mathrm{~S}$ | $\underline{1} \mathrm{~mol} \mathrm{PbS}$ |$=\underline{35.1 \mathrm{~g} \mathrm{PbS}}$

Chapter 6 Reactions Worksheet and Key

Classes of Organic Reactions

1) Hydrogenation: Reduction of Alkenes

- Alkenes and other unsaturated hydrocarbons undergo a reduction reaction hydrogenation, in which hydrogen gas $\left(\mathrm{H}_{2}\right)$ in the presence of a catalyst, acts as a reducing agent.

Alkene
Alkane

- Example:

2) Hydrolysis of Esters

- The hydrolysis of an ester produces a carboxylic acid and an alcohol molecule.

Example:

Chapter 6 Reactions Worksheet and Key

3) Hydration of Alkenes

In a hydration reaction, $\mathrm{H}_{2} \mathrm{O}$ is added "across" a double bond in an alkene to produce an alcohol.

Alkene
Alcohol
Example:

4) Dehydration of Alcohols

Dehydration is the reverse of hydration.

- Water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ is removed from an alcohol to form an alkene.

Alcohol
Alkene
Example:

$$
\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{H}-\mathrm{O}-\mathrm{H}
$$

Combustion Reactions

- Hydrocarbons undergo combustion (react with oxygen O_{2}) to produce $\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

$$
\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

- Example: combustion of methane

$$
\mathrm{CH}_{4}+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Chapter 6 Reactions Worksheet and Key
 Problems

Complete the following reactions:
1)

2) Complete and balance
$\mathrm{C}_{5} \mathrm{H}_{12}+\mathrm{O}_{2} \quad \longrightarrow$
3)

4)

Hint: If you are struggling with this one, draw the line bond structure of the reactant first!

Hint: If you are struggling with this one, draw the line bond structure of the reactant first!
6)

7)

8) Dehydration:

\longrightarrow
9) Dehydration:

Hint: If you are struggling with this one, draw the line bond structure of the reactant first!
10)

SEE NEXT PAGE FOR KEY

Chapter 6 Reactions Worksheet and Key

KEY

Complete the following reactions:
1)

2) Complete and balance
$\mathrm{C}_{5} \mathrm{H}_{12}+8 \mathrm{O}_{2} \longrightarrow 5 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
3)

4)

Hint: If you are struggling with this one, draw the line bond structure of the reactant first!
5)

Hint: If you are struggling with this one, draw the line bond structure of the reactant first!
6)

Note $\mathrm{CH}_{2}=\mathrm{CHCH}_{3}$ is the exact same molecule as $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}$ so either one is correct here!

Chapter 6 Reactions Worksheet and Key

7)

8) Dehydration:

9) Dehydration:

Hint: If you are struggling with this one, draw the line bond structure of the reactant first!
10)

Chapter 7 Lecture Notes: Solutions, Colloids, and Suspensions

Educational Goals

1. Compare and contrast mixtures and pure substances.
2. Understand, compare, and contrast the terms homogeneous mixture and heterogeneous mixture. For a homogeneous mixture, explain the difference between solute(s) and solvent.
3. Predict the effect of temperature and pressure on the solubility of gases in water and the effect of temperature on the solubility of solids in water.
4. Be able to use the Solubility Rules Table to determine if an ionic compound will significantly dissolve in water.
5. Predict whether a precipitation reaction will occur when two specified aqueous solutions of ionic compounds are mixed; if a precipitation reaction will occur, write a balanced chemical equation for the reaction.
6. Compare the relative solubilities of organic molecules based on the functional groups or the relative sizes of the hydrocarbon (nonpolar) regions.
7. Explain, compare, and contrast the terms hydrophilic, hydrophobic, and amphipathic, and give examples of compounds that belong to each category.
8. Be able to calculate the concentration of a solution using various concentration units of measurements (\%, parts per thousand, ppm, ppb, molarity, molality, osmolality, osmolarity, and Eq/L).
9. Given the concentration, be able to convert from the volume of solution to the amount of solute (and vice versa).
10. Given a solution's initial concentration, be able to use the dilution equation to determine the concentration of the solution after dilution.
11. Compare and contrast solutions, suspensions, and colloids.
12. Describe the processes of diffusion and osmosis. Define osmotic pressure and predict the effect of solute concentration on the osmotic pressure.

Most matter on earth is not composed of just one pure substance.
When two or more pure substances are combined, we refer to the combination as a \qquad . In this chapter, you will learn about three types of mixtures:

1) solutions
2) colloids
3) suspensions

Macro-Scale Classification of Mixtures: Homogeneity

One way in which mixtures are classified is by their macro-scale, visually observed homogeneity. A \qquad mixture appears to be the same throughout the entire sample/object.

- Example: Sugar dissolved in water

A \qquad mixture has visible regions of varying composition.
a. Example: A chocolate chip cookie

Introduction to Solutions

\qquad are mixtures of pure substances in which the pure substance particles (molecules, ions, or noble gas atoms) are \qquad distributed throughout the entire volume of the mixture.

The pure substance that is in the greatest abundance is referred to as the \qquad .

- Typically, especially in biological systems, the solvent is water.

The other pure substance components of a solution are called \qquad .
With very few exceptions, the solution takes the same physical phase (gas, liquid, or solid) as the solvent. The solutes are said to be " \qquad " in the solvent.

Solutions can be gas-phase, liquid-phase, or solid-phase.
An example of a gas-phase solution is air.

- Air is a mixture of several gases, mostly nitrogen, oxygen, and carbon dioxide.

An example of a solid-phase solution is brass.

- Brass is a mixture of copper and zinc. When one solid (such as zinc) is evenly dispersed in another solid (such as copper), the solid solution is called an \qquad .

We will focus on liquid-phase solutions for the remainder of this course.

- There are 3 types of liquid-phase solutions:
- Gas dissolved in a liquid solvent
- An example of a gas dissolved in a liquid solvent is CO_{2} dissolved in water; this is how beverages are carbonated. Another example of a gaseous solute dissolved in liquid is O_{2} dissolved in water; fish extract the O_{2} from water using their gills. Whenever a gas is present above a liquid, some of the gas will dissolve in the liquid.
- Liquid dissolved in a liquid solvent
- An example of a liquid dissolved in a liquid solvent is ethyl alcohol dissolved in water; this is the basis of adult beverages.
- Solid dissolved in a liquid solvent
- An example of a solid dissolved in a liquid solvent is table salt (NaCl) or table sugar (sucrose molecules) in water.

Almost all of the solutions used in biological applications, such as in biomedical analytical labs and research labs, are liquid-phase solutions.

For the remainder of this course, I will use the term solution to mean liquid-phase solution.

Understanding Check

If the following pairs of pure substances are mixed in the ratios given to form solutions, identify each substance as either solvent or solute:
a) 5 grams of sodium chloride and 100 grams of water
b) 10 mL of ethyl alcohol and 250 mL of water
c) 100 mL of acetone and 10 mL of water

The Dissolution Process: Solvation

Another term for "dissolving" is \qquad .

In liquid and solid phase solutions, the solute and solvent particles are \qquad to each other by one or more of the five types of noncovalent interactions.
The stronger the solute-solvent interactions, the more solute that can be dissolved.

The Dissolution of Ionic Compounds

Example: The dissolution of sodium chloride in water.
When ionic compounds dissolve, the ions \qquad (become separated from each other) and enter the liquid phase solution.

The water molecules and ions are attracted to each other through ion-dipole forces.

The partially negatively-charged ends of several water molecule dipoles are attracted to the positive charge of each sodium.

Likewise, the partially positively-charged ends of several water molecule dipoles are attracted to the negative charge of each chloride ion.

We use the term \qquad to describe a solute particle becoming surrounded by solvent molecules.

Solvation causes dissolution of the solute.

The Dissolution of Molecules

Molecules will dissolve in a particular solvent when the solute-solvent noncovalent interactions are strong enough to overcome the solute-solute interactions.

Unlike ionic compounds that dissociate, when molecules dissolve, the \qquad become solvated.

Example: The dissolution of ethyl alcohol in water.
Ethyl alcohol dissolves in water because it has significantly strong noncovalent interactions with water.
These solute-solvent intermolecular forces enable the solvation of ethyl alcohol molecules by water molecules as illustrated in below.

All three of the intermolecular forces (hydrogen bonding, dipole-dipole forces, and London forces) occur between ethyl alcohol and water.

Since water molecules are relatively small, the London forces between water and ethyl alcohol are not very strong; if they were the only intermolecular forces present, ethyl alcohol would not dissolve in water.

Since ethyl alcohol and water are polar molecules, they can also interact through dipole-dipole forces.

- The dipoles of ethyl alcohol's highly-polar bonds are indicated by arrows on top of the ethanol structure, and water's molecular dipoles are indicated by dipole arrows behind the water molecules.

Because of the relatively small size of solvated molecules and ions, the forces imparted upon them from collisions with solvent molecules are much greater than the force of gravity.

It is for this reason that solvated ions and molecules do not settle to the bottom of a mixture, but instead, move in random directions in-between collisions.

This type of random, chaotic movement is called Brownian motion and results in the solute being evenly dispersed within the solvent.

Since ions and molecules are evenly dispersed within the solvent, solutions are \qquad .

Solutes that are polar are capable of dissolving in polar solvents.
 Solutes that are nonpolar are capable of dissolving in nonpolar solvents. This phenomenon is summarized in the easily-remembered phrase, "like dissolves like."

Understanding Check

If you dissolved one mole of the following substances in water, how many moles of solvated ions would be present (include both cations and anions in the number of moles of solvated ions)?
a. NaCl
b. BaCl_{2}

Understanding Check

List all of the noncovalent interactions that can occur between solute and solvent for each of the following solutions:
a. oxygen gas dissolved in water
b. carbon dioxide gas dissolved in water
c. potassium iodide dissolved in water
d. pentane dissolved in octane

Solubility

Solubility is a term that refers to the \qquad of solute that can be dissolved.

Some liquid-in-liquid solutions can be made at \qquad ratio of the liquids.

- For example, water and ethyl alcohol will mix no matter what the ratio is of water to ethyl alcohol. When two liquids mix with each other in any ratio, we say that the substances are " \qquad .$"$

Some pairs of liquids will not mix with each other at all.

- For example, oil will not significantly dissolve in water.
- This is why we see oil floating on the top of water when oil spills occur.

When two liquids will not mix with each other we say that the substances are " \qquad ."

For most solute/solvent pairs, there is a limit on how much solute can dissolve in a particular solvent.
a) For example, you can only dissolve so much salt or sugar in water.

At some point, the solution becomes \qquad and the amount of dissolved solute cannot increase.

If you continue to add a solid solute to a saturated solution, the excess solute will exist as a solid in the container.

The Solubility of Gases in Water

The solubility of a dissolved gas depends on both \qquad and \qquad .

Whenever a gas is present above a liquid, some of the gas will dissolve in the liquid.
The higher the partial pressure of a particular gas above a liquid, the more of that gas will dissolve in the liquid.

William Henry was first to report that the amount of gas dissolved in a liquid is directly proportional to the partial pressure of the gas.

This relationship between the amount of gas dissolved and pressure is known as "Henry's Law."

William Henry

The lower the \qquad of the aqueous solutions, the greater the solubility of gases.

- For example, cold water can dissolve more oxygen than warm water.

The Solubility of Solids in Water

The solubility of a \qquad solute depends on \qquad .

- As the temperature of water increases to its normal boiling point $\left(100^{\circ} \mathrm{C}\right)$, the solubility of most solid solutes \qquad .

Notice that this is the \qquad of the behavior of gaseous solutes.

The Solubility of Ionic Compounds in Water

Some ionic compounds dissolve to a significant extent in water; some do not.
Ionic compounds that do not significantly dissolve are categorized as "water \qquad ."

- Water insoluble compounds exist in their crystal/solid form when placed in water. Ionic compounds that dissolve to a significant extent are classified as "water \qquad .$"$

It is convenient to use "solubility rules" in order to know which ionic compounds are water soluble and which ones are water insoluble.

In this table, ionic compounds are first classified as water soluble or water insoluble based on their
\qquad , and then exceptions are listed.

Solubility Rules Table

Water Soluble			
Compound	Example	Exceptions	Exception Example
Nitrates	NaNO_{3}	None	None
Chlorides, Bromides, and Iodides	NaCl	Compounds containing Ag^{+}, Pb^{2+}, or Hg^{+}, and HgI_{2}	AgCl
Sulfates	$\mathrm{K}_{2} \mathrm{SO}_{4}$	Compounds containing Pb^{2+}, $\mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}$, or Hg^{+}	PbSO_{4}
Water Insoluble			
Compound	Example	Exceptions	Exception Example(s)
Hydroxides	$\mathrm{Mg}(\mathrm{OH})_{2}$	Compounds containing alkali (Group I) metals or $\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}$, $\mathrm{Ba}^{2+}, \mathrm{NH}_{4}{ }^{+}$	NaOH
Phosphates, Carbonates, and Chromates	FePO_{4}	Compounds containing alkali (Group I) metals or $\mathrm{NH}_{4}{ }^{+}$	$\begin{gathered} \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Li}_{3} \mathrm{PO}_{4}, \\ \mathrm{Na}_{2} \mathrm{CrO}_{4} \end{gathered}$

Example: Is KNO_{3} water soluble?

Solution:

STEP 1: Find the solubility classification in the table based on the identity of the anion.

- We see that nitrates are in the water soluble class.

STEP 2: Check to see if the compound's cation causes the compound to be an exception for the solubility class.

- There are no exceptions for nitrates.

This means that all nitrates are water soluble, therefore KNO_{3} is water soluble.

Example: Is $\mathrm{Cu}(\mathrm{OH})_{2}$ water soluble?

Solution:

STEP 1: Find the solubility classification in the based on the identity of the anion.

- We see that hydroxides are in the water insoluble class.

STEP 2: Check to see if the cation causes the compound to be an exception for the solubility class.

- There are exceptions for hydroxides, however Cu^{2+} is not one of them.

Therefore $\mathrm{Cu}(\mathrm{OH})_{2}$ is not water soluble.

- If $\mathrm{Cu}(\mathrm{OH})_{2}$ were mixed with water, it would exist as solid crystals submerged in water.

Example: Is BaSO_{4} water soluble?

Solution:

STEP 1: Find the solubility classification in the table based on the identity of the anion.

- We see that sulfates are in the water soluble class.

STEP 2: Check to see if the cation causes the compound to be an exception for the solubility class.

- There are some exceptions for sulfates and Ba^{2+} is one of them.

Therefore BaSO_{4} is not water soluble.

Example: Is KOH water soluble?

Solution:

STEP 1: Find the solubility classification in the table based on the identity of the anion.

- We see that hydroxides are in the water insoluble class.

STEP 2: Check to see if the cation causes the compound to be an exception for the solubility class.

- There are exceptions for hydroxides, and K^{+} is one of them; it's an alkali (Group I) metal.

Therefore KOH is water soluble.

Understanding Check

Determine which of the following compounds is water soluble.
a. potassium iodide
b. iron(II) nitrate
c. copper(II) hydroxide
d. silver bromide
e. sodium sulfate
f. potassium hydroxide
g. lead(II) chromate
h. ammonium hydroxide

Solubility Rules Table			
Water Soluble			
Compound	Example	Exceptions	Exception Example
Nitrates	NaNO_{3}	None	None
Chlorides, Bromides, and Iodides	NaCl	Compounds containing Ag^{+}, Pb^{2+}, or Hg^{+}, and HgI_{2}	AgCl
Sulfates	$\mathrm{K}_{2} \mathrm{SO}_{4}$	Compounds containing Pb^{2+}, $\mathrm{Sr}^{2+}, \mathrm{Ba}^{2+} \text {, or } \mathrm{Hg}^{+}$	PbSO_{4}
Water Insoluble			
Compound	Example	Exceptions	Exception Example(s)
Hydroxides	$\mathrm{Mg}(\mathrm{OH})_{2}$	Compounds containing alkali (Group I) metals or $\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}$, $\mathrm{Ba}^{2+}, \mathrm{NH}_{4}{ }^{+}$	NaOH
Phosphates, Carbonates, and Chromates	FePO_{4}	Compounds containing alkali (Group I) metals or $\mathrm{NH}_{4}{ }^{+}$	$\begin{gathered} \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Li}_{3} \mathrm{PO}_{4}, \\ \mathrm{Na}_{2} \mathrm{CrO}_{4} \end{gathered}$

Electrolytes

Solutions that contain dissolved ions are capable of conducting electricity and are sometimes referred to as \qquad solutions.

- Dissolved ionic compounds are called electrolytes.

Electrolyte solutions are required in biological functions such as the transmission of nerve impulse signals and muscle actuation.

Our bodies obtain electrolytes from food and drink.

Reactions of Ions in Aqueous Solutions

In a double replacement reaction, two substances " \qquad partners."
The general form of a double replacement reaction, where compounds $\mathbf{A X}$ and $\mathbf{B Y}$ switch partners, is:

$$
A X+B Y \rightarrow A Y+B X
$$

There are two types of double replacement reactions:

1) Precipitation Reactions
2) Gas Producing Reactions

1) Precipitation Reactions

Precipitation reactions may occur when two solutions that contain \qquad ions are mixed.

In a precipitation reaction, two compounds in aqueous solution appear to exchange \qquad .

If one of the new pairs formed is \qquad a new substance (solid/precipitate) is formed.

For a precipitation reaction to occur, at least one of the \qquad formed is insoluble in water.

- Therefore, a solid is always formed in a precipitation reaction.
- Often, many tiny crystals are formed and this gives the mixture a cloudy appearance. The cloudy appearance may be white, black, or some other color, depending on the identity of the particular solid that is formed.
- We say the solid "precipitated" from the solution.
- The appearance of the solid precipitate indicates the formation of new ionic bonds and that a
\qquad has occurred.

The educational goals for precipitation reactions are:
Predict if a precipitation reaction will occur when two aqueous ionic compounds are combined.
Write the balanced chemical equation for the reaction.

Method for Predicting if a Precipitation Reaction will Occur and Writing the Balanced Chemical Equation for Precipitation Reactions.

Example: The reaction that was just demonstrated; the reaction of lead(II) nitrate and potassium chromate.
Step 1: Write reactants' names and arrow for the chemical equation using word form (not formulas):
lead(II) nitrate + potassium chromate \rightarrow
Step 2: Add the "possible" products to the word equation by switching anions:

```
lead(II) nitrate + potassium chromate }->\mathrm{ lead(II) chromate + potassium nitrate
```

Step 3: Convert the word equation to a formula equation:
lead(II) nitrate + potassium chromate \rightarrow lead(II) chromate + potassium nitrate

$$
\mathbf{P b}\left(\mathrm{NO}_{3}\right)_{2}+\mathbf{K}_{2} \mathrm{CrO}_{4} \rightarrow \mathbf{P b C r O}_{4}+\mathbf{K N O}_{3}
$$

- Note: Students often need to review the section in chapter 3 that discusses naming ionic compounds in order to perform Step 3.
Step 4: Balance the equation:

$$
\mathbf{P b}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{K}_{2} \mathrm{CrO}_{4} \rightarrow \mathbf{P b C r O} 4+2 \mathbf{K N O}_{3}
$$

Step 5: Add the phase of each of the reactants and "possible" products to the chemical equation.

- In all precipitation reactions, the reactants are always aqueous.
- Use the Solubility Rules Table to determine the phase of the "possible" products.
- If a compound is water soluble, it remains dissolved and we write " $(a q)$."
- If a compound is water insoluble, it precipitates as a solid and we write " (s)."

$$
\mathbf{P b}\left(\mathbf{N O}_{3}\right)_{2}(a q)+\mathbf{K}_{2} \mathbf{C r O}_{4}(a q) \rightarrow \mathbf{P b C r O}_{4}(s)+\mathbf{2} \mathbf{K N O}_{3}(a q)
$$

Example: The reaction of sodium chloride and silver nitrate.
Step 1: Write reactants' names and arrow for the chemical equation using word form (not the chemical formula).

```
sodium chloride + silver nitrate }
```

Step 2: Add the "possible" products to the word equation by switching anions.

Step 3: Convert the word equation to a formula equation.

$$
\mathbf{N a C l}+\mathrm{AgNO}_{3} \rightarrow \mathrm{NaNO}_{3}+\mathbf{A g C l}
$$

Step 4: Balance the equation:

- In this example, the equation is already balanced; each of the coefficients is " 1. ."

$$
\mathbf{N a C l}+\mathrm{AgNO}_{3} \rightarrow \mathrm{NaNO}_{3}+\mathbf{A g C l}
$$

Step 5: Add the phase of each of the reactants and "possible" products to the chemical equation.

$$
\mathbf{N a C l}(a q)+\mathbf{A g N O}_{3}(a q) \rightarrow \mathbf{N a N O}_{3}(a q)+\mathbf{A g C l}(s)
$$

Example: Determine if a precipitation reaction would occur when a sodium chloride solution is mixed with a potassium nitrate solution.

Step 1: Write reactants' names and arrow for the chemical equation using word form (not formula): sodium chloride + potassium nitrate \rightarrow

Step 2: Add the "possible" products to the word equation by switching anions:

$$
\text { sodium chloride }+ \text { potassium nitrate } \rightarrow \text { sodium nitrate }+ \text { potassium chloride }
$$

Step 3: Convert the word equation to a formula equation:

$$
\mathrm{NaCl}+\mathrm{KNO}_{3} \rightarrow \mathrm{NaNO}_{3}+\mathbf{K C l}
$$

Step 4: Balance the equation:

- In this example, the equation is already balanced; each of the coefficients is " 1 ".

$$
\mathbf{N a C l}+\mathrm{KNO}_{3} \rightarrow \mathbf{N a N O}_{3}+\mathbf{K C l}
$$

Step 5: Add the phase of each of the reactants and "possible" products to the chemical equation.

$$
\mathbf{N a C l}(a q)+\mathbf{K N O}_{3}(a q) \rightarrow \mathbf{N a N O}_{3}(a q)+\mathbf{K C l}(a q)
$$

IMPORTANT: If both of the "possible" products are water soluble, then no reaction occurred.

- There were solvated cations and anions in each the two solutions before mixing, then the solutions were mixed and the cations and anions remained solvated in the mixture.
- No new chemical bonds were made, therefore no chemical reaction occurred.
- When no reaction occurs in precipitation reaction problems such as this example, you can write "No Reaction" instead of the "possible" products:

$$
\mathbf{N a C l}(a q)+\mathbf{K N O}_{3}(a q) \rightarrow \text { No Reaction }
$$

You try one: Determine if a precipitation reaction would occur when a silver nitrate solution is mixed with a barium chloride solution and, if a reaction does occur, write the balanced chemical equation.

2) Gas Producing Double Replacement Reactions

A gas producing double replacement reaction is a special type of double replacement in which a gas is produced.

The gas producing double replacement reaction that is typically encountered in the health sciences field and, therefore the only gas producing reaction which I would like you to be familiar, is the reaction of aqueous hydrogen monochloride ($\mathbf{H C l}$, also know as hydrochloric acid) and aqueous sodium bicarbonate $\left(\mathrm{NaHCO}_{3}\right)$.

$\mathrm{HCl}+\mathrm{NaHCO}_{3} \rightarrow \mathrm{HHCO}_{3}+\mathrm{NaCl}$

In this reaction, the bicarbonate and chloride anions switch partners to form aqueous carbonic acid $\left(\mathrm{HHCO}_{3}\right)$ and sodium chloride.

- In the chemical equation above, I wrote the formula of carbonic acid as $\mathbf{H H C O}_{3}$ in order to help you see how Cl^{-}and $\mathbf{H C O}_{3}{ }^{-}$"switched partners"; however the correct way to write the formula for carbonic acid is $\mathbf{H}_{2} \mathrm{CO}_{3}$, as described below.

The overall gas producing double replacement reaction equation is written in the grey box on the right.

This particular gas producing reaction is important in medicine because sodium bicarbonate is used as an over-the-counter therapeutic agent to treat acid indigestion (heartburn).

- Sodium bicarbonate is the primary active ingredient in many antacids, such as alka-seltzer.
- Sodium bicarbonate "neutralizes" acid in the stomach to produce water, carbon dioxide gas, and salt.

You will learn much more about acids in later chapters.

The Solubility of Organic Molecules

Molecules will dissolve in a particular solvent when the solute-solvent noncovalent interactions are strong enough to \qquad the solute-solute interactions.

The more solute-solvent noncovalent attractive interactions that can occur, the more solute that can be dissolved.

It is for this reason that polar solutes are capable of dissolving in polar solvents, and nonpolar solutes are capable of dissolving in nonpolar solvents, as summarized by the phrase "like dissolves like."

For an organic molecule to have significant water solubility, it must be \qquad
 and/or capable of \qquad with water.

Hydrogen Bonding

Electrostatic attractive force between the partially positive charged hydrogen end of an $\mathrm{O}-\mathrm{H}, \mathrm{N}-\mathrm{H}$, or $\mathrm{F}-\mathrm{H}$ bond and the negative charge of a lone pair on an O, F, or N .

We can use the general rule of "like dissolves like" to predict the relative water solubilities of various organic solute molecules.

Let's consider the water solubility of the organic molecule families that I introduced you to in chapter 4: hydrocarbons, alcohols, carboxylic acids, and esters.

Water Solubility of Hydrocarbons

Hydrocarbons are \qquad molecules.

They are not capable of hydrogen bonding or dipole-dipole interactions, therefore they are \qquad significantly soluble in water.

Water Solubility of Alcohols, Carboxylic Acids, and Esters

Alcohols and many other families of organic molecules are attracted to water through hydrogen bonding and/or dipole-dipole interactions.

The general form of an alcohol molecule is:
Hydrocarbon - $\ddot{̣}-\mathrm{H}$

As the \qquad of various alcohol molecules gets larger, the water solubility \qquad .

This trend of decreasing solubility as the hydrocarbon part of organic molecules gets larger is also seen in carboxylic acids, esters, and all of the other types of organic molecules that you will be introduced to in later chapters.

general form of a carboxylic acid

general form of an ester

As the hydrocarbon part of a molecule gets \qquad , London forces become more important (stronger), the molecule becomes \qquad polar, and the organic molecules are more attracted to each other than they are to water molecules.

- When this occurs, it is lower in energy for the organic molecules to be surrounded by other organic molecules and therefore the water solubility drastically decreases.

The table below shows the trend in decreasing water solubility for some alcohol molecules as their hydrocarbon part gets larger.

Molecule Name	Condensed Structure	Solubility in Water
methanol	$\mathrm{CH}_{3} \mathrm{OH}$	miscible in any ratio with water
ethanol	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	miscible in any ratio with water
1-propanol	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	miscible in any ratio with water
1-butanol	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	slightly soluble
1-pentanol	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	insoluble

The Solubility of Organic Molecules in Non Aqueous Solutions

Not all solutions involve water as the solvent.
Non water polar solvents behave quite like water in regard to their ability to dissolve polar solutes better than nonpolar solutes.

On the other hand, nonpolar solvents dissolve nonpolar \qquad more readily than polar solutes; like dissolves like.

- For example, pentane cannot be significantly dissolved in water, however it can be dissolved in hexane.
pentane

hexane

Understanding Check

a. List the following carboxylic acids in order of increasing solubility in water (least soluble to most soluble).

hexanoic acid

ethanoic acid

butanoic acid

- List the following esters in order of increasing solubility in water.

ethyl hexanoate

ethyl ethanoate

ethyl butanoate

Concentration of Solutions

The term " \qquad " refers to the amount of a solute in a solution.

Other qualitative (non numeric) descriptions of the amount of solute are sometimes used:

- A solution with a relatively large amount of solute is said to be " \qquad ."
- A solution with a relatively small amount of solute is said to be " \qquad ."

In this video you will see how to quantitatively (with numeric values) describe the amount of solute that is present in a solution.

The concentration of a solution is the \qquad of solute that is dissolved in a particular quantity of solution (or solvent).

Various Units Used for Concentration

Percent (\%) Concentration

There are three different percent (\%) concentration units that are commonly used:

> percent weight to weight: $\%(\mathbf{w} / \mathbf{w})$
> percent volume to volume: $\%(\mathrm{v} / \mathrm{v})$
> percent weight to volume: $\%(\mathrm{w} / \mathrm{v})$

Percent Weight to Weight

Percent weight to weight $-\%(\mathrm{w} / \mathrm{w})-$ is defined as the ratio of the mass of the solute to the mass of the
\qquad , multiplied by $\mathbf{1 0 0}$:

$$
\%(\mathrm{w} / \mathrm{w})=\left(\frac{\text { mass of solute }}{\text { mass of solution }}\right) \times 100
$$

Example: A 10\% (w/w) sodium chloride solution contains 10 grams of dissolved sodium chloride in every $\mathbf{1 0 0}$ grams of solution.

Percent weight to weight is also referred to as "mass percent" or "gram percent."

Percent Volume to Volume

Percent volume to volume - $\%(\mathrm{v} / \mathrm{v})$ - is defined as the ratio of the volume of the solute to the volume of the entire solution, multiplied by 100 :

$$
\%(\mathrm{v} / \mathrm{v})=\left(\frac{\text { volume of solute }}{\text { volume of solution }}\right) \times 100
$$

Example: Percent volume to volume is commonly used to indicate the concentration of alcohol in adult beverages where $\%(\mathrm{v} / \mathrm{v})$ is referred to as "alcohol by volume (ABV)" or "alcohol percent by volume."

In this beer, there are 7.2 mL of alcohol for every $\mathbf{1 0 0} \mathbf{~ m L}$ of beer

Percent Weight to Volume

Percent weight to volume - $\%(\mathrm{w} / \mathrm{v})$ - is defined as the number of grams of solute contained in $\mathbf{1 0 0} \mathbf{m L}$ of solution.
$\%(\mathrm{w} / \mathrm{v})$ is calculated by multiplying the ratio of the grams of the solute to the volume (mL) of the entire solution, by 100 .

$$
\%(\mathrm{w} / \mathrm{v})=\left(\frac{\text { grams of solute }}{\mathrm{mL} \text { of solution }}\right) \times 100
$$

Example: Potassium iodide (KI) is used to treat iodine deficiencies.
What is the $\%(\mathrm{w} / \mathrm{v})$ of a 75 mL solution containing 2.0 g of KI ?

$$
\begin{aligned}
\%(\text { Weight } / \mathrm{Vol}) & =\left(\frac{\text { grams of Solute }}{\mathrm{mL} \text { of Solution }}\right) \times 100 \\
\%(\text { Weight } / \mathrm{Vol}) & =\left(\frac{2.0 \mathrm{~g} \text { of KI }}{75 \mathrm{~mL} \text { of Solution }}\right) \times 100 \\
& =\mathbf{2 . 7 \% (w / v)}
\end{aligned}
$$

Percent Weight to Weight Example

What is the $\%(\mathrm{w} / \mathrm{w})$ concentration of a sodium chloride solution prepared by adding 5.0 grams of sodium chloride to 130.0 g of water?
Solution: Calculate the concentration using the equation/definition of $\%(\mathrm{w} / \mathrm{w})$:

$$
\%(\mathrm{w} / \mathrm{w})=\left(\frac{\text { mass of solute }}{\text { mass of solution }}\right) \times 100
$$

a. The mass of the solute (sodium chloride) was given: 5.0 g
b. The mass of the solution is equal to the mass of the solute $(\mathrm{NaCl}, 5.0 \mathrm{~g})$ plus the mass of the solvent $($ water, 130.0 g$)=135.0 \mathrm{~g}$

$$
\%(\mathrm{w} / \mathrm{w})=\left(\frac{5.0 \mathrm{~g}}{135.0 \mathrm{~g}}\right) \times 100=3.7 \%(\mathrm{w} / \mathrm{w})
$$

In a $3.7 \%(\mathrm{w} / \mathrm{w})$ solution, there are 3.7 g of solute contained in every 100 g of solution.
Note that in this $\%(\mathrm{w} / \mathrm{w})$ problem, the mass units cancel, therefore we can use any mass units as long as we use the same unit for the mass of solute and mass of solution.

Understanding Check: What is the $\mathbf{\%}(\mathbf{v} / \mathbf{v})$ concentration of a solution prepared by adding 27 mL of alcohol to enough water to make 552 mL of solution?

Concentration in Parts per Thousand, Parts per Million, Parts per Billion, Parts per Trillion

Parts per thousand, parts per million (ppm), parts per billion (ppb), and parts per trillion (ppt) are defined in a similar way as percent concentration however, \qquad of multiplying the ratios of solute to solution by 100, they are multiplied by a thousand, million, billion, or trillion, respectively.

Just like percent (\%) concentration, parts per thousand, ppm, ppb, and ppt units can be (w/w), (v/v), or (w/v). For example, the definitions or percent, parts per thousand, ppm, ppb, and ppt, in (w/w), are:

$$
\begin{aligned}
\%(\mathrm{w} / \mathrm{w}) & =\left(\frac{\text { mass of solute }}{\text { mass of solution }}\right) \times 100 \\
\text { parts per thousand }(\mathrm{w} / \mathrm{w}) & =\left(\frac{\text { mass of solute }}{\text { mass of solution }}\right) \times 1000 \\
\mathrm{ppm}(\mathrm{w} / \mathrm{w}) & =\left(\frac{\text { mass of solute }}{\text { mass of solution }}\right) \times\left(1 \times 10^{6}\right) \\
\mathrm{ppb}(\mathrm{w} / \mathrm{w}) & =\left(\frac{\text { mass of solute }}{\text { mass of solution }}\right) \times\left(1 \times 10^{9}\right) \\
\mathrm{ppt}(\mathrm{w} / \mathrm{w}) & =\left(\frac{\text { mass of solute }}{\text { mass of solution }}\right) \times\left(1 \times 10^{12}\right)
\end{aligned}
$$

The ppm , ppb , and ppt units are often used for very dilute solutions.
If you were to mix one drop of alcohol into an Olympic-size pool such as the one shown here, the alcohol concentration would be about 20 part per trillion (ppt).
The volume of an Olympic-size swimming pool is about $2.5 \times 10^{9} \mathrm{~mL}$. The volume of one drop of ethyl alcohol is about 0.050 mL . What is the $\mathrm{ppt}(\mathrm{v} / \mathrm{v})$ concentration of alcohol if $0.050 \mathrm{~mL}(\sim 1 \mathrm{drop})$ is mixed into a pool with a volume of $2.5 \times 10^{9} \mathrm{~mL}$?

$$
\operatorname{ppt}(\mathrm{v} / \mathrm{v})=\left(\frac{\text { volume of solute }}{\text { volume of solution }}\right) \times\left(1 \times 10^{12}\right)
$$

- Volume of the solute (alcohol in this example) was given: $\mathbf{0 . 0 5 0} \mathbf{~ m L}$
- The volume of the solution is equal to the volume of the solute (alcohol, 0.050 mL) plus the volume of the solvent (water, $2.5 \times 10^{9} \mathrm{~mL}$) $=\mathbf{2 . 5 \times 1 0} \mathbf{~ m L}$
Insert the volume of the solute and the volume of the solution into the equation for $\mathrm{ppt}(\mathrm{v} / \mathrm{v})$:

$$
\operatorname{ppt}(\mathrm{v} / \mathrm{v})=\left(\frac{0.050 \mathrm{~mL}}{2.5 \times 10^{9} \mathrm{~mL}}\right) \times\left(1 \times 10^{12}\right)=20 . \mathrm{ppt}(\mathrm{v} / \mathrm{v})
$$

Understanding Check: The legal limit of blood alcohol concentration while driving in most states corresponds to about 0.080 grams of alcohol per 100.0 grams of blood (solution).

What is the parts per thousand (w/w) blood alcohol concentration at this legal limit?

Concentration in Molarity

Chemists often use a concentration unit of measure called \qquad .
Molarity is defined as the number of \qquad of solute per \qquad of solution.
It can be calculated by taking the ratio of moles of solute to the volume (in liters) of solution:

$$
\text { Molarity }=\left(\frac{\text { moles of solute }}{\text { liters }(\mathrm{L}) \text { of solution }}\right)
$$

Calculating a solution's molarity using this equation/definition results in units of moles/L.
The mole/L unit is often referred to as \qquad and abbreviated as " \qquad ."

Keep in mind, the "M" can be interchanged with "mole/L."

- For example, 0.030 moles $/ \mathbf{L}=0.030 \mathbf{M}$ (molar)

Example: A solution is prepared by dissolving 0.10 moles of the amino acid alanine in enough water to give a final volume of 0.075 L . What is the molarity of the solution?

$$
\begin{aligned}
\operatorname{Molarity}(\mathrm{M}) & =\left(\frac{\text { moles of solute }}{\text { liters of solution }}\right) \\
\text { Molarity }(\mathrm{M}) & =\left(\frac{0.10 \text { moles }}{0.075 \mathrm{~L}}\right) \\
& =1.3 \mathrm{M} \text { or } 1.3 \mathrm{moles} / \mathrm{L}
\end{aligned}
$$

Understanding Check: A solution is prepared by dissolving 0.057 moles of adrenaline in enough water to give a final volume of 1.80 L . What is the molarity of the solution?

In some molarity calculations, since mass (grams) is the parameter that is directly measurable, you will begin with the number of grams of solute.

When this is the case, use the solute's molar mass to convert from grams to moles.

You will need to do this in the following Understanding Check problem.
Understanding Check: What is the molarity of a solution that is prepared by dissolving 3.83 grams of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ in enough water to make 5.00 L of solution?

Concentration in Osmolarity

The osmole (osmol) unit is used to indicate the number of moles of dissolved \qquad .
The concentration unit of measure called \qquad is commonly defined as the number of moles of dissolved particles (osmoles) per liter of solution.
Osmolarity can be calculated by taking the ratio of osmoles of solute to the volume (in liters) of solution:

$$
\text { Osmolarity }=\left(\frac{\text { osmoles of solute }}{\text { liter (L) of solution }}\right)
$$

Calculating a solution's osmolarity using this equation results in units of \qquad .
The osmoles/L unit is often referred to as \qquad and abbreviated as "0sM."

What is the difference between a solution's osmolarity and molarity?

$$
\text { Osmolarity }=\left(\frac{\text { Osmoles of solute }}{\text { liter (L) of solution }}\right) \quad \text { Molarity }=\left(\frac{\text { moles of solute }}{\text { liters (L) of solution }}\right)
$$

Sometimes it is the same, and sometimes it is different.
Ionic compound solutes dissociate (break apart into ions) into individual ions when solvated.

- For every mole of an ionic compound that is dissolved, the solution contains two or more moles of dissolved particles (osmoles), therefore the solution's molarity and osmolarity have different values.

Molecular compound solutes do not dissociate when solvated.

- For every mole of a dissolved molecular compound, the solution contains one mole of dissolved particles (one osmole), therefore the solution's molarity and osmolarity have the same value.

Example: Osmolarity for a Molecular Compound

If 0.50 moles of glucose (a molecular compound) is dissolved in enough water to make 2.00 L of solution, what is the osmolarity of the solution?

$$
\text { Osmolarity }=\left(\frac{\text { osmoles of solute }}{\text { liter (L) of solution }}\right)
$$

To calculate the osmolarity, we need to know two quantities: the number of osmoles of the solute AND the volume (\mathbf{L}) of the solution.

- osmoles of the solute (glucose): since glucose is a covalent compound, it does not dissociate into ions when dissolved. For every mole of a molecular compound that is dissolved, the solution will contain one mole of dissolved particles (one osmole).
- 0.50 moles of glucose were dissolved, therefore the solution contains $\mathbf{0 . 5 0}$ osmoles of glucose.
- liters (L) of solution was given: 2.00 L

Insert the osmoles of the solute and liters (L) of solution into the equation for osmolarity:

$$
\text { Osmolarity }=\left(\frac{0.50 \text { osmoles }}{2.00 \mathrm{~L}}\right)=0.25 \text { osmoles/L or } 0.25 \text { osmolar }
$$

Note that in this example, since glucose is a molecular (non dissociation) compound, the molarity and the osmolarity have the same value.

Example: Osmolarity for an Ionic Compound

If 0.50 moles of sodium chloride (an ionic compound) are dissolved in enough water to make 2.00 L of solution, what is the osmolarity of the solution?

$$
\text { Osmolarity }=\left(\frac{\text { osmoles of solute }}{\text { liter (L) of solution }}\right)
$$

- osmoles of the solute $(\mathbf{N a C l})$: Sodium chloride dissociates when dissolved, so for every mole of sodium chloride, the solution will contain one mole of dissolved sodium ions plus one mole of dissolved chloride ions.

Multiply the number of moles of sodium chloride by afactor of 2 to convert moles of sodium chloride to osmoles:

$$
0.50 \text { moles } \mathrm{NaCl}\left(\frac{2 \text { osmoles }}{\text { mole } \mathrm{NaCl}}\right)=\mathbf{1 . 0} \text { osmoles }
$$

- liters (L) of solution was given: 2.00 L

Insert the osmoles of the solute and liters (L) of solution into the equation for osmolarity:

$$
\text { Osmolarity }=\left(\frac{1.0 \text { osmoles }}{2.00 \mathrm{~L}}\right)=0.50 \text { osmoles } / \mathrm{L} \text { or } 0.50 \text { osmolar }
$$

Even though we started with the same number of moles of solute and the same volume of solution in this example as we did in the previous example for a glucose solution, the osmolarity values are different because of the difference in the number of particles (osmoles) that are formed upon dissolution of molecular vs. ionic solutes.

In the Understanding Check problem that follows, I will ask you to calculate the osmolarity of a BaCl_{2} solution.
Keep in mind that for every one mole of BaCl_{2} that dissolves, $\mathbf{3}$ osmoles are formed.

Understanding Check: If 0.50 moles of BaCl_{2} (an ionic compound) is dissolved in enough water to make 2.00 L of solution, what is the osmolarity of the solution?

Converting between Molarity and Osmolarity

Knowing the number of \qquad (osmoles) that are formed upon dissolution of a solute will enable you to easily convert between molarity and osmolarity.

The number of osmoles formed per mole of solute dissolved can be used as a \qquad .
Example for an Ionic Compound Solute: If the molarity of a NaCl solution is $\mathbf{1 . 2} \mathbf{M}$, what is the osmolarity?

Converting between molarity and osmolarity for molecular solutes is simple!
The molarity is \qquad to osmolarity for molecular solutes because they do not dissociate.

Example for a Molecular Compound Solute:

- Glucose is a molecular compound; if the molarity of a glucose solution is $\mathbf{1 . 2} \mathrm{M}$, then the osmolarity is $\mathbf{1 . 2}$ osmoles/L.

Understanding Check: If the molarity of an FeCl_{3} (an ionic compound) solution is 0.010 M , what is the osmolarity?

HINT: Think about how many osmoles are produced when one mole of FeCl_{3} dissociates.

Concentration in Molality

\qquad is defined as the number of moles of solute per kg of solvent.
Molality can be calculated by taking the ratio of moles of solute to the mass (in kilograms) of the \qquad $:$

$$
\text { Molality }=\left(\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}\right)
$$

Calculating a solution's molality using this equation/definition results in units of moles/kg.
The moles/kg unit is often referred to as molal and abbreviated as " \boldsymbol{m}."

- The " \boldsymbol{m} " unit can be interchanged with "moles/kg."

Calculation of Molality Example

What is the molality of a solution that is prepared by dissolving 0.125 moles of sodium chloride in 1.60 kg of water?

$$
\text { Molality }=\left(\frac{\text { moles of solute }}{\mathrm{kg} \text { of solvent }}\right)
$$

- The moles of the solute (NaCl) was given: $\mathbf{0 . 1 2 5}$ moles
- The mass of the solvent (water) was given: $1.60 \mathbf{~ k g}$

Insert the moles of the solute and kg of solvent into the equation for molality:

$$
\text { Molality }=\left(\frac{0.125 \mathrm{moles}}{1.60 \mathrm{~kg}}\right)=0.0781 \mathrm{moles} / \mathrm{kg} \text { or } 0.0781 \mathrm{~m}
$$

In a 0.0781 molal (\boldsymbol{m}) solution, there are $\mathbf{0 . 0 7 8 1}$ moles of solute contained in every $\boldsymbol{k g}$ of solvent.

Understanding Check: What is the molality of a solution that is prepared by dissolving 1.34 moles of ethyl alcohol in 0.75 kg of water?

Concentration in Osmolality

Osmolality is defined as the number of \qquad per \qquad of solvent.

It can be calculated taking the ratio of osmoles (moles of dissolved particles) to the mass (in kilograms) of the solvent:

$$
\text { Osmolality }=\left(\frac{\text { osmoles of solute }}{\mathrm{kg} \text { of solvent }}\right)
$$

Calculating a solution's osmolality using this equation/definition results in units of osmoles/kg.

- The osmoles/kg unit is often referred to as osmolal

Concentration in Equivalents per Liter (Eq/L)

Some properties of solutions depend on the total charge of the \qquad in solution.

- For example, the ability of a solution to conduct electricity depends on the total charge of the ions in solution. In cells, membrane potentials that generated nerve signals depend on the total charge of ions in solution.

An equivalent (Eq) is defined as a mole of \qquad .

The concentration unit of measure called equivalents per liter ($\mathbf{E q} / \mathbf{L}$) is defined as the number of equivalents (Eq) of solute (moles of charge) per liter of solution:

$$
\mathrm{Eq} / \mathrm{L}=\left(\frac{\mathrm{Eq} \text { of solute }}{\operatorname{liter}(\mathrm{L}) \text { of solution }}\right)
$$

At first glance, an equivalent $(\mathbf{E q})$ may appear to be the same as an osmole, however this is not always the case.

An equivalent is a mole of charge; an osmole is a mole of dissolved particles.
I will elaborate by comparing the number of osmoles vs. the number of equivalents present when one mole of BaCl_{2} is dissolved.

When one mole of BaCl_{2} is dissolved, 3 osmoles are formed.

$$
\begin{aligned}
\mathrm{BaCl}_{2}(s) & \rightarrow \underbrace{\mathrm{Ba}^{2+}(a q)}_{\begin{array}{c}
\text { One Osmole } \\
\text { of } \mathrm{Ba}^{2+}
\end{array}}+\underbrace{\mathrm{Cl}^{-}(a q)}_{\begin{array}{c}
\text { Two Osmoles } \\
\text { of } \mathrm{Cl}^{-}
\end{array}}
\end{aligned}=3 \text { Osmoles }
$$

When one mole of BaCl_{2} is dissolved, 4 equivalents $(\mathbf{E q})$ are formed.

$$
\begin{aligned}
\mathrm{BaCl}_{2}(s) \rightarrow & \underbrace{\mathrm{Ba}^{2+}(a q)}+
\end{aligned}
$$

- Since barium ions have a " $2+$ " charge, one mole of barium ions contains two moles of charge (two equivalents).
- The two moles of chloride ions contain a total of $\boldsymbol{t w o}$ equivalents (two moles of a " $1-$-" charge).

Understanding Check

When one mole of $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is dissolved in water:
a. How many equivalents are present?
b. How many equivalents of sulfate are present (equivalents from sulfate only)?
c. How many equivalents of iron(III) are present (equivalents from Fe^{3+} only)?

Example for Calculating $\mathbf{E q} / \mathbf{L}$

If 0.50 moles of BaCl_{2} is dissolved in enough water to make 2.00 L of solution, what is the $\mathbf{E q} / \mathbf{L}$ concentration of the solution?

$$
\mathrm{Eq} / \mathrm{L}=\left(\frac{\mathrm{Eq} \text { of solute }}{\operatorname{liter}(\mathrm{L}) \text { of solution }}\right)
$$

Eq present:

- For every one mole of BaCl_{2} dissolved, $\mathbf{4} \mathbf{E q}$ are formed (two $\mathbf{E q}$ of $\mathbf{B a}^{\mathbf{2 +}}$ and two $\mathbf{E q}$ of $\mathbf{C l}^{-}$).

$$
\begin{aligned}
\mathrm{BaCl}_{2}(s) & \rightarrow \underbrace{\mathrm{Ba}^{2+}(a q)}_{\begin{array}{c}
\text { Two Eq } \\
\text { of } \mathrm{Ba}^{2+}
\end{array}}+\underbrace{2 \mathrm{Cl}^{-}(a q)}_{\begin{array}{c}
\text { Two Eq } \\
\text { of } \mathrm{Cl}^{-}
\end{array}}
\end{aligned}=\mathbf{4} \mathbf{E q}
$$

- Multiply the number of moles of BaCl_{2} by a factor of $\mathbf{4}$ to convert moles of BaCl_{2} to $\mathbf{E q}$:

$$
0.50 \text { moles } \mathrm{BaCl}_{2}\left(\frac{\mathbf{4 ~ E q}}{{\mathrm{~mole} \mathrm{BaCl}_{2}}^{2}}\right)=\mathbf{2 . 0} \mathbf{~ E q}
$$

liters (L) of solution was given: 2.00 L
Insert the $\mathbf{E q}$ present and liters (L) of solution into the equation for $\mathbf{E q} / \mathbf{L}$ concentration:

$$
\mathrm{Eq} / \mathrm{L}=\left(\frac{2.0 \mathrm{Eq}}{2.00 \mathrm{~L}}\right)=1.0 \mathrm{Eq} / \mathrm{L}
$$

Understanding Check

If 0.015 moles of $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ is dissolved in enough water to make 2.5 L of solution, what is the $\mathbf{E q} / \mathbf{L}$ concentration of the solution?

Calculations for Solutions

In this section, you will learn how do calculations to find how much solute is contained in a specified amount of solution and how much solution contains a specified amount of solute.

The key to mastering these calculations is to be aware of the following two statements:

- The \qquad between the amount of solute and the amount of solution is the concentration.
- You can convert between the amount of \qquad and the amount of \qquad by using the \qquad as a \qquad -

Molarity Concentration Calculations for Solutions

The molarity (\qquad) of a solution gives us the relationship between the amount (moles) of solute and the volume (L) of solution.

We use the molarity as a conversion factor when converting between the moles of solute in a given volume (L) of solution, or the volume (L) of solution that will contain a given amount (moles) of solute.

Volume of Solution to Amount of Solute Example
Suppose you know that a patient received $3.50 \mathbf{L}$ of a $0.278 \mathbf{M}$ glucose IV solution, how many moles of glucose were administered to the patient?

STEP 1) Set up the equation using the given quantity:

STEP 2) Use the molarity as a conversion factor to find the number of moles:

3.50 L of a $\mathbf{0 . 2 7 8} \mathrm{M}$ glucose solution will contain $\mathbf{0 . 9 7 3}$ moles of glucose.

Moles of Solute to Volume (L) of Solution Example

Suppose you wished to administer 0.200 moles of glucose from a 0.278 M glucose IV solution to a patient, what volume (in liters) of the solution would need to be dispensed?

STEP 1) Set up the equation using the given quantity:

STEP 2) Use the molarity as a conversion factor to find the volume (L) of solution:

0.719 L of a $\mathbf{0 . 2 7 8} \mathbf{M}$ glucose solution would be given to the patient in order to provide 0.200 moles of glucose.

Another Molarity Concentration Calculation Example

Next, I want to show you an example problem that combines the concepts of the previous two videos (calculating a solution's concentration) and the concepts of this section (calculations of how much solute is contained in a certain amount of solution or how much solution contains a certain amount of solute).

If 1.25 g of acetone $\left(\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}\right)$ is dissolved in enough water to make 0.550 L of solution;
a) What is the molarity (\mathbf{M}) of the solution?
b) How many moles of acetone are contained in 0.0679 L of this acetone solution?
c) What volume (\mathbf{L}) of this acetone solution would contain 0.0079 moles of acetone?
a) What is the molarity (\mathbf{M}) of the solution?

$$
\text { Molarity }=\left(\frac{\text { moles of solute }}{\text { liters (L) of solution }}\right)
$$

- moles of the solute (acetone)

We were not given the number of moles directly, however, we were given the grams of acetone $(1.25 \mathrm{~g})$. Use the molar mass of acetone $(\mathbf{5 8 . 0 9} \mathbf{~} / \mathbf{m o l e})$ to convert from grams to moles.

1.25 grams $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$	1 mole $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$
	58.09 grams $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$

- L of solution was given: $\mathbf{0 . 5 5 0} \mathbf{L}$

Insert the moles of the solute and liters (L) of solution into the equation for molarity:

$$
\text { Molarity }=\left(\frac{0.0215 \text { moles }}{0.550 \mathrm{~L}}\right)=0.0391 \mathrm{moles} / \mathrm{L} \text { or } 0.0391 \mathrm{M}
$$

b) How many moles of acetone are contained in 0.0679 L of this acetone solution?

STEP 1) Set up the equation using the given quantity:

STEP 2) Use the molarity as a conversion factor to find the number of moles:

c) What volume (\mathbf{L}) of this acetone solution would contain 0.0079 moles of acetone?

STEP 1) Set up the equation using the given quantity:

STEP 2) Use the molarity as a conversion factor to find the volume (L) of solution:

Understanding Check: If a particular wine has an ethyl alcohol molarity concentration of 2.8 M , what volume (in liters) of wine contains 10.4 moles of ethyl alcohol (the lethal dosage)?

Understanding Check: How many grams of silver nitrate $\left(\mathrm{AgNO}_{3}\right)$ are contained in 0.384 L of a 0.200 M silver nitrate solution?

Percent (\%) Concentration Calculations for Solutions

Percent (\%) concentration gives the relationship between the amount of solute and the amount of solution:

Example: Using \% (w/v) to Convert From Volume (mL) of Solution to Grams of Solute
Normal saline intravenous (IV) drips are composed of sterile, $0.90 \%(\mathrm{w} / \mathrm{v})$ aqueous sodium chloride (NaCl) solutions. They are used to treat or prevent dehydration and hypovolemia.
If a patient received 2475 mL of a normal saline solution, how many grams of sodium chloride were delivered?

If a patient received 2475 mL of a normal saline solution, then 22 grams of sodium chloride were delivered.
Example: Using \%(w/v) to Convert From Grams of Solute to Volume (mL) of Solution
What volume (mL) of a normal saline solution $(0.90 \%(\mathrm{w} / \mathrm{v}))$ contains 12.5 grams of sodium chloride?

$1400 \mathbf{m L}$ of a normal saline solution contain 12.5 grams of sodium chloride.

Understanding Check

The label of the medication vial tells you that the concentration of morphine sulfate for an intravenous injection is $1.0 \%(\mathrm{w} / \mathrm{v})$. If you wish to administer 0.0025 grams of morphine sulfate, what volume (mL) would you inject?

The method for converting between the amount of solute and the amount of solution can also be used for $\mathbf{\%}(\mathbf{w} / \mathbf{w})$ and $\mathbf{\%}(\mathbf{v} / \mathbf{v})$.
\%(w/w) is used to convert between the mass of solute and the mass of solution:

$\%(\mathbf{v} / \mathbf{v})$ is be used to convert between the volume of a liquid solute and the volume of the solution:

Osmolarity Concentration Calculations for Solutions

Osmolarity concentration is a relationship between the amount of solute and the amount of solution:

The osmolarity (osmoles/L) of a solution gives us the number of osmoles of solute contained in $\mathbf{1} \mathbf{L}$ of solution.

- It can therefore be used to convert between \qquad of solute and \qquad of solution.

Example: Using Osmolarity to convert between L of Solution and Osmoles of Solute
How many osmoles of solute are contained in 2.75 L of a solution that has a concentration of 0.0750 osmole/L?

$\mathbf{0 . 2 0 6}$ osmoles are contained in 2.75 L of a 0.0750 osmole/L solution.

Equivalents per Liter (Eq/L) Concentration Calculations for Solutions

$\boldsymbol{E q} / \mathbf{L}$ concentration is a relationship between the amount of solute and the amount of solution:

The $\mathbf{E q} / \mathbf{L}$ of a solution gives us the number of equivalents of solute contained in $\mathbf{1} \mathbf{L}$ of solution.

- It can therefore be used to convert between \qquad of solute and L of solution.

Example: Using $\mathbf{E q} / \mathbf{L}$ to convert between L of Solution and Equivalents of Solute
How many equivalents of solute are contained in 0.830 L of a $0.0100 \mathrm{M} \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ solution?
Solution:

We are given the solution concentration in molarity $(M=$ mole $/ \mathrm{L})$, but we need to get $(\mathrm{Eq} / \mathrm{L})$ in order to solve the problem. First (Step 1) we will convert molarity (mole/L) to (Eq/L), and then (Step 2) we will use the Eq / L concentration as a conversion factor to convert from liters of solution to equivalents of solute.

0.0996 $\mathbf{E q}$ of solute are contained in $\mathbf{0 . 8 3 0} \mathbf{L}$ of a $\mathbf{0 . 0 1 0 0} \mathbf{M ~ F e} 2\left(\mathrm{SO}_{4}\right)_{3}$ solution.

Example: Using $\mathbf{E q} / \mathbf{L}$ to convert between L of Solution and Equivalents of Solute
How many equivalents of sulfate (not total equivalents) are contained in 0.830 L of a 0.0100 M $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ solution?

Solution:

We will do this problem in the same way as we did for the previous example problem, with one exception: we will convert the given molarity $(0.0100 \mathbf{M})$ to $\mathbf{E q}$ of $\mathbf{S O}_{4}{ }^{2-/} \mathbf{L}$.

Step 2:

Molality and Osmolality Concentration Calculations for Solutions

Molality is used to covert between moles of solute and $\boldsymbol{k g}$ of \qquad :

Osmolality is used to covert between osmoles of solute and kg of solvent:

In practice, it is more useful to know how much solute is contained in a particular amount of solution (not solvent) or how much solution (not solvent) contains a particular amount of solute.

In order to work with the amount of solution instead of the amount of solvent, a very useful approximation can be made for dilute aqueous solutions.
In the case of dilute aqueous solutions, the solution is almost entirely solvent.
Since 1 kg of water has a volume of 1 L , it is a reasonable approximation to equate the amount of solution to the amount of solvent; 1 kg of solvent is assumed to be the same as 1 L of solution.

Using this approximation, the molality is \qquad to the molarity.

For the same reason, using this approximation, the osmolality is equal to the osmolarity.
$\left.\begin{array}{|c|}\hline \text { For Dilute Aqueous Solutions: } \\ \text { Osmolality Units Can Be Replaced by Osmolarity Units: } \\ \left(\frac{\text { \# osmoles of solute }}{1 \text { kg of solvent }}\right)\end{array}>\left(\frac{\text { \# osmoles of solute }}{1 \mathrm{~L} \text { solution }}\right)\right]$
osmolality osmolarity
Summary of Conversion Factors for Solution Calculations

Amount of Solute	When converting Between Use One of the Following Concentrations as the Conversion Factor:	Amount of Solution
moles of solute		liters (L) of solution
osmoles of solute		liters (L) of solution
equivalents (Eq) of solute	equivalents/L (Eq/L)	liters (L) of solution
mass of solute (typically grams)		mass of solution (typically grams)
volume of solute (typically mL)	\% (v/v) typically (mL solute/100 mL solution)	volume of solution (typically mL)
grams of solute	\% (w/v) (g solute/ 100 mL solution)	mL of solution

Understanding Check

Before Watching the Next Video: Do the Problems in the Calculations for Solutions Worksheet

The Solubility of Biological Compounds

Biological compounds are the \qquad that occur in biological organisms.

Examples of biological compounds that you will learn about in this book are: steroids, fatty acids, bile salts, phospholipids, glycolipids, cholesterol, triglycerides (animal fat and vegetable oil), proteins, carbohydrates, RNA, and DNA.

Biological compounds can be put into one of three categories based on their \qquad .

1) Hydrophilic
 2) Hydrophobic
 3) Amphipathic

1) Hydrophilic Compounds

Hydrophilic compounds \qquad in water.

- The word hydrophilic is derived from an ancient Greek word that is translated as "loving water."

Compounds that are significantly \qquad and/or can \qquad with water tend to be water soluble.

As a general rule, molecules that have at least \qquad polar functional group for every \qquad carbon atoms are water soluble, and therefore classified as hydrophilic.

- You saw four polar functional groups in chapter 4: the hydroxyl group (-OH), the carbonyl group $(\mathrm{C}=\mathrm{O})$, the carboxyl group (-COOH), and the carboxylate group (COO).
- There are a few other polar functional groups that you will see in later chapters.
- The presence of \qquad _will also help a biological compound to dissolve in water because of the attraction of water molecules' dipoles to the charged region of the compound (ion-dipole interactions).

Examples of Hydrophilic Compounds: Monosaccharides

The Structural Formulas of Three Monosaccharides

D-Glucose cellulose; source of energy)

D-Ribose (occurs in ATP, RNA, and coenzymes)

D-Fructose
(sweeter than table sugar, a component of corn syrup, occurs in fruit)

2) Hydrophobic Compounds

Hydrophobic compounds \qquad dissolve in water.

- The word hydrophobic is derived from an ancient Greek word that is translated as "having a horror/fear of water."

As a general rule, molecules that have less than one polar functional group for every five carbon atoms do not dissolve in water and are therefore hydrophobic.

An Example of a Hydrophobic Compound: Cholesterol

Note that cholesterol does have one polar hydroxyl (-OH) functional group, however the nonpolar part of the molecule is so large that the ratio of polar functional group to total carbons is much less than 1:5 and therefore cholesterol does not dissolve in water.

3) Amphipathic Compounds

Amphipathic compounds have \qquad a large nonpolar region, which is not strongly attracted to water, and an extremely polar and/or formally-charged region, which is quite strongly attracted to water.

An Example of an Amphipathic Compound: A Glycolipid

The particular glycolipid shown in the structure below is one of the most prevalent of the glycolipids that make up cell membranes within the brain.

Amphipathic compounds are often illustrated using a \qquad for the polar head that is attached to one or more long tubular structures that represent the carbon chains in the nonpolar tail.

In some amphipathic compounds, such as the glycolipid shown above, there are $t w o$ carbon chains that make up the nonpolar tail; in other amphipathic compounds, the tail is composed of only one carbon chain.

An example of an amphipathic compound that has a single carbon chain tail is palmitate.
Palmitate

When amphipathic molecules are put into water they do not dissolve; they exist as monolayers and/or micelles.

- As \qquad , amphipathic compounds form a single (mono) layer of individual particles oriented with their polar heads toward the water and their nonpolar tails pointing upward.

Amphipathic compounds can also exist in water as
\qquad arrangements called \qquad .

The amphipathic compounds making up micelles are oriented with their polar heads outward, toward the water, and their nonpolar tails inward, away from the water.

Soap consists of palmitate and/or similar amphipathic compounds.

As you know, soap and water are much more effective at removing oil from skin than is just water alone. This is because there is no strong attraction between the nonpolar oil molecules and water; however, soap forms micelles that encapsulate the oil within their nonpolar tail interiors. Micelles containing the oil can move into the rinse water and away from the skin.

When a liquid contains compounds that are encapsulated by amphipathic compounds in micelles, the mixture is called an \qquad .

Understanding Check
Predict whether each of the following biological compounds is hydrophobic or amphipathic?
a.

b.

Understanding Check

Predict whether each of the following biological compounds is hydrophilic or hydrophobic?
a.

vitamin C
b.

retinol (a molecule in the vitamin A group)

Understanding Check

The ion shown below is called laurel sulfate. Laurel sulfate is amphipathic and is often used in shampoo.Is the polar head located on the right-hand or left-hand end of the molecule as it is illustrated below?

laurel sulfate

Dilutions

Dilution is the process of adding more solvent to a solution.

A series of dilutions (left to right) of an aqueous solution containing a colored solute.
Image Source: Wikimedia Commons, Author: A. Markov, CC-BY, http://creativecommons.org/licenses/by/2.0/legalcode
When considering dilutions, the concentration of the solution is inversely proportional to the volume of the solution.

- For example, if enough solvent is added to double the volume, then the concentration is decreased by a factor of $1 / 2$.
As you saw in chapter 5 with Boyle's gas law, when properties are inversely proportional, the product of the initial and final properties are equal.
In the case of dilution, the product of the initial (un-diluted) concentration $\left(\mathrm{C}_{1}\right)$ and the volume before dilution $\left(\mathrm{V}_{1}\right)$ is equal to the product of the final (diluted) concentration $\left(\mathrm{C}_{2}\right)$ and the final volume $\left(\mathrm{V}_{2}\right)$:

$$
\mathrm{C}_{1} \cdot \mathrm{~V}_{1}=\mathrm{C}_{2} \cdot \mathrm{~V}_{2}
$$

This equation is called the " \qquad
\qquad " and it can be used with any of the concentration units of measure that include the volume of solution (molarity, osmolarity, \% (w/v), \% (v/v), or Eq/L).

- For example, the dilution equation can be written using molarity (\mathbf{M}) concentration:

$$
\mathrm{M}_{1} \cdot \mathrm{~V}_{1}=\mathrm{M}_{2} \cdot \mathrm{~V}_{2}
$$

Example: You begin with 25 mL of a 1.8 M aqueous LiCl solution and add enough water to give a final volume of 35 mL . What is the new concentration?

$$
\left.\begin{array}{c}
\text { Strategy: } \mathrm{M}_{1} \cdot \mathrm{~V}_{1}=\mathrm{M}_{2} \cdot \mathrm{~V}_{2} \\
\frac{\mathrm{M}_{1} \mathrm{~V}_{1}}{\mathrm{~V}_{2}}=\frac{\mathrm{M}_{2} \mathrm{~V}_{2}}{\mathrm{~V}_{2}} \\
\begin{array}{l}
\mathrm{M}_{1}=1.8 \mathrm{M} \\
\mathrm{~V}_{1}=25 \mathrm{~mL}
\end{array} \mathrm{M}_{2}=? \\
\mathrm{~V}_{2}=35 \mathrm{~mL}
\end{array}\right] \begin{aligned}
& \mathrm{M}_{2}=\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{(1.8 \mathrm{M})(25 \mathrm{~mL})}{(35 \mathrm{~mL})}=\mathbf{1 . 3 ~ \mathbf { M }}
\end{aligned}
$$

Understanding Check

If 1.70 L of a 1.50 M solution is diluted to a final volume of 3.50 L , what is the final concentration?

Colloids and Suspensions

When particles that are larger than typical molecules or ions are put into another medium, typically water, the resulting mixture is classified as either a colloid or a suspension depending on the \qquad
\qquad .

In \qquad , the dispersed particles (colloidal particles) are small enough that they do not settle to the bottom of their container.

Conversely, in \qquad , the solid particles are large enough that gravity causes them to settle to the bottom of their container unless the mixture is repeatedly or constantly stirred or shaken.

Colloids

Colloidal particles are typically in the size range of 1 nanometer up to 1 micrometer.
Because of their relatively small size, the kinetic energy from collisions with the particles making up the medium, typically water molecules, overcomes the force of gravity and the particles remain evenly dispersed in the medium.
If the particles are very small, the colloid will not "scatter" light and it will therefore appear clear or colored (but not cloudy). As the particle size gets larger, a colloid mixture will appear cloudy since the light entering the medium is scattered in many different directions by particles.

The micelles that you learned about in this chapter are examples of colloids.
Another example of a colloid is milk.

- Milk contains small agglomerations of many individual protein molecules (these particles are called "casein") as well as particles composed of emulsified fat (triglyceride) molecules. It is these fat particles that are separated from milk to make butter. Milk is classified as a colloid rather than a suspension because the colloidal particles do not settle to the bottom. Note that milk containers do not say "shake well before using" because the particles are small enough to remain evenly dispersed.
Other examples of colloids are mayonnaise and hand lotion.

Suspensions

The solid particles contained in suspensions are typically larger than 1 micrometer.
Because of their relatively large size compared to colloidal particles, the force of gravity causes the particles to settle to the bottom of the container. The settling process may take seconds or several hours. When stirred or shaken, the suspension will appear cloudy since the particles are large enough to scatter light.
An example of a suspension is muddy water.

- If muddy water is constantly stirred, the clay/dirt particles are evenly distributed throughout the container; however, if the stirring is discontinued, the particles will settle to the bottom of the container.

Another example of a suspension is orange juice.
If a liquid contains solid particles and is labeled " \qquad before using," then it is a suspension.

Understanding Check

If sand is added to a glass of water, is the resulting mixture a colloid or suspension?

Diffusion and Osmosis

Diffusion

Just like gases, solute and solvent particles in liquid phase solutions travel in random directions until they collide with other particles or the container wall.

This type of random movement is called Brownian motion and results in a process called \qquad .

Diffusion is defined as the net transport of a substance, due to Brownian motion, from a region of
\qquad concentration of the substance to a region of \qquad concentration of the substance.

It is the random movement of particles that causes them to be evenly mixed.

```
(e) \(\mathrm{H}_{2} \mathrm{O}\) Molecule
- Food Coloring Molecule
```

In the diffusion process, substances will spontaneously move from an area of greater concentration (of the particular substance) to lesser concentration until it is evenly distributed.

| $\begin{array}{l}\text { Before } \text { Diffusion } \\ \text { of Food Coloring }\end{array}$ |
| :--- | Molecules Occurs

After Diffusion of

When a substance is not evenly distributed and has a greater concentration in one region and a lesser concentration in another region, we say that there is a " \qquad ." _ a concentration gradient is present, and there is not a physical barrier preventing transport, diffusion will occur.

- We say that the diffusing species move " \qquad the concentration gradient."

There can only be a net movement of dissolved particles from areas of lesser concentration to areas of greater concentration (against the concentration gradient) when external \qquad is supplied.

Osmosis

A \qquad is any type of physical barrier through which only certain substances can pass.

- For example, many membranes, both natural and synthetic, are permeable to water (allow water to pass) but are impermeable to ions (do not allow ions to pass).

As a general rule, biological membranes in cells, are permeable to nonpolar molecules and small polar molecules, and are impermeable to ions and large polar molecules.

Water molecules pass through holes (pores) in biological membranes called aquaporins.

Osmosis is the net transport of \qquad from a solution with a lesser solute particle concentration through a semipermeable membrane to a solution with a greater solute particle concentration.

Note that a semipermeable membrane allows solvent to continuously move back and forth between both sides of a membrane; however, in osmosis, there is a greater amount of solvent transported in the direction from the side of the membrane with lesser solute particle concentration to the side of the membrane with greater solute particle concentration, resulting in a net (overall) transport of solvent in that direction.

We will only discuss osmosis for aqueous solutions, therefore for our purposes, osmosis is the net transport of \qquad from a solution with a lesser solute particle concentration through a semipermeable membrane to a solution with a greater solute particle concentration.

Osmosis is very important in biology because cell membranes are semipermeable.

The difference in solute particle concentration (osmolarity) between the
\qquad of the cell and the \qquad solution has important
implications in maintaining the viability of the cell.

Consider the three different cases for the solution that surrounds a cell:

Microscope Images of Human Red Blood Cells in Hypertonic, Isotonic, and Hypotonic Solutions

Image Source: Wikimedia Commons, Author: Zephryis CC-BY-SA, http://creativecommons.org/licenses/by-sa/3.0/legalcode

1. In a \qquad solution, there is a greater solute particle concentration outside the cell than inside of the cell, so there is a net flow of water from the inside to the outside of the cell. This results in the shrinking of the cell.
2. In an \qquad solution, the concentration of solute particles is the same on the inside and outside of the cell, therefore the flow of water in and out of the cell are equal and the cell maintains it natural and healthy (viable) shape.
3. In a \qquad solution, there is a lesser solute particle concentration outside the cell than inside the cell, and there is a net flow of water from the outside to the inside of the cell. This results in the swelling and possible bursting of the cell.

The pressure associated with the transport of water in the osmosis process is called \qquad .

Initial State:
Equal amounts of liquid are placed
on opposite sides of a membrane.
Saltwater on one side and pure
water on the other side.

Final State:

Water molecules moved from the chamber with pure water (right side) to the side with greater solute concentration (left side):

For membranes that form a continuous enclosure around a solution, such as those of biological cells, the osmotic pressure is the pressure required to stop the net transport of water into or out of cells.

Hypotonic

When the solution around a cell becomes hypotonic, there is a lesser solute particle concentration outside the cell than inside the cell, and therefore there is a net flow of water from the outside to the inside of the cell.
As water flows into the cell, the pressure on the inside of the cell increases (imagine inflating a balloon).
The pressure in the cell will continue to increase until either (1) the osmotic pressure is reached and osmosis stops, or (2) the cell bursts. The bursting of red blood cells is called hemolysis and is evidenced by the appearance of red color in the blood plasma.

Understanding Check: Which of the following systems (\#1 or \#2) would have a greater osmotic pressure:
System \#1: 1.00 M sodium chloride on one side of a semipermeable membrane and pure water on the other side.
or
System \#2: 0.500 M sodium chloride on one side of a semipermeable membrane and pure water on the other side.
HINT: The greater the difference in osmolarity between each side of the semipermeable membrane, the greater the osmotic pressure.

Understanding Check:

Which of the following systems (\#1 or \#2) would have a greater osmotic pressure:
System \#1: 1.00 M NaCl on one side of a semipermeable membrane and pure water on the other side. or
System \#2: $1.00 \mathrm{M} \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ on one side of a semipermeable membrane and pure water on the other side.

Calculations for Solutions Worksheet and Key

1) 23.5 g of NaCl is dissolved in enough water to make .683 L of solution.
a) What is the molarity (\mathbf{M}) of the solution?
b) How many moles of NaCl are contained in 0.0100 L of the above NaCl solution?
c) What volume (L) of this NaCl solution would contain 0.200 moles of NaCl ?
2) 12.5 g of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ is dissolved in enough water to make 750.0 mL of solution.
a) What is the molarity (\mathbf{M}) of the solution?
b) How many moles of glucose are contained in 237 mL of the above glucose solution?
c) What volume (L) of this glucose solution would contain 0.079 moles of glucose?
3) 45.7 g of magnesium chloride $\left(\mathrm{MgCl}_{2}\right)$ is dissolved in 2.40 kg of water.
a) What is the molality (m) of the solution?
b) How many moles of MgCl_{2} are contained in 1.76 kg of solvent?
c) How many kg of solvent would contain 0.0150 moles of MgCl_{2} ?
4) 114.5 g of KCl is dissolved in enough water to make 3.6 L of solution.
a) How many osmoles are in one mole of KCl when it dissolves?
b) What is the osmolarity of the solution?
c) How many osmoles are contained in 1.00 L of the above potassium chloride solution?
d) How many liters (L) of this potassium chloride solution would contain 0.350 osmoles?
5) 7.58 g of 2-propanol $\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}\right)$ is added to enough water to make 1.50 L of solution.
a) How many osmoles are in one mole of 2-propanol when it dissolves?
b) What is the osmolarity of the solution?
c) How many osmoles are contained in 25.00 mL of the above 2-propanol solution?
d) How many liters (L) of this 2-propanol solution would contain 0.00575 osmoles?
6) 46.0 g of barium nitrate is dissolved in 2.60 kg of water.
a) How many osmoles are in one mole of barium nitrate when it dissolves?
b) What is the osmolality of the solution?
7) A glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ solution is prepared by adding 5.00 grams of glucose to enough water to make 200.0 ml of solution.
a) What is the $\%(w / v)$ of the solution?
b) What volume (mL) of this solution would contain 0.0735 grams of glucose?
c) How many grams of glucose would be present in 185 mL of this solution?
8) 234.5 g of KCl is dissolved in enough water to make 3.6 L of solution.
a) How many equivalents of potassium $\left(\mathbf{K}^{+}\right)$are in one mole of KCl when it dissolves?
(note: you are concerned with the Eq from K^{+}only, do not include Eq from Cl^{-})
b) What is the concentration of potassium in (Eq/L)?
c) How many equivalents (Eq) of \mathbf{K}^{+}are contained in 0.700 L of the above potassium chloride solution?
d) How many liters (L) of this potassium chloride solution would contain $\mathbf{0 . 0 5 0}$ equivalents Eq of K^{+}?
9) 0.250 g of aluminum sulfate is dissolved in enough water to make 150 mL of solution.
a) How many equivalents of sulfate ion $\left(\mathrm{SO}_{4}{ }^{2-}\right)$ are in one mole of aluminum sulfate when it dissolves? (note: you are concerned with the Eq from $\mathbf{S O}_{4}{ }^{2-}$ only, do not include Eq from Al^{+})
b) What is the concentration of sulfate in (Eq/L)?
c) How many equivalents (Eq) of $\mathbf{S O}_{4}{ }^{2-}$ are contained in $\mathbf{0 . 0 2 8 0} \mathrm{L}$ of the above aluminum sulfate solution?
d) How many liters (L) of this aluminum sulfate solution would contain 0.0025 equivalents Eq of $\mathrm{SO}_{4}{ }^{2-}$?

Molarity calculations (fill-in all the boxes)

solute	moles of solute	grams of solute	volume of solution	Concentration (Molarity, M=mole/L)
NaCl	3.00 moles		0.500 L	
NaCl		13.5 g	0.150 L	
NaCl	0.375 moles			1.00 M
NaCl		0.059 g		0.30 M
KNO_{3}	1.57 moles			0.770 M
KNO_{3}		1.98 g		2.00 M
KNO_{3}			0.288 L	0.197 M

Osmolarity calculations

solute	moles of solute	osmoles of solute	grams of solute	volume of solution	Concentration (Osmolar = osmole/L)
KCl	2.40 moles			0.600 L	
KCl			1.5 g	0.750 L	
KCl	0.050 moles				1.00 osmolar
KCl			0.892 g		0.150 osmolar
glucose $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	1.50 moles			1.22 osmolar	
glucose $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$			1.17 g		0.0100 osmolar
glucose				0.375 L	0.0750 osmolar
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$					

Key

1) 23.5 g of NaCl is dissolved in enough water to make .683 L of solution.
a) What is the molarity (\mathbf{M}) of the solution?

Molar mass of $\mathrm{NaCl}=58.44 \mathrm{~g} / \mathrm{mole}$
Moles of NaCl :
$23.5 \mathrm{~g} \mathrm{NaCl}\left|\frac{1 \text { mole NaCl }}{58.44 \mathrm{gNaCl}}\right|=.402$ moles NaCl
Molarity $=\left(\frac{\text { moles }}{\text { liter solution }}\right)=\left(\frac{0.402 \text { moles } \mathrm{NaCl}}{0.683 \mathrm{~L} \text { of solution }}\right)=0.589$ moles $\mathrm{NaCl} / \mathrm{L}=0.589 \mathrm{M} \mathrm{NaCl}$
b) How many moles of NaCl are contained in 0.0100 L of the above NaCl solution?

- Note: The concentration gives us the relationship between the amount of solute and the amount of solution....we use the concentration as a conversion factor!!!!
c) What volume (L) of this NaCl solution would contain 0.200 moles of NaCl ?

2) 12.5 g of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ is dissolved in enough water to make 750.0 mL of solution.
a) What is the molarity (\mathbf{M}) of the solution?

Molar mass of glucose $=180.18 \mathrm{~g} / \mathrm{mole}$
Moles of glucose:
12.5 g gluerse $\left|\begin{array}{c}1 \text { mole glucose } \\ \\ \\ \hline 180.18 \text { ggturese }\end{array}\right|=0.0694$ moles glucose

Molarity $=\left(\frac{\text { moles }}{\text { liter solution }}\right)=\left(\frac{0.0694 \text { moles glucose }}{0.7500 \mathrm{~L} \text { of solution }}\right)=0.0925$ mole glucose $/ \mathrm{L}=\mathbf{0 . 0 9 2 5} \mathbf{M}$ glucose
b) How many moles of glucose are contained in 237 mL of the above glucose solution?
0.237 Lsotution $\left\lvert\, \begin{aligned} & 0.0925 \text { moles glucose } \\ & \\ & \text { Lofsolution }\end{aligned}=\mathbf{0 . 0 2 1 9}\right.$ mole glucose
c) What volume (L) of this glucose solution would contain 0.079 moles of glucose?

0.079 motes glucose	L of solution
	0.0925 molesglucose

$=0.85 \mathrm{~L}$ of solution
3) 45.7 g of magnesium chloride $\left(\mathrm{MgCl}_{2}\right)$ is dissolved in 2.40 kg of water.
a) What is the molality (m) of the solution?

Molar mass of $\mathrm{MgCl}_{2}=95.21 \mathrm{~g} / \mathrm{mole}$

Moles of MgCl_{2} :
$45.7 \mathrm{~g} \mathrm{MgCl}_{2}\left|\begin{array}{l}1 \text { mole } \mathrm{MgCl}_{2} \\ \mid 95.21 \mathrm{~g} \mathrm{MgCl}_{2}\end{array}\right|=0.480$ moles MgCl_{2}
Molality $=\left(\frac{\text { moles }}{\mathrm{kg} \text { of solvent }}\right)=\left(\frac{0.480 \text { moles } \mathrm{MgCl}_{2}}{2.40 \mathrm{~kg} \text { of solvent }}\right)=0.200$ moles $\mathrm{MgCl}_{2} / \mathrm{kg}=\mathbf{0 . 2 0 0} \mathbf{m} \mathbf{M g C l}_{2}$
b) How many moles of MgCl_{2} are contained in 1.76 kg of solvent?

c) How many kg of solvent would contain 0.0150 moles of MgCl_{2} ?

4) 114.5 g of KCl is dissolved in enough water to make 3.6 L of solution.
a) How many osmoles are in one mole of KCl when it dissolves?
one mole of $\mathrm{KCl}=2$ osmoles

- This relationship can be used as a conversion factor to convert between moles and osmoles:

$$
\left(\frac{2 \text { osmoles }}{1 \text { mole } \mathrm{KCl}}\right) \quad \text { or } \quad\left(\frac{1 \text { mole } \mathrm{KCl}}{2 \text { osmoles }}\right)
$$

b) What is the osmolarity of the solution?

- First get the moles of KCl then convert to osmoles:

Molar mass of $\mathrm{KCl}=74.55 \mathrm{~g} /$ mole

- Osmoles in solution:

114.5 g KGl	1 mole KGl	$\mathbf{2}$ osmoles
	74.55 gKCl	$\mathbf{1}$ mote KCl

Osmolarity $=\left(\frac{\text { osmoles }}{\text { L of solution }}\right)=\left\{\frac{3.072 \text { osmoles }}{3.6 L \text { of solution }}\right)=0.85$ osmoles $/$ L solution $=\mathbf{0 . 8 5}$ osmolar
c) How many osmoles are contained in 1.00 L of the above potassium chloride solution?

- As in the case of molarity (M) and molality (m), the concentration (osmolarity this time) gives us the relationship between the amount of solute and the amount of solution....we use the concentration as a conversion factor!!!!
d) How many liters (L) of this potassium chloride solution would contain 0.350 osmoles?

0.350 osmotes	L of solution
	0.85 osmotes

5) 7.58 g of 2-propanol $\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}\right)$ is added to enough water to make 1.50 L of solution.
a) How many osmoles are in one mole of 2-propanol when it dissolves? one mole of 2-propanol = one osmole (2-propanol does not dissociate into ions)
b) What is the osmolarity of the solution?

Molar mass of 2-propanol $=60.11 \mathrm{~g} / \mathrm{mole}$

- Osmoles in solution:

7.58 g 2-propanol	$1 \overline{\text { mole 2-propanol }}$	1 osmole	$=0.126$ osmoles.

Osmolarity $=\left(\frac{\text { osmoles }}{\text { L of solution }}\right)=\left(\frac{0.126 \text { osmoles }}{1.50 \mathrm{~L} \text { of solution }}\right)=0.0840$ osmoles $/ \mathrm{L}$ solution

$$
=0.0840 \text { osmolar }
$$

c) How many osmoles are contained in 25.00 mL of the above 2-propanol solution?

0.02500 Lsotution	0.0840 osmoles
	[Of solution

d) How many liters (L) of this 2-propanol solution would contain 0.00575 osmoles?

0.00575 osmotes	L of solution	$=0.0685 \mathrm{~L}$ of solution
	0.0840 osmoles	

6) 46.0 g of barium nitrate is dissolved in 2.60 kg of water.
a) How many osmoles are in one mole of barium nitrate when it dissolves?
one mole of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}=3$ osmoles

- $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ dissociates into 3 particles, one Ba^{2+} ion and 2 nitrate ions
- This relationship can be used as a conversion factor to convert between moles and osmoles:

$$
\left(\frac{3 \text { osmoles }}{1 \text { mole } \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}}\right) \quad \text { or } \quad\left(\frac{1 \text { mole } \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}}{3 \text { osmoles }}\right)
$$

b) What is the osmolality of the solution?

Molar mass of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}=261.35 \mathrm{~g} /$ mole

- Osmoles in solution :

$46.0 \mathrm{~g} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$	1 mole $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$	3 osmoles
	$261.35 \mathrm{~g} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$	1 mote $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$

Osmolality $=\left(\frac{\text { osmoles }}{\mathbf{k g} \text { of solvent }}\right)=\left(\frac{0.528 \text { osmoles }}{2.60 \mathrm{~kg} \text { of solvent }}\right)=0.203$ osmoles $/ \mathrm{kg}$ $=0.203$ osmolal
7) A glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ solution is prepared by adding 5.00 grams of glucose to enough water to make 200.0 ml of solution.
a) What is the $\%(w / v)$ of the solution?
$\%(w / v)=\left(\frac{\text { g solute }}{\mathrm{mL} \text { of solution }}\right) \times 100=\left(\frac{5.00 \mathrm{~g} \text { glucose }}{200.0 \mathrm{~mL}}\right) \times 100 \%=\mathbf{2 . 5 0} \%(\mathbf{w} / \mathrm{v})$
b) What volume (mL) of this solution would contain 0.0735 grams of glucose?

- Use the concentration as a conversion factor!

0.0735 gglucose	100 mL
	$2.50 \overline{\text { g glucose }}$

Note: 2.50 \% (w/v) means there are 2.50 g in 100 mL of solution $=$ vour conversion factor.
c) How many grams of glucose would be present in 185 mL of this solution?

- Use the concentration as a conversion factor!

185 mL solution	2.50 g glucose
	$100 . \mathrm{mL}$ solution

8) 234.5 g of KCl is dissolved in enough water to make 3.6 L of solution.
a) How many equivalents of potassium (K^{+}) are in one mole of KCl when it dissolves? one mole of $\mathrm{KCl}=1 \mathrm{Eq} \mathrm{K}^{+}$(recall that an equivalent is a mole of charge)

- This relationship can be used as a conversion factor to convert between moles and equivalents:

$$
\left(\frac{1 \mathrm{Eq} \mathrm{~K}^{+}}{1 \mathrm{~mole} \mathrm{KCl}}\right) \quad \text { or } \quad\left(\frac{1 \mathrm{~mole} \mathrm{KCl}}{1 \mathrm{Eq} \mathrm{~K}} \mathrm{~K}^{+}\right)
$$

b) What is the concentration from potassium in (Eq K $\left.{ }^{+} / \mathrm{L}\right)$?

- First get the moles of KCl then convert equivalents (Eq):

Molar mass of $\mathrm{KCl}=74.55 \mathrm{~g} /$ mole

- Equivalents (Eq) in solution :

234.5 g KCl	1 mole KGl	$1 \mathrm{Eq} \mathrm{K}^{+}$
	74.55 gKCl	1 mote KCl

$$
(\mathrm{Eq} / \mathrm{L})=\left(\frac{\# \mathrm{Eq} \mathrm{~K}^{+}}{\mathrm{L} \text { of solution }}\right)=\left(\frac{3.146 \mathrm{Eq} \mathrm{~K}^{+}}{3.6 \mathrm{~L} \text { of solution }}\right)=0.87 \mathrm{Eq} \mathrm{~K}^{+} / \mathrm{L} \text { solution }
$$

c) How many equivalents Eq of \mathbf{K}^{+}are contained in 0.700 L of the above potassium chloride solution?

- As in the case of molarity (M), the concentration (Eq / L this time) gives us the relationship between the amount of solute and the amount of solution....we use the concentration as a conversion factor!!!!

Concentration of potassium ions in solution		
	$0.87 \mathrm{Eq} \mathrm{K}^{+}$	$=0.61 \mathrm{Eq} \mathrm{K}^{+}$
0.700 Lsotution	Dossolution	

d) How many liters (L) of this potassium chloride solution would contain $\mathbf{0 . 0 5 0}$ equivalents Eq of \mathbf{K}^{+}?

$0.050 \mathrm{EqK}^{+}$	1 L of solution
	$0.8 \mathrm{EEqK}^{+}$

9) 0.250 g of aluminum sulfate is dissolved in enough water to make 150 mL of solution.
a) How many equivalents of sulfate ion $\left(\mathrm{SO}_{4}{ }^{2-}\right)$ are in one mole of aluminum sulfate when it dissolves? one mole of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}=6 \mathrm{Eq} \mathrm{SO}_{4}{ }^{2-}$ (recall that an equivalent is a mole of charge/mole of compound)

- $\mathbf{3}$ moles sulfate ions \mathbf{x} ($\mathbf{2}$ moles of charge/1 mole sulfate ions) $=\mathbf{6 E q}$
- This relationship can be used as a conversion factor to convert between moles and equivalents:

$$
\left(\frac{6 \mathrm{Eq} \mathrm{SO}_{4}^{2-}}{1 \mathrm{~mole} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}}\right) \quad \text { or } \quad\left(\frac{1 \mathrm{~mole} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}}{6 \mathrm{Eq} \mathrm{SO}_{4}{ }^{2-}}\right)
$$

b) What is the concentration of sulfate in $(E q / L)$?

- First get the moles of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ then convert equivalents (Eq):

Molar mass of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}=342.17 \mathrm{~g} / \mathrm{mole}$

- Equivalents (Eq) in solution :

$0.250 \mathrm{gAt}_{2}\left(\mathrm{SO}_{4}\right)$	$1 \overline{\mathrm{~mole} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}}$	$6 \mathrm{Eq} \mathrm{SO}_{4}{ }^{2-}$
	$342.17 \mathrm{gAt}_{2}\left(\mathrm{SO}_{4}\right)^{-}$	$1 \mathrm{more}^{-\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}}$

- Note: we must convert from mL of solution to L of solution

$$
(\mathrm{Eq} / \mathrm{L})=\left(\frac{\# \mathrm{Eq} \mathrm{SO}_{4}{ }^{2-}}{\mathrm{L} \text { of solution }}\right)=\left(\frac{0.00438 \mathrm{Eq} \mathrm{SO}_{4}{ }^{2-}}{0.15 \mathrm{~L} \text { of solution }}\right)=0.029 \mathrm{Eq} \mathrm{SO}_{4}{ }^{2-} / \mathrm{L} \text { solution }
$$

c) How many equivalents (Eq) of $\mathbf{S O}_{4}{ }^{\mathbf{2 -}}$ are contained in $\mathbf{0 . 0 2 8 0} \mathbf{L}$ of the above aluminum sulfate solution?

- As in the case of molarity (M), the concentration ($\mathbf{E q} / \mathrm{L}$ in this case) gives us the relationship between the amount of solute and the amount of solution....we use the concentration as a conversion factor!!!!

Concentration of sulfate ions in solution

0.0280 L solution 2	$0.029 \mathrm{Eq} \mathrm{SO}_{4}{ }^{2-}$
	L of sotution

d) How many liters (L) of this aluminum sulfate solution would contain $\mathbf{0 . 0 0 2 5}$ equivalents $\mathbf{E q}$ of $\mathbf{S O}_{4}{ }^{\mathbf{2 -}}$?

0.0025 Eq SO	${ }^{2-}$
	1 L of solution
	0.029 EqSO$_{4}{ }^{2-}$

Molarity calculations (fill-in all the boxes)

solute	moles of solute	grams of solute	volume of solution	Concentration (Molarity, M=mole/L)
NaCl	3.00 moles	$\mathbf{1 7 5} \mathrm{g}$	0.500 L	6.00 M
NaCl	.231 moles	13.5 g	.150 L	1.54 M
NaCl	.375 moles	$\mathbf{2 1 . 9 \mathrm { g }}$.375 L	1.00 M
NaCl	.0010 moles	.059 g	.0033 L	0.30 M
KNO_{3}	1.57 moles	$\mathbf{1 5 9} \mathbf{g}$	$\mathbf{2 . 0 4 \mathrm { L }}$.770 M
KNO_{3}	.0196 moles	1.98 g	.00980 L	2.00 M
KNO_{3}	.0567 moles	$\mathbf{5 . 7 3 \mathrm { g }}$.288 L	.197 M

Osmolarity calculations

solute	moles of solute	osmoles of solute	grams of solute	volume of solution	Concentration (Osmolar = Osmole/L)
KCl	2.40 moles	4.80 osmoles	179 g	0.600 L	8.00 osmolar
KCI	0.020 moles	0.040 osmoles	1.5 g	0.750 L	0.053 osmolar
KCI	. 050 moles	0.10 osmoles	3.7 g	0.10 L	1.00 osmolar
KCI	0.0120 moles	0.0240 osmoles	0.892 g	0.160 L	0.150 osmolar
glucose $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	1.50 moles	1.50 osmoles	270.g	1.23 L	1.22 osmolar
glucose $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	0.00649 moles	0.00649 osmoles	1.17 g	. 649 L	0.0100 osmolar
glucose $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	0.0281 moles	0.0281 osmoles	5.06 g	0.375 L	0.0750 osmolar

Chapter 7 Worksheet:
 Reactions in Solution

For each reaction below, determine if and what type of reaction will occur (under "REACTION TYPE" write either: precipitation, gas forming, or no reaction), predict the products for the reaction, and then write a balanced chemical equation. For those which do not react, indicate this by writing "No Reaction." for the products in the equation.

> REACTION TYPE
iron (III) chloride + sodium carbonate
copper (II) sulfate + ammonium hydroxide
barium nitrate + lithium sulfate
magnesium chloride + silver nitrate
aluminum sulfate + calcium hydroxide
lead (II) nitrate + sodium chloride

Aluminum Nitrate + Potassium Iodide
magnesium iodide + sodium carbonate
sodium bicarbonate + hydrochloric acid \qquad

KEY

REACTION TYPE
Iron (III) chloride + sodium carbonate \qquad Precipitation
$2 \mathrm{FeCl}_{3}(\mathrm{aq})+3 \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Fe}_{2}\left(\mathrm{CO}_{3}\right)_{3}(\mathrm{~s})+6 \mathrm{NaCl}(\mathrm{aq})$
Copper (II) sulfate + ammonium hydroxide..Precipitation
$\mathrm{CuSO}_{4}(\mathrm{aq})+2 \mathrm{NH}_{4} \mathrm{OH}(\mathrm{aq}) \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s})+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{aq})$
Barium nitrate + lithium sulfate..Precipitation
$\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{Li}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow 2 \mathrm{LiNO}_{3}(\mathrm{aq})+\mathrm{BaSO}_{4}(\mathrm{~s})$

$\mathrm{MgCl}_{2}(\mathrm{aq})+2 \mathrm{AgNO}_{3}(\mathrm{aq}) \quad \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{AgCl}(\mathrm{s})$
Aluminum sulfate + calcium hydroxide
.Precipitation
$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+3 \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{~s})+3 \mathrm{CaSO}_{4}(\mathrm{aq})$
Lead (II) nitrate + sodium chloride \qquad .Precipitation
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{NaCl}(\mathrm{aq}) \rightarrow \mathrm{PbCl}_{2}(\mathrm{~s})+2 \mathrm{NaNO}_{3}(\mathrm{aq})$
Aluminum Nitrate + Potassium Iodide
NO REACTION
$\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}(\mathrm{aq})+3 \mathrm{KI}(\mathrm{aq}) \rightarrow \quad \mathrm{AH}_{3}(\mathrm{aq})+3 \mathrm{KNO}_{3}(\mathrm{aq})$
Magnesium iodide + sodium carbonate \qquad Precipitation
$\mathrm{MgI}_{2}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow 2 \mathrm{NaI}(\mathrm{aq})+\mathrm{MgCO}_{3}(\mathrm{~s})$
Sodium bicarbonate + hydrochloric acid.
.Gas Forming
$\mathrm{NaHCO}_{3}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{NaCl}(\mathrm{aq})$
NOTE: initially forms $\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})$ but then it decomposes to $\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

Educational Goals

1. Given a chemical equation, write the law of mass action.
2. Given the equilibrium constant $\left(\mathrm{K}_{\text {eq }}\right)$ for a reaction, predict whether the reactants or products are predominant.
3. Use Le Châtelier's Principle to explain how a chemical reaction at equilibrium responds when a change is made to the concentration of reactant or product.
4. Know the definitions of Bronsted-Lowry acids and bases.
5. Given the acid form or the base form of a conjugate pair, identify its conjugate.
6. List the properties of acidic and basic solutions.
7. Understand the term "acid strength," and know how acid strength is related to the acidity constant $\left(\mathrm{K}_{a}\right)$ value.
8. Given the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$, be able to calculate the $\left[\mathrm{OH}^{-}\right]$(and vice versa).
9. Given the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$, be able to calculate the pH (and vice versa).
10. Given the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right],\left[\mathrm{OH}^{-}\right]$, or pH , be able to characterize a solution as being acidic, basic, or neutral.
11. Given the reactants, predict the products of a neutralization reaction.
12. Given the pH of a solution and the pK_{a} for a particular acid, determine whether the acid or base form of a conjugate pair is predominant.
13. Define a buffer, and describe how a buffer solution is made.

In this chapter, you will learn what is meant by the terms acid, base, acidic, basic, and $\mathbf{p H}$.
You will learn about the chemical system called a "buffer" that is used in nature to control the pH in plants and animals.

In order for you to adequately understand acids, bases, pH , and buffers, I must begin this chapter by discussing a concept called \qquad .

Chemical Equilibrium

In chapter 6, you learned about chemical reactions.
You learned that in chemical reactions, new chemical bonds are made and/or existing chemical bonds are broken, and in doing so, reactants are converted to new substances that we called products.

You learned to represent chemical reactions with chemical equations by writing the formulas of the reactants, then an arrow, followed by the formulas of the products.

What I did not tell you in chapter 6 is that the products can be converted \qquad into reactants!

Example:

Dinitrogen tetroxide $\left(\mathrm{N}_{2} \mathrm{O}_{4}\right)$ can undergo a decomposition reaction to produce two nitrogen dioxide $\left(\mathrm{NO}_{2}\right)$ molecules:

The reaction is \qquad ; two NO_{2} molecules can collide then bond with each other to form $\mathrm{N}_{2} \mathrm{O}_{4}$:

We use "double arrows" in reversible chemical reaction equations. For our example reaction, we write:

$$
\mathrm{N}_{2} \mathrm{O}_{4}(g) \rightleftarrows 2 \mathrm{NO}_{2}(g)
$$

Even though reversible reactions proceed in both forward and reverse directions, we use the convention of calling the substances on the left-hand side of the reaction arrows "reactants," and those on the righthand side "products."
We call the process that occurs in the left-to-right direction (reactants to products) the " \qquad reaction," and the process that occurs in the right-to-left direction (products to reactants) the " \qquad reaction."

$$
\mathrm{N}_{2} \mathrm{O}_{4}(g) \rightleftarrows 2 \mathrm{NO}_{2}(g)
$$

Chemical equilibrium is defined as the state in which the rate of the forward reaction is \qquad to the rate of the reverse reaction and \qquad of the reactants and products do not change.

Some chemical reactions reach equilibrium in a few seconds or less, others can take days (or longer).
Once chemical equilibrium has been reached, the concentrations of reactants and products remain constant unless a change is made to the system, such as adding or removing some products or reactants or changing the temperature.

If $\mathrm{N}_{2} \mathrm{O}_{4}(g)$ and $\mathrm{NO}_{2}(g)$ are allowed to reach equilibrium and the equilibrium concentrations of each are measured, then the following will always be true:

Law of Mass Action

For any chemical reaction at equilibrium:

$$
a \mathbf{A}+b \mathbf{B} \rightleftarrows c \mathbf{C}+d \mathbf{D}
$$

where a, b, c, and d are the stoichiometric coefficients for substances A, B, C, and D respectively, the concentrations of reactants and products must satisfy the law of \qquad :

$$
\mathrm{K}_{e q}=\frac{[\mathrm{C}]^{c}[\mathrm{D}]^{d}<\text { products }}{[\mathrm{A}]^{a}[\mathrm{~B}]^{b} \text { reactants }}
$$

The square brackets, [], indicate concentration in \qquad , for example, "[A]" means "molarity of substance A."

The law of mass action is written by multiplying the concentration of the products (raised to their stoichiometric coefficient powers) in the \qquad , and multiplying the concentration of the reactants (raised to their stoichiometric coefficient powers) in the \qquad .
$\mathbf{K}_{e q}$ is called the \qquad
\qquad .
Each chemical reaction has its own equilibrium constant value.

- $\mathbf{K}_{e q}$ values for particular reactions are determined experimentally and are often tabulated in reference books or online.
- The value of the equilibrium constant for any particular reaction depends on temperature. Tabulated equilibrium constants usually indicate the temperature at which they were measured. The equilibrium constants used in the remainder of the book and videos are for reactions at (or close to) room temperature ($25^{\circ} \mathrm{C}$).

The law of mass action is also referred to as the equilibrium expression.

IMPORTANT NOTE FOR EQUILIBRIUM EXPRESSIONS:

When solids (s) or liquids (l) are present as reactants and/or products, they are \qquad from the equilibrium expression.

- The only substances that appear in the equilibrium expression are gases (g), aqueous (aq) solutes (or solutes dissolved in non aqueous solutions).
- Example:

Write the equilibrium expression for the reaction of dissolved carbon dioxide and water:

$$
\mathrm{CO}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftarrows \mathrm{H}_{2} \mathrm{CO}_{3}(a q)
$$

NOTE: When solids (s) or liquids (l) are present as reactants and/or products, they are omitted from the equilibrium expression.

$$
\mathrm{K}_{e q}=\frac{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}{\left[\mathrm{CO}_{2}\right]}
$$

Understanding Check: Write the equilibrium expression for the following reaction:

$$
\mathrm{HCl}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{Cl}^{-}(a q)
$$

Equilibrium constants have been measured experimentally for many reactions. For example, in the reaction of boric acid $\left(\mathrm{H}_{3} \mathrm{BO}_{3}\right)$ and water,

$$
\mathrm{H}_{3} \mathrm{BO}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{H}_{2} \mathrm{BO}_{3}^{-}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q)
$$

the equilibrium expression and the measured value of the equilibrium constant $\left(\mathbf{K}_{\text {eq }}\right)$ is:

$$
\mathrm{K}_{e q}=\frac{\left[\mathrm{H}_{2} \mathrm{BO}_{3}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{H}_{3} \mathrm{BO}_{3}\right]}=5.75 \times 10^{-10} \mathrm{M}
$$

The \qquad of the equilibrium constant allows us to know the relative \qquad of products vs. reactants that are present at equilibrium for a particular reaction.

If $\mathbf{K}_{e q}$ is much greater than $\mathbf{1}$, then there are many more product species than reactant species present at equilibrium.

- In this case, we say that the products are \qquad at equilibrium.

Conversely, if $\mathbf{K}_{e q}$ is much less than $\mathbf{1}$, then there are many more reactant species than product species present at equilibrium.

Value of $K_{\text {eq }}$	Predominant Species
$K_{\text {eq }} \gg 1$	Products
$K_{\text {eq }} \ll 1$	Reactants

- In this case, we say that the reactants are predominant at equilibrium.

Understanding Check: For the reaction shown below, predict whether the reactants or the products are predominant at equilibrium.

$$
\mathrm{HI}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftarrows \mathrm{I}^{-}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q) \quad \mathrm{K}_{\mathrm{eq}}=2.5 \times 10^{10} \mathrm{M}
$$

Le Châtelier's Principle

If a reaction is at equilibrium, and then more of one of the reactants is added, the system is no longer in equilibrium. Consider the general reaction:

$$
\mathbf{A}+\mathbf{B} \rightleftarrows \mathbf{C}+\mathbf{D}
$$

- When a reaction is at equilibrium, the forward rate is equal to the reverse rate, and the concentrations of reactants and products are not changing.
- If the concentration of reactant \mathbf{A} or \mathbf{B} is increased by adding more of substance \mathbf{A} or \mathbf{B}, this causes an increase in the rate of the forward reaction because there is now a greater probability of A colliding with \mathbf{B} and then reacting.
- Upon the addition of substance \mathbf{A} or \mathbf{B}, substances \mathbf{A} and \mathbf{B} are converted to \mathbf{C} and \mathbf{D} at a faster forward rate than the reverse rate.
- This will continue to occur until enough of \mathbf{C} and \mathbf{D} are produced so that the reverse rate is once again equal to the forward rate and equilibrium is reestablished.
- A similar situation occurs if the concentration of one of the products (\mathbf{C} or \mathbf{D}) is increased; the reaction will then proceed faster in the reverse direction until enough \mathbf{A} and \mathbf{B} are formed so that the forward rate once again equals the reverse rate.
The opposite situation occurs if one of the reactants or products is removed from the system.
Reactants (or products) can be removed from the system if they are consumed by another chemical reaction, form a solid, or form a gas that is bubbled or evaporated from a liquid-phase reaction.

Consider the general reaction at equilibrium: $\mathbf{A}+\mathbf{B} \rightleftarrows \mathbf{C}+\mathbf{D}$

- If some of substance \mathbf{A} or \mathbf{B} is removed, this causes a significant decrease in the rate of the forward reaction relative to the reverse reaction simply because there is now a lower probability of A colliding with \mathbf{B} and reacting.
- Substance \mathbf{C} and \mathbf{D} continue to be converted to \mathbf{A} and \mathbf{B} at a faster rate than the rate of the forward direction until enough of \mathbf{A} and \mathbf{B} are produced so that the forward rate is once again equal to the reverse rate and equilibrium is reestablished.
- An equivalent situation occurs if products are removed; the reaction will proceed faster in the forward direction until enough products are formed so that the reverse rate is equal to the forward rate and equilibrium is reestablished.

What I have just described is part of a law known as Le Châtelier's Principle.

- Predictions based on Le Châtelier's Principle of responses to changes in concentration of reactants or products for a reaction at equilibrium are summarized in the table below.

Change Made to a Reaction that was at Equilibrium:	Response:
Increase the concentration of a reactant.	Rate of the forward reaction becomes greater than the rate of the reverse reaction until equilibrium is reestablished.
Increase the concentration of a product.	Rate of the reverse reaction becomes greater than the rate of the forward reaction until equilibrium is reestablished.
Decrease the concentration of a reactant.	Rate of the forward reaction becomes less than the rate of the reverse reaction until equilibrium is reestablished.
Decrease the concentration of a product.	Rate of the reverse reaction becomes less than the rate of the forward reaction until equilibrium is reestablished.

Understanding Check: If the reaction below is initially at equilibrium, and then each of the following changes are made, predict which direction the reaction rate will be fastest until equilibrium is once again established: forward or reverse.

$$
\mathrm{PCl}_{5}(g) \rightleftarrows \mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(\mathrm{~g})
$$

a) adding PCl_{5}
b) removing Cl_{2}
c) removing PCl_{3}
d) adding Cl_{2}

The Ionization of Water

A reversible reaction that is very important in understanding the chemical behavior of biological solutions is the \qquad of water.

- The reactants are two water molecules.
- One water molecule transfers a hydrogen ion $\left(\mathrm{H}^{+}\right)$to the other water molecule to produce a hydroxide ion $\left(\mathrm{OH}^{-}\right)$and a \qquad ion $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$.

The reason that this reaction is important in biological systems is that: (1) cells are filled with and surrounded by water, (2) hydronium and hydroxide ions are involved in many biological reactions and effect many biological processes. This reaction occurs wherever water is present, regardless of what other substance(s) may be present.
Ionization of water obeys the law of mass action, just like \qquad other chemical reaction.

The equilibrium expression for this reaction is:

$$
\mathrm{K}_{w}=\left[\mathrm{OH}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0 \times 10^{-14} \mathrm{M}^{2}
$$

$\mathrm{H}_{2} \mathrm{O}(l)$ does not appear in the equilibrium expression because it is \boldsymbol{a} \qquad .

This equilibrium expression is so commonly used, that the symbol " K_{w} " is used for equilibrium constant (instead of $\mathrm{K}_{e q}$).

- The value of the equilibrium constant has been measured experimentally for this reaction.
- The unit for K_{w} is M^{2} because we are multiplying two molarity concentrations $\left(M \cdot M=M^{2}\right)$.

I want to draw your attention to a few things about this equilibrium expression:

1) The mathematical product of the hydroxide ion concentration $\left[\mathrm{OH}^{-}\right]$and hydronium ion concentration $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is always equal to $1.0 \times 10^{-14} \mathrm{M}^{2}$; this is true whether the system is pure water or an aqueous solution containing one or more solutes.

$$
\mathrm{K}_{w}=\underbrace{\text { mathematical product }}_{\left[---\mathrm{OH}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}=1.0 \times 10^{-14} \mathrm{M}^{2}
$$

2) The value of K_{w} is much less than 1 . There is always much more water molecules present (reactants) than hydroxide ions and hydronium ions (products).
3) In solutions (not pure water), there may be other sources of hydroxide ions and hydronium ions; therefore the hydroxide ion concentration is not necessarily equal to the hydronium ion concentration.

The Concentration of Hydroxide and Hydronium Ions in Pure Water
In pure water, the only source of hydroxide ions and hydronium ions is from the ionization of water reaction:

$$
2 \mathrm{H}_{2} \mathrm{O}(l) \rightleftarrows \mathrm{OH}^{-}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q)
$$

Every time this reaction proceeds in the forward direction exactly one hydroxide and one hydronium ion are formed. Therefore, in pure water the hydroxide ion concentration is always equal to the hydronium ion concentration.

If we solve the equilibrium expression to find which number multiplied by itself is equal to $\mathrm{K}_{w}\left(1.0 \times 10^{-14} \mathrm{M}^{2}\right)$, we can find the concentration of the hydroxide and hydronium ions in pure water:

$$
\begin{gathered}
\mathrm{K}_{w}=\left[\mathrm{OH}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0 \times 10^{-14} \mathrm{M}^{2} \\
\left(1.0 \times 10^{-7} \mathrm{M}\right) \times\left(1.0 \times 10^{-7} \mathrm{M}\right)=1.0 \times 10^{-14} \mathrm{M}^{2}
\end{gathered}
$$

In pure water, the hydroxide ion concentration and the hydronium ion concentration are both equal to $1.0 \times 10^{-7} \mathrm{M}$.

The concentration of hydroxide and hydronium in aqueous solutions containing other solutes.
In aqueous solutions (not pure water), there may be other sources of hydroxide ions and hydronium ions; therefore the hydroxide ion concentration is not necessarily equal to the hydronium ion concentration.

- For example, a sodium hydroxide (NaOH) solution contains more hydroxide than pure water.
- In aqueous solutions, K_{w} does not give us enough information to determine the hydroxide ion $\left(\mathrm{OH}^{-}\right)$ and hydronium ion $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$concentrations individually; we only know that their mathematical product, $\left[\mathrm{OH}^{-}\right] \cdot\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$, is always equal to $1.0 \times 10^{-14} \mathrm{M}^{2}$.

$$
\mathrm{K}_{w}=\left[\mathrm{OH}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0 \times 10^{-14} \mathrm{M}^{2}
$$

We know the equilibrium constant for the ionization of water.
That means whenever we know $\left[\mathrm{OH}^{-}\right]$, we can calculate the concentration of \qquad .

$$
\begin{aligned}
& \mathrm{K}_{w}=\left[\mathrm{OH}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0 \times 10^{-14} \mathrm{M}^{2} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{1.0 \times 10^{-14} \mathrm{M}^{2}}{\left[\mathrm{OH}^{-}\right]}}
\end{aligned}
$$

Also, whenever we know $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$we can calculate the concentration of \qquad .

$$
\begin{aligned}
\mathrm{K}_{w} & =\left[\mathrm{OH}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0 \times 10^{-14} \mathrm{M}^{2} \\
{\left[\mathrm{OH}^{-}\right] } & =\frac{1.0 \times 10^{-14} \mathrm{M}^{2}}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}
\end{aligned}
$$

Example:

What is the concentration of $\left[\mathrm{OH}^{-}\right]$in an aqueous solution when $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0 \times 10^{-3} \mathrm{M}$?

$$
\begin{aligned}
& \text { Strategy: } \\
& \mathrm{K}_{w}=\left[\mathrm{OH}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0 \times 10^{-14} \mathrm{M}^{2} \\
& {\left[\mathrm{OH}^{-}\right]=} \\
& \frac{1.0 \times 10^{-14} \mathrm{M}^{2}}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}=\frac{1.0 \times 10^{-14} \mathrm{M}^{2}}{1.0 \times 10^{-3} \mathrm{M}}=\mathbf{1 . 0} \times 10^{-11} \mathbf{M}
\end{aligned}
$$

Understanding Check

What is the concentration of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in an aqueous solution when $\left[\mathrm{OH}^{-}\right]=5.0 \times 10^{-11} \mathrm{M}$?

Summary of the Ionization of Water

$$
\begin{gathered}
\mathbf{2} \mathrm{H}_{2} \mathrm{O}(l) \rightleftarrows \mathrm{OH}^{-}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q) \\
\mathrm{K}_{w}=\left[\mathrm{OH}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0 \times 10^{-14} \mathrm{M}^{2}
\end{gathered}
$$

The ionization of water is a very important reaction in the chemical behavior of biological organisms and environments because hydronium and hydroxide ions are products or reactants in many biological reactions.
As described by Le Châtelier's Principle, changes in the hydronium or hydroxide ions can therefore affect the amounts of other products and/or reactants present in biological reactions such as the citric acid cycle and photosynthesis.

Acids and Bases

A compound can be classified as an "acid" or a "base" depending on its ability to \qquad or \qquad a hydrogen ion $\left(\mathrm{H}^{+}\right)$in a chemical reaction.

We will use the definitions of acids and bases popularized and published by Johannes Brønsted and Thomas Lowry.

- An acid \qquad an H^{+}in a chemical reaction.
- A base \qquad an H^{+}in a chemical reaction.

Reactions in which an H^{+}is transferred are called acid-base reactions.
If you are given a specific acid-base reaction, you can only determine which reactant is the acid and which reactant is the base by inspection of the products and reactants.
Let's consider the chemical reaction of aqueous hydrogen chloride and water:

$$
\mathrm{HCl}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftarrows \mathrm{Cl}^{-}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q)
$$

When discussing which reactant is the acid and which reactant is the base, we consider the reaction in the direction.

- In the forward direction of this reaction, HCl is the acid because it \qquad an \mathbf{H}^{+}.
- The water molecule is the base in this reaction because it \qquad an \mathbf{H}^{+}.

When a reactant molecule donates an \mathbf{H}^{+}, its charge \qquad by one charge unit.

- For example, the HCl in the reaction had zero charge as a reactant, however after donating the H^{+}, it is converted to Cl^{-}; the charge decreased by one charge unit.

Conversely, when a reactant molecule accepts an \mathbf{H}^{+}in a reaction, its charge increases by one charge unit.

- For example, the $\mathrm{H}_{2} \mathrm{O}$ in the reaction had zero charge as a reactant, however after accepting the H^{+} and becoming $\mathrm{H}_{3} \mathrm{O}^{+}$, its charge increased by one charge unit.

Understanding Check

Determine which reactant is the acid and which reactant is the base in each of the following reactions.
a. $\mathrm{H}_{3} \mathrm{BO}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftarrows \mathrm{H}_{2} \mathrm{BO}_{3}^{-}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q)$
b. $\mathrm{HSO}_{4}^{-}(a q)+\mathrm{HNO}_{3}(a q) \rightleftarrows \mathrm{H}_{2} \mathrm{SO}_{4}(a q)+\mathrm{NO}_{3}{ }^{-}(a q)$
c. $\mathrm{CN}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftarrows \mathrm{HCN}(a q)+\mathrm{OH}^{-}(a q)$

Amphoteric Compounds

Did you notice that water acted as a base in problem (a) from the previous understanding check and as an acid in problem (c):

$$
\begin{aligned}
& \text { a. } \underset{\text { acid }}{\mathrm{H}_{3} \mathrm{BO}_{3}(a q)}+\begin{array}{|}
\mathrm{H}_{2} \mathrm{O}(l) \\
\text { base }
\end{array} \\
& \text { ach } \\
& \text { c. } \mathrm{CN}^{-}(a q)+\mathrm{H}_{2} \mathrm{BO}_{3}^{-}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q) \\
& \begin{array}{l}
\text { base } \\
\text { acid }
\end{array} \\
& \mathrm{H}_{2}(l)
\end{aligned} \mathrm{HCN}(a q)+\mathrm{OH}^{-}(a q)
$$

Compounds that can act as acids or as bases are called \qquad compounds.
An example of another amphoteric compound is the bicarbonate ion $\left(\mathrm{HCO}_{3}{ }^{-}\right)$.
Bicarbonate acts as an acid in this reaction:

$$
\mathrm{HCO}_{3}^{-}+\mathrm{CN}^{-} \rightleftarrows \mathrm{CO}_{3}^{2-}+\mathrm{HCN}
$$

Bicarbonate acts as a base in this reaction:

$$
\mathrm{HCO}_{3}^{-}+\mathrm{HCl} \underset{\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{Cl}^{-} .}{ }
$$

Conjugates

Pairs of chemical species, such as HCN and CN^{-}or $\mathrm{H}_{3} \mathrm{BO}_{3}$ and $\mathrm{H}_{2} \mathrm{BO}_{3}{ }^{-}$, which differ only in the presence or absence of an H^{+}are called \qquad .

For each conjugate pair, the species that contains the extra hydrogen is called the " \qquad or the "conjugate acid," and the species with one fewer hydrogen is called the " \qquad
\qquad " or the "conjugate base."

Consider the chemical reaction of aqueous hydrogen chloride and water:

There are \qquad conjugate pairs in every acid-base reaction.

For the $\mathrm{HCl} / \mathrm{Cl}^{-}$conjugate pair, HCl is the acid form and Cl^{-}is the base form.

Understanding Check

For the $\mathrm{H}_{2} \mathrm{O} / \mathrm{H}_{3} \mathrm{O}^{+}$conjugate pair, label the acid form and the base form.

Understanding Check

Identify the acid form and the base form in each of the conjugate pairs:
a. $\mathrm{H}_{3} \mathrm{BO}_{3}$ and $\mathrm{H}_{2} \mathrm{BO}_{3}{ }^{-}$
b. $\mathrm{H}_{2} \mathrm{O}$ and OH^{-}
c. HSO_{4}^{-}and $\mathrm{H}_{2} \mathrm{SO}_{4}$
d. HNO_{3} and $\mathrm{NO}_{3}{ }^{-}$

Note that because the "acid form" in a conjugate pair has one more H^{+}, it will have one unit greater charge than the "base form."

pH

There are many applications, in both nature and laboratory settings, when it is important to measure and know the hydronium ion concentration. Since hydronium is a product or reactant in many chemical reactions, its concentration affects the amounts of other products and/or reactants involved in these reactions. An excess or deficiency of hydronium ions will hinder the ability of biological enzymes to catalyze crucial chemical reactions. The concentration of hydronium ions both affects, and is affected by, cellular metabolic activity. If the concentration of hydronium ions is too large or too small, irreversible damage to cells will occur. For these and many other reasons, much work has gone into enabling the experimental measurement of hydronium ion concentration.

The concentration of hydronium ions is determined experimentally and assigned a numeric value using the \qquad .

$\mathbf{p H}$ is most commonly defined as the "negative logarithm of the hydronium ion concentration."

- This definition can be written as a mathematical equation:

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

- pH is simply another way to express the \qquad $o f$ \qquad ions in a solution.

Logarithms

If a value (number) changes by a factor of 10 , then its logarithm changes by 1 .
You may be familiar with the Richter scale used in describing the magnitude of earthquakes.

- The Richter scale is a logarithm scale. An earthquake that has a magnitude of 7 on the Richter scale is ten times stronger than an earthquake with a Richter scale value of 6 . An earthquake with a Richter scale value of 8 is one hundred times stronger than a quake with a Richter scale value of 6 .

A Quick Review of Logarithms
The $\log (10)$ is 1 because $10^{1}=10$
The $\log (100)$ is 2 because $10^{2}=100$
The $\log (1000)$ is 3 because $10^{3}=1000$
The $\log (.1)$ is -1 because $10^{-1}=.1$
The $\log (.01)$ is -2 because $10^{-2}=.01$
The $\log (3.4)$ is .53 because $10^{(.53)}=3.4$ (We need to use a calculator for this one.)

Calculating the pH from the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

Example:

What is the pH of an aqueous solution with $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=6.3 \times 10^{-1} \mathrm{M}$?

$$
\begin{gathered}
\text { Strategy: } \mathbf{p H}=-\log \left[\mathbf{H}_{\mathbf{3}} \mathbf{O}^{+}\right] \\
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left[6.3 \times 10^{-1}\right]=-(-0.20)=\mathbf{0 . 2 0}
\end{gathered}
$$

NOTE: pH is a \qquad value.

Understanding Check: What is the pH of an aqueous solution with $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=8.1 \times 10^{-3} \mathrm{M}$?

The rule for significant figures in $\mathbf{p H}$ values:

Numbers to the \qquad of the decimal point are \qquad significant in pH values.

- Be careful, only apply this rule to the $\mathbf{p H}$ value and not to $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$or $\left[\mathrm{OH}^{-}\right]$.

$$
\begin{gathered}
\mathbf{p H = - \operatorname { l o g } [\mathbf { H } _ { 3 } \mathbf { O } ^ { + }]} \\
\begin{array}{l}
\text { greater } \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}
\end{array} \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\begin{array}{c}
6.3 \times 10^{-1} \mathrm{M} \\
(0.63 \mathrm{M})
\end{array}} \\
\begin{array}{c}
\text { lesser } \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}
\end{array} \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\begin{array}{c}
8.1 \times 10^{-3} \mathrm{M} \\
(0.0081 \mathrm{M})
\end{array}}
\end{gathered}
$$

Because of the negative sign in our definition of pH , the \qquad the hydronium ion concentration, the \qquad the pH value.

Understanding Check: What is the pH of an aqueous solution with $\left[\mathrm{OH}^{-}\right]=6.3 \times 10^{-1} \mathrm{M}$?
Strategy:

Calculating the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$from the $\mathbf{p H}$

We calculated the pH from the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in the previous example and review problems. Since there are many devices that are used to experimentally measure pH , many applications require that the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$be calculated from the measured pH value. In this case we must employ a mathematical operation called the antilog.

Example: What is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of an aqueous solution with $\mathrm{pH}=5.3$?
Start with the definition of pH :

Understanding Check: What is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of an aqueous solution with $\mathrm{pH}=3.25$?

Now that you know how to convert between the hydronium ion concentration and the hydroxide ion concentration, and convert between the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and the pH , if you are given any one of these three quantities, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right],\left[\mathrm{OH}^{-}\right]$, or pH , you should be able to calculate the other two.

Understanding Check: Complete each row of the table:				
$\qquad$$[\mathbf{O H}]$ $\left[\mathbf{H}_{\mathbf{3}} \mathbf{O}^{+}\right]$ $\mathbf{p H}$ $1.1 \times 10^{-3} \mathrm{M}$ $1.0 \times 10^{-7} \mathrm{M}$ $1.2 \times 10^{-14} \mathrm{M}$ $1.4 \times 10^{-3} \mathrm{M}$ 1.0 7.00 9.3 12.00				

Acidic and Basic Solutions

\qquad are characterized as acids or bases depending on whether they donate or accept H^{+} in a particular acid-base reaction. are characterized as acidic, basic, or neutral by the relative amounts of $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-} that are present.

- Solutions that contain more $\mathrm{H}_{3} \mathrm{O}^{+}$than OH^{-}are called \qquad solutions.
- Solutions that contain more OH^{-}than $\mathrm{H}_{3} \mathrm{O}^{+}$are called \qquad solutions.
- Solutions that contain equal concentrations of $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}are called \qquad solutions.

Let's do an example problem to find the $\mathbf{p H}$ of a neutral solution:
By definition, in neutral solutions, the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$.

$$
\begin{gathered}
{\left[\mathrm{OH}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0 \times 10^{-14} \mathrm{M}^{2}} \\
\left(1.0 \times 10^{-7} \mathrm{M}\right) \times\left(1.0 \times 10^{-7} \mathrm{M}\right)=1.0 \times 10^{-14} \mathrm{M}^{2}
\end{gathered}
$$

In neutral solutions, the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$, therefore they are both equal to $1.0 \times 10^{-7} \mathrm{M}$.
Once the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is calculated, it can be used to calculate the pH :

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log \left(1.0 \times 10^{-7} \mathrm{M}\right)=-(-7.00)=7.00
$$

The pH of a neutral solution equals \qquad .

Next, let's think about the pH range of acidic or basic solutions.
In acidic solutions, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right]$, therefore $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>1.0 \times 10^{-7} \mathrm{M}$.

- When the hydronium ion concentration is greater than $1.0 \times 10^{-7} \mathrm{M}$, then the pH is less than 7.00 .
- Note that as the hydronium ion concentration increases, the pH decreases; this is because of the negative sign in the definition of pH .

In basic solutions, $\left[\mathrm{OH}^{-}\right]>\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$, therefore $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<1.0 \times 10^{-7} \mathrm{M}$.

- When the hydronium ion concentration is less than $1.0 \times 10^{-7} \mathrm{M}$, then the pH is greater than 7.00.
- Note that as the hydronium ion concentration decreases, the pH increases.

Solution Characterization	pH	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	$\left[\mathrm{OH}^{-}\right]$
Acidic	less than 7.00	greater than $1.0 \times 10^{-7} \mathrm{M}$	less than $1.0 \times 10^{-7} \mathrm{M}$
Neutral	7.00	$1.0 \times 10^{-7} \mathrm{M}$	$1.0 \times 10^{-7} \mathrm{M}$
Basic	greater than 7.00	less than $1.0 \times 10^{-7} \mathrm{M}$	greater than $1.0 \times 10^{-7} \mathrm{M}$

Understanding Check:

For each of the following, write whether it describes an acidic, basic, or neutral solution.
a) $\mathrm{pH}=8.9$
b) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1 \times 10^{-9} \mathrm{M}$
c) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1 \times 10^{-7} \mathrm{M}$
d) $\left[\mathrm{OH}^{-}\right]>\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
e) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right]$
f) $\mathrm{pH}=1.7$
g) $\mathrm{pH}=12.0$
h) $\left[\mathrm{OH}^{-}\right]=6.8 \times 10^{-2} \mathrm{M}$
i) $\mathrm{pH}=0.06$
j) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
k) $\mathrm{pH}=7.00$

1) $\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7} \mathrm{M}$

Properties of Acidic Solutions

Acidic solutions will turn a plant pigment molecule (in blue litmus) from blue to red.
Molecules such as litmus are often used as pH indicators.

- The color of the pH indicator, after being placed in contact with the test solution, indicates that the solution is in a certain pH range.

A more precise way to measure the pH of a solution is to use a pH meter.

- A pH meter is an electronic device with an electrode that is sensitive to the hydronium ion concentration.

Acidic solutions taste sour.

- The juice from lemons has a relatively high concentration of citric acid, (about $5 \%(\mathrm{w} / \mathrm{v})$,) which gives lemons their sour taste.
- Many solutions are so acidic (pH much less than 7.00) that they will damage your mouth and digestive tract, and can result in death if enough is ingested.

Some molecules contain the word "acid" in their name based on the fact that they act as acids when they react with water.
Carboxylic acids are examples of this.
An acidic solution can be prepared by the addition into water of a compound that acts as an acid when reacting with the water.

- For example, when acetic acid (a carboxylic acid) is added to pure water, a reaction occurs and an equilibrium is established:

> acetic acid
> (a carboxylic acid)

Before the acetic acid was added to pure water, the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$was equal to the $\left[\mathrm{OH}^{-}\right]$. When the acetic acid was added, more $\mathrm{H}_{3} \mathrm{O}^{+}$was produced and the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$increased.

The resulting acetic acid solution is acidic $(\mathrm{pH}<7)$ because $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right]$.
The pH of a solution that is prepared by adding an acid into pure water is determined by two factors:

1) The \qquad of the compound that was added.
2) The extent to which the compound \qquad (donates H^{+}and thereby produces its base form and $\mathrm{H}_{3} \mathrm{O}^{+}$).

The extent to which an acid dissociates when reacting with water is referred to as "acid strength."
When a " \qquad " is placed in water and reacts with it, there is very little of the acid form present and much more of the base form present at equilibrium.

- An example of a strong acid is HCl (often referred to as hydrochloric acid).
- When hydrogen chloride is in water, it dissociates as shown in the chemical equation below:

$$
\mathrm{HCl}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftarrows \mathrm{Cl}^{-}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q)
$$

Recall that the value of the equilibrium constant $\left(\mathrm{K}_{e q}\right)$ for a reaction indicates the relative amounts of products and reactants that exist at equilibrium.

If $\mathrm{K}_{e q}$ is much greater than 1, then, at equilibrium, the concentrations of the products are much greater than those of the reactants.

- In this case we say the products are predominant at equilibrium.

Conversely, if $\mathrm{K}_{e q}$ is much less than 1, at equilibrium, the concentrations of the reactants are much greater than those of the products.

- In this case we say the reactants are predominant at equilibrium.

When writing the equilibrium constant for the reaction of an acid with water, we use the symbol \qquad instead of $\mathrm{K}_{e q}$.
K_{a} is referred to as the acidity constant or the acid dissociation constant.

- Keep in mind that it is just the equilibrium constant for the reaction of the acid with water.
K_{a} for the reaction of HCl and water is about $1 \times 10^{7} \mathrm{M}$.

$$
\mathrm{HCl}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftarrows \mathrm{Cl}^{-}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q) \quad \mathrm{K}_{a} \approx 1 \times 10^{7} \mathrm{M}
$$

The equilibrium expression for this reaction is:

$$
\mathrm{K}_{a}=\frac{\left[\mathrm{Cl}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{[\mathrm{HCl}]} \approx 1 \times 10^{7} \mathrm{M}
$$

Because K_{a} is approximately $1 \times 10^{7} \mathrm{M}$, at equilibrium there are about about ten million Cl^{-}ions and ten million $\mathrm{H}_{3} \mathrm{O}^{+}$ions for every one $\mathbf{H C l}$ molecule.

- Almost all of the HCl that is added to pure water is converted to Cl^{-}and $\mathrm{H}_{3} \mathrm{O}^{+}$.

When a" \qquad $"$ is placed in water and reacts with it, at equilibrium, there is very little of its base form and much more of the acid form present.

An example of a weak acid is boric acid $\left(\mathrm{H}_{3} \mathrm{BO}_{3}\right)$.

- When boric acid is in water, it dissociates as shown in the chemical equation below:

$$
\mathrm{H}_{3} \mathrm{BO}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftarrows \mathrm{H}_{2} \mathrm{BO}_{3}^{-}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q)
$$

K_{a} for the reaction of $\mathrm{H}_{3} \mathrm{BO}_{3}$ and water is $5.75 \times 10^{-10} \mathrm{M}$.
The equilibrium expression for this reaction is:

$$
\mathrm{K}_{e q}=\frac{\left[\mathrm{H}_{2} \mathrm{BO}_{3}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{H}_{3} \mathrm{BO}_{3}\right]}=5.75 \times 10^{-10} \mathrm{M}
$$

K_{a} for this reaction is much less than 1, and the reactant $\left(\mathrm{H}_{3} \mathrm{BO}_{3}\right)$ is predominant at equilibrium.

- At equilibrium, there are about about $25000 \mathrm{H}_{3} \mathrm{BO}_{3}$ molecules for every one $\mathrm{H}_{2} \mathrm{BO}_{3}{ }^{-}$or $\mathrm{H}_{3} \mathrm{O}^{+}$ion present.

Summary of Acid Strength

Strong acids have K_{a} values much
\qquad than 1.

- When strong acids are placed in pure water, they react with water and an equilibrium is establish in which there is much more of the base form and $\mathrm{H}_{3} \mathrm{O}^{+}$than the acid form present.

Weak acids have K_{a} values much \qquad than 1.

- When weak acids are placed in pure water, they react with water and an equilibrium is establish in which there is much more of the acid form than the base form and $\mathrm{H}_{3} \mathrm{O}^{+}$present.

The greater the K_{a}, the stronger the acid.

Various Acids and Their Acidity Constants		
Acid Name	Acid Formula	K_{a}
Perchloric acid	HClO_{4}	$1 \times 10^{9} \mathrm{M}$ (estimated)
Hydrochloric acid	HCl	$1 \times 10^{7} \mathrm{M}$ (estimated)
Chloric acid	HClO_{3}	$1 \times 10^{3} \mathrm{M}$ (estimated)
Phosphoric acid	$\mathrm{H}_{3} \mathrm{PO}_{4}$	$7.5 \times 10^{-3} \mathrm{M}$
Hydrofluoric acid	HF^{2}	$6.6 \times 10^{-4} \mathrm{M}$
Acetic acid	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	$1.8 \times 10^{-5} \mathrm{M}$
Carbonic acid	$\mathrm{H}_{2} \mathrm{CO}_{3}$	$4.4 \times 10^{-7} \mathrm{M}$
Dihydrogen phosphate ion	$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	$6.2 \times 10^{-8} \mathrm{M}$
Boric acid	$\mathrm{H}_{3} \mathrm{BO}_{3}$	$5.7 \times 10^{-10} \mathrm{M}$
Ammonium ion	$\mathrm{NH}_{4}{ }^{+}$	$5.6 \times 10^{-10} \mathrm{M}$
Hydrocyanic acid	HCN^{2}	$4.9 \times 10^{-10} \mathrm{M}$
Bicarbonate ion	$\mathrm{HCO}_{3}{ }^{-}$	$5.6 \times 10^{-11} \mathrm{M}$
Methylammonium ion	$\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$	$2.4 \times 10^{-11} \mathrm{M}$
Hydrogen phosphate ion	$\mathrm{HPO}_{4}{ }^{-}$	$4.2 \times 10^{-13} \mathrm{M}$

Understanding Check: Use the table (on the previous page) to determine which is a stronger acid, phosphoric acid or acetic acid.

Properties of Basic Solutions

Basic solutions feel slippery, have a bitter taste, and will turn litmus pH indicator from red to blue.
Basic solutions can be prepared by dissolving an ionic compound that contains hydroxide in water.
For example, the addition of sodium hydroxide to pure water will result in dissociation of the sodium hydroxide crystals to produce sodium ions and hydroxide ions:

$$
\mathrm{NaOH}(s) \rightleftarrows \mathrm{Na}^{+}(a q)+\mathrm{OH}^{-}(a q)
$$

When the NaOH was added, the $\left[\mathrm{OH}^{-}\right]$increased.
The resulting NaOH solution is basic $(\mathrm{pH}>7)$ because $\left[\mathrm{OH}^{-}\right]>\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$.

Neutralization Reactions

An acid will react with a hydroxide-containing base compound to produce \qquad and an \qquad compound in a reaction called \qquad .

An example of a neutralization reaction is the reaction of perchloric acid and sodium hydroxide:

$$
\mathrm{HClO}_{4}(a q)+\mathrm{NaOH}(a q) \rightleftarrows \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{NaClO}_{4}(a q)
$$

In neutralization reactions, the H^{+}from the acid bonds to the OH^{-}to produce $\mathrm{H}_{2} \mathrm{O}$.
The (anionic) base form of the acid (ClO_{4}^{-}in this case) combines with the cationic part of the base $\left(\mathrm{Na}^{+}\right.$in this case) to make an ionic compound called a \qquad .

- Although sodium chloride is commonly called "salt," the chemical definition of salt states that a salt is an ionic compound formed in a neutralization reaction.

Understanding Check: Predict the products of the following neutralization reactions:

$$
\begin{array}{lll}
\mathrm{HCl}(a q)+\mathrm{NaOH}(a q) & \rightleftarrows & + \\
\mathrm{HCl}(a q)+\mathrm{KOH}(a q) & \rightleftarrows & +
\end{array}
$$

The Henderson-Hasselbalch Relationship

There is a unique relationship between the $\mathbf{p H}$ of a solution and the relative amounts of acid and base forms of a conjugate pair that is present in the solution.
The general form of a chemical equation for an acid reacting with water to produce its base form and hydronium can be written as:

HA represents the acid form, and \mathbf{A}^{-}represents the base form of any conjugate pair.
The equilibrium expression for this general reaction is:

$$
\mathrm{K}_{a}=\frac{\left[\mathrm{A}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{[\mathrm{HA}]}
$$

We can rearrange this equation to get the ratio of the equilibrium concentration of the acid and base form of a conjugate pair.

The important thing to see here is that the relative amounts (ratio) of the base form and acid form of a conjugate pair at equilibrium depends on the K_{a} value for the particular acid and $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$.

Since pH is used as a measure of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$, it is more practical to use pH instead of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$.

- The $\left[\mathbf{H}_{3} \mathrm{O}^{+}\right]$in equation can be replaced with $\mathbf{p H}$ by taking the negative logarithm of both sides of the equation and doing some other algebraic steps.

$$
\mathrm{pH}=-\log \left(\mathrm{K}_{a}\right)+\log \left(\frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}\right)
$$

The " $-\log \left(\mathrm{K}_{a}\right)$ " term in this equation above is written as " pK_{a}."
Doing so yields what is known as the Henderson-Hasselbalch Equation:

$$
\mathrm{pH}=\mathrm{pK}_{a}+\log \left(\frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}\right)
$$

For a particular conjugate pair, the Henderson-Hasselbalch Equation gives the relationship between the relative amounts of the acid and base forms present at equilibrium and the $\mathbf{p H}$ of the solution.

Henderson-Hasselbalch Equation

$$
\mathrm{pH}=\mathrm{pK}_{a}+\log \left(\frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}\right)
$$

The Henderson-Hasselbalch Equation is used so often that K_{a} values for acids are sometimes tabulated as pK_{a}.

Do not be confused by the use of pK_{a}; it is simply the $-\log \left(\mathrm{K}_{a}\right)$.

Acid Name	Acid Formula	$\mathbf{K} a$	$\mathrm{pK} a$ $\mathrm{pK} a=-\log (\mathrm{K} a)$
Perchloric acid	HClO_{4}	$1 \times 10^{9} \mathrm{M}$ (estimated)	-9.0 (estimated)
Hydrochloric acid	HCl	$1 \times 10^{7} \mathrm{M}$ (estimated)	-7.0 (estimated)
Chloric acid	HClO_{3}	$1 \times 10^{3} \mathrm{M}$ (estimated)	-3.0 (estimated)
Phosphoric acid	$\mathrm{H}_{3} \mathrm{PO}_{4}$	$7.5 \times 10^{-3} \mathrm{M}$	2.12
Hydrofluoric acid	HF	$6.6 \times 10^{-4} \mathrm{M}$	3.18
Acetic acid	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	$1.8 \times 10^{-5} \mathrm{M}$	4.74
Carbonic acid	$\mathrm{H}_{2} \mathrm{CO}_{3}$	$4.4 \times 10^{-7} \mathrm{M}$	6.36
Dihydrogen phosphate ion	$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	$6.2 \times 10^{-8} \mathrm{M}$	7.21
Boric acid	$\mathrm{H}_{3} \mathrm{BO}_{3}$	$5.7 \times 10^{-10} \mathrm{M}$	9.24
Ammonium ion	$\mathrm{NH}_{4}{ }^{+}$	$5.6 \times 10^{-10} \mathrm{M}$	9.25
Hydrocyanic acid	HCN^{2}	$4.9 \times 10^{-10} \mathrm{M}$	9.31
Bicarbonate ion	$\mathrm{HCO}_{3}{ }^{-}$	$5.6 \times 10^{-11} \mathrm{M}$	10.25
Methylammonium ion	$\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$	$2.4 \times 10^{-11} \mathrm{M}$	10.62
Hydrogen phosphate ion	$\mathrm{HPO}_{4}{ }^{2-}$	$4.2 \times 10^{-13} \mathrm{M}$	12.38

We will not use the Henderson-Hasselbalch Equation to do calculations; but we will take advantage of its implications in order to \qquad whether the acid form or the base form of a particular conjugate pair is predominant at equilibrium.

A solution containing a conjugate pair can be at $\boldsymbol{a n y} \boldsymbol{p H}$; other species that are in the solution (or might be added) can affect the pH . However, the K_{a}, and therefore pK_{a}, for a particular conjugate pair does not change.
In order to solve problems in this course, you should know and understand the following three statements that are implied by the Henderson-Hasselbalch Equation.

- When the $\mathbf{p H}$ of a solution is \qquad than the $\mathbf{p K} \mathbf{K}_{a}$ of an acid, then the concentration of the acid form, [HA], is greater than the concentration of the base form, [$\left.\mathrm{A}^{-}\right]$.
- In this case, we say that the acid form is predominant.
- When the $\mathbf{p H}$ of a solution is \qquad than the $\mathbf{p} \mathbf{K}_{a}$ of an acid, then the concentration of the base form, $\left[\mathrm{A}^{-}\right]$, is greater than the concentration of the acid form, [HA].
- In this case, we say that the base form is predominant.
- When the $\mathbf{p H}$ of a solution is \qquad to the $\mathbf{p K}_{\boldsymbol{a}}$ of an acid, then the concentration of the acid form, $[\mathrm{HA}]$, is equal to the concentration of the base form, $\left[\mathrm{A}^{-}\right]$.

Solution Condition	Relative Amounts of Acid and Base Forms
$\mathrm{pH}<\mathrm{pK}_{a}$	$[\mathrm{HA}]>[\mathrm{A}]$
$\mathrm{pH}>\mathrm{pK}_{a}$	$[\mathrm{~A}]>[\mathrm{HA}]$
$\mathrm{pH}=\mathrm{pK}_{a}$	$[\mathrm{HA}]=[\mathrm{A}]$

Understanding Check: For each of the following conjugate pairs, predict whether the acid form or the base form is predominant at the given pH .
a. $\mathrm{HF} / \mathrm{F}^{-}$at $\mathrm{pH}=2.7$
b. $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-} / \mathrm{HPO}_{4}{ }^{2-}$ at $\mathrm{pH}=8.5$
c. $\mathrm{NH}_{4}{ }^{+} / \mathrm{NH}_{3}$ at $\mathrm{pH}=7.0$

Buffer Solutions

Predicting, measuring, and controlling the pH of a solution or biological environment are important.
Nature and certain laboratory applications employ a chemical system, called a \qquad , that helps to maintain a narrow pH range in bodily fluids or other aqueous solutions.

A \qquad is a solution that resists changes in pH when small amounts of acid or base are added.

A buffer solution contains fairly high concentrations of the acid and base forms of a conjugate pair.

Solution Condition	Relative Amounts of Acid and Base Forms
$\mathrm{pH}<\mathrm{pK}_{a}$	$[\mathrm{HA}]>[\mathrm{A}]$
$\mathrm{pH}>\mathrm{pK}_{a}$	$[\mathrm{~A}]>[\mathrm{HA}]$
$-\mathrm{pH}=\mathrm{pK}_{a}$	$[\mathrm{HA}]=[\mathrm{A}]$

A high concentration of both the acid and base form of the conjugate pair is needed; this occurs when the pH is equal to, or very close to, the pK_{a}.

How does a buffer work? Example of a Buffer Solution: Blood Plasma.

The pH of your blood normally ranges between 7.35 and 7.45.
A blood pH below the normal range is called acidosis, while a blood pH above this range is called alkalosis, either one of which is potentially fatal.
Blood is kept in this narrow range $(\mathrm{pH}=7.35-7.45)$ with the help of buffers.

Adding Acid to a Buffer Solution

If acid (hydronium ions) is added to the carbonic acid $\left(\mathbf{H}_{2} \mathbf{C O}_{3}\right) /$ bicarbonate $\left(\mathbf{H C O}_{3}{ }^{-}\right)$buffer in blood, the excess hydronium ions would cause an increase in the reverse reaction rate of the buffer conjugate pair equilibrium, shown below, as predicted by Le Chatalier's Principle.

$$
\mathbf{H}_{2} \mathbf{C O}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \longleftrightarrow \mathbf{H C O}_{3}^{-}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q)
$$

The excess hydronium ions that are added and bicarbonate $\left(\mathbf{H C O}_{3}{ }^{-}\right)$are converted to carbonic acid $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)+\mathrm{H}_{2} \mathrm{O}(l)$ in the reverse direction of the reaction, and therefore there is not a significant change in the pH .

The removal of the excess hydronium will continue until most of the base form of the conjugate pair is depleted.

- It is for this reason that buffers are made of relatively high concentrations of the buffering conjugate pairs, and that we say, "a buffer is a solution that will resist pH changes when small amounts of acid or base are added."

Addition of Base to a Buffer Solution

If a small amount base was added to a \qquad buffered solution, it would increase the pH .

- The pH would increase because the hydroxide ion concentration would increase, and therefore the concentration of hydronium ions will decrease.
However, if a small amount of base was added to a buffered solution, the hydronium ion concentration would be maintained because of a decrease in the reverse reaction rate of the buffer conjugate pair equilibrium, as predicted by Le Châtelier's Principle.

$$
\mathrm{HA}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \longleftrightarrow \mathrm{A}^{-}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q)
$$

The concentration of hydronium ions will be maintained because it is replenished by the greater rate of the forward reaction.

Biological Buffers

An important \qquad (within cells) buffer is the dihydrogen phosphate/hydrogen phosphate conjugate pair:

Proteins also act as intracellular buffers.

- In chapter 13 you will learn how proteins can donate or accept H^{+}.

Important \qquad (outside of cells) buffers, in solutions such as blood or interstitial fluids, are the carbonic acid $\left(\mathbf{H}_{\mathbf{2}} \mathbf{C O}_{\mathbf{3}}\right) /$ bicarbonate $\left(\mathbf{H C O}_{\mathbf{3}}{ }^{-}\right)$and the ammonium $\left(\mathbf{N H}_{\mathbf{4}}{ }^{+}\right) /$ammonia $\left(\mathbf{N H}_{\mathbf{3}}\right)$ conjugate pairs.

In blood, the carbonic acid $\left(\mathbf{H}_{2} \mathbf{C O}_{3}\right) /$ bicarbonate $\left(\mathbf{H C O}_{3}{ }^{-}\right)$buffering pair is especially useful because the buffer conjugate pair concentrations $\left(\left[\mathbf{H}_{2} \mathbf{C O}_{3}\right]\right.$ and $\left.\left[\mathbf{H C O}_{3}{ }^{-}\right]\right)$are replenished through cellular respiration and can be controlled through breathing.

- To understand how this happens, we must consider these two reactions:

- The CO_{2} in Reaction 1 is constantly produced in the body during cellular respiration. Most of the CO_{2} produced is exhaled; however, there is always some CO_{2} dissolved in the blood.
- Reaction 2 is the carbonic acid/bicarbonate equilibrium, which acts as a buffer.

pH and Equilibrium Worksheet and Key

1. If the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.7 \times 10^{-4}$, what is the $\left[\mathrm{OH}^{-}\right]$?
2. If the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=5.4 \times 10^{-9}$, what is the $\left[\mathrm{OH}^{-}\right]$?
3. If the $\left[\mathrm{OH}^{-}\right]=9.7 \times 10^{-2}$, what is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$?
4. If the $\left[\mathrm{OH}^{-}\right]=4.3 \times 10^{-12}$, what is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$?
5. Fill in the table:

$[\mathrm{OH}]$	$\left[\mathrm{H}_{3} \mathbf{O}^{+}\right]$	$\mathbf{p H}$
	$1.1 \times 10^{-3} \mathrm{M}$	
	$1.0 \times 10^{-7} \mathrm{M}$	
	$8.3 \times 10^{-1} \mathrm{M}$	
	$7.2 \times 10^{-12} \mathrm{M}$	1.0
		7.00
		9.3
		12.00

Le Chatelier's Principle and Equilibrium Shifts

1. If the reaction below is initially at equilibrium, and then each of the following changes are made, predict which direction the reaction rate will be fastest until equilibrium is once again established: forward, reverse, or no change.

$$
2 \mathrm{CO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \nLeftarrow 2 \mathrm{CO}_{2(\mathrm{~g})}
$$

a. The amount of O_{2} is increased.
b . The amount of CO_{2} is decreased?
c. The amount of oxygen gas is decreased.
2. If the reaction below is initially at equilibrium, and then each of the following changes are made, predict which direction the reaction rate will be fastest until equilibrium is once again established: forward, reverse, or no change.

$$
\mathrm{C}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightleftarrows \mathrm{CO}_{(\mathrm{g})}+\mathrm{H}_{2(\mathrm{~g})}
$$

a. adding $\mathbf{H}_{\mathbf{2}} \mathrm{O}_{(\mathrm{g})}$
b. removing carbon
c. removing H_{2}
d. adding carbon
3. If the reaction below is initially at equilibrium, and then each of the following changes are made, predict which direction the reaction rate will be fastest until equilibrium is once again established: forward, reverse, or no change.

$$
\mathrm{PCl}_{5(\mathrm{~g})} \rightleftarrows \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}
$$

a. adding PCl_{3}
b. removing Cl_{2}
c. removing PCl_{3}
d. adding Cl_{2}

pH and Equilibrium Key

1. If the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.7 \times 10^{-4}$, what is the $\left[\mathrm{OH}^{-}\right] ? 5.9 \times 10^{-11} \mathbf{M}$
2. If the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=5.4 \times 10^{-9}$, what is the $\left[\mathrm{OH}^{-}\right]$? $\mathbf{1 . 9 \times 1 0 ^ { - 6 } \mathbf { M } , ~}$
3. If the $\left[\mathrm{OH}^{-}\right]=9.7 \times 10^{-2}$, what is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$? $\mathbf{1 . 0 \times 1 0 ^ { - \mathbf { 1 3 } } \mathbf { M }}$
4. If the $\left[\mathrm{OH}^{-}\right]=4.3 \times 10^{-12}$, what is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] ? 2.3 \times \mathbf{1 0}^{\mathbf{- 3}} \mathbf{M}$
5. Fill in the table:

[OH^{-}]	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	pH
$9.1 \times 10^{-12} \mathrm{M}$	$1.1 \times 10^{-3} \mathrm{M}$	2.96
$1.0 \times 10^{-7} \mathrm{M}$	$1.0 \times 10^{-7} \mathrm{M}$	7.00
$1.2 \times 10^{-14} \mathrm{M}$	$8.3 \times 10^{-1} \mathrm{M}$	0.081
$1.4 \times 10^{-3} \mathrm{M}$	$7.2 \times 10^{-12} \mathrm{M}$	11.14
$1 \times 10^{-13} \mathrm{M}$. 1 M	1.0
$1.0 \times 10^{-7} \mathrm{M}$	$1.0 \times 10^{-7} \mathrm{M}$	7.00
$2 \times 10^{-5} \mathrm{M}$	$5 \times 10^{-10} \mathrm{M}$	9.3
$1.0 \times 10^{-2} \mathrm{M}$	$1.0 \times 10^{-12} \mathrm{M}$	12.00

Le Chatelier's Principle and Equilibrium Shifts

1. If the reaction below is initially at equilibrium, and then each of the following changes are made, predict which direction the reaction rate will be fastest until equilibrium is once again established: forward, reverse, or no change.

$$
2 \mathrm{CO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \nLeftarrow 2 \mathrm{CO}_{2(\mathrm{~g})}
$$

a. The amount of O_{2} is increased. forward
b. The amount of CO_{2} is decreased? forward
c. The amount of oxygen gas is decreased. reverse
2. If the reaction below is initially at equilibrium, and then each of the following changes are made, predict which direction the reaction rate will be fastest until equilibrium is once again established: forward, reverse, or no change.

$$
\mathrm{C}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightleftarrows \mathrm{CO}_{(\mathrm{g})}+\mathrm{H}_{2(\mathrm{~g})}
$$

a. adding $\mathbf{H}_{\mathbf{2}} \mathrm{O}_{(\mathrm{g})}$ forward
b. removing carbon reverse
c. removing H_{2} forward
d. adding carbon forward
3. If the reaction below is initially at equilibrium, and then each of the following changes are made, predict which direction the reaction rate will be fastest until equilibrium is once again established: forward, reverse, or no change.

$$
\mathrm{PCl}_{5(\mathrm{~g})} \rightleftarrows \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}
$$

a. adding $\mathrm{PCl}_{3} \quad$ reverse
b. removing Cl_{2} forward
c. removing PCl_{3} forward
d. adding Cl_{2} reverse

Chapter 8 Review Worksheet

Topics:

- Definition of equilibrium
- $\mathrm{K}_{\text {eq }}$: law of mass action
- Le Chatelier's Principle
- Properties of acids \& bases
- Brønstead-Lowry Acids \& Bases definition
- K_{w} \& calculating $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right],\left[\mathrm{OH}^{-}\right], \mathrm{pH}$

1. If the reaction below is initially at equilibrium, and then each of the following changes are made, predict which direction the reaction rate will be fastest until equilibrium is once again established: forward, reverse, or no change.

$$
\mathrm{H}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightleftarrows 2 \mathrm{HCl}_{(\mathrm{g})}
$$

a. the amount of H_{2} is increased
b. the amount of HCl is decreased
c. the amount of Cl_{2} is decreased
2. If the reaction below is initially at equilibrium, and then more $\mathrm{NH}_{4}{ }^{+}$is added, predict which direction the reaction rate will be fastest until equilibrium is once again established: forward, reverse, or no change.

$$
\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

3. Define (a) reversible reaction and (b) equilibrium.
4. For the reaction below:
$2 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftarrows 2 \mathrm{NO}_{3}(\mathrm{~g})$
a. Write the law of mass action (the equilibrium expression for K_{eq})
b. If gas concentrations are as follows, $2.10 \mathrm{M} \mathrm{NO}_{2}, 1.75 \mathrm{M} \mathrm{O}_{2}$, and $1.00 \mathrm{M} \mathrm{NO}_{3}$, calculate K_{eq}
c. Using K_{eq} from part b , are the reactants or products predominant (predominant means that there is a greater amount present)?
d. Using $\mathrm{K}_{\text {eq }}$ from part b, calculate $\left[\mathrm{NO}_{3}\right]$ if $\left[\mathrm{NO}_{2}\right]=\left[\mathrm{O}_{2}\right]=4.3 \times 10^{-6} \mathrm{M}$

Acids and Bases

5. For each of the following, write whether it describes acids/acidic (A), bases/basic (B), or both (A \& B):
a. $\mathrm{pH}=9.7$ f. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right]$
k. sour
b. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1 \times 10^{-9} \mathrm{M}$
g. $\mathrm{pH}=2.7$
6. slippery
c. bitter
h. $\mathrm{pH}=13.0$
d. $\mathrm{pH}=1.0$
i. gains/accepts an H^{+}in a reaction
e. $\left[\mathrm{OH}^{-}\right]=6.8 \times 10^{-2} \mathrm{M}$
j. electrolytes
7. For each of the following neutralization reactions, predict the products AND balance the equation:
a. $\mathrm{HCl}+\mathrm{KOH} \rightleftarrows$
b. $\mathrm{HCN}+\mathrm{Ca}(\mathrm{OH})_{2} \rightleftarrows$
8. Identify the acid and the base (for the forward direction) in each of the following reactions:
a. $\mathrm{BH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{BH}_{4}^{+}+\mathrm{OH}^{-}$
b. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
c. $\mathrm{HCO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}_{3}^{-2}+\mathrm{H}_{3} \mathrm{O}^{+}$
d. $\mathrm{HCN}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CN}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
e. $\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NO}_{3}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
9. What is the conjugate acid of...
a. NH_{3}
b. HCO_{3}^{-}
c. $\mathrm{H}_{2} \mathrm{O}$
10. What is the conjugate base of...
a. $\mathrm{H}_{2} \mathrm{O}$
b. HF
c. HPO_{4}^{-2}
11. a. In a neutral solution, what is the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$?
b. In a neutral solution, what is the concentration of OH^{-}?
12. Solutions in which the...
a. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is greater than $1 \times 10^{-7} \mathrm{M}$ are \qquad [Choose one: acidic, basic, or neutral]
b. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is less than $1 \times 10^{-7} \mathrm{M}$ are \qquad [Choose one: acidic, basic, or neutral]
c. $\left[\mathrm{OH}^{-}\right]$is greater than $1 \times 10^{-7} \mathrm{M}$ are \qquad [Choose one: acidic, basic, or neutral]
d. $\left[\mathrm{OH}^{-}\right]$is less than $1 \times 10^{-7} \mathrm{M}$ are \qquad [Choose one: acidic, basic, or neutral]
e. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is equal to $1 \times 10^{-7} \mathrm{M}$ are ___ [Choose one: acidic, basic, or neutral]
13. What is the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}for each of the following conditions?
a. $\mathrm{pH}=8.0$
b. $\mathrm{pH}=6.50$
c. $\mathrm{pH}=10.60$
14. If the $\mathrm{pH}>\mathrm{pK}_{\mathrm{a}}$ in a buffer solution, which is larger, the concentration of the acid form or the concentration of base form.
15. If the reaction below is initially at equilibrium, and then each of the following changes are made, predict which direction the reaction rate will be fastest until equilibrium is once again established: forward, reverse, or no change.

$$
\mathrm{H}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightleftarrows 2 \mathrm{HCl}_{(\mathrm{g})}
$$

a. If the amount of H_{2} is increased, then the forward reaction will be fastest until equilibrium is reestablished.
b. If the amount of HCl is decreased, then the forward reaction will be fastest until equilibrium is reestablished.
c. If the amount of Cl_{2} is decreased, then the reverse reaction will be fastest until equilibrium is reestablished.
2. If the reaction below is initially at equilibrium, and then more $\mathrm{NH}_{4}{ }^{+}$is added, predict which direction the reaction rate will be fastest until equilibrium is once again established: forward, reverse, or no change.

$$
\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}
$$

Answer: If more $\mathrm{NH}_{4}{ }^{+}$is added, then the forward reaction will be fastest until equilibrium is reestablished.
3. Define (a) reversible reaction and (b) equilibrium:

SEE YOUR LECTURE NOTES

4. For the reaction below:

$$
2 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftarrows 2 \mathrm{NO}_{3(\mathrm{~g})}
$$

a. Write the law of mass action (the equilibrium expression for K_{eq})
$\mathrm{K}_{\mathrm{eq}}=\frac{\left[\mathrm{NO}_{3}\right]^{2}}{\left[\mathrm{O}_{2}\right]\left[\mathrm{NO}_{2}\right]^{2}}$
b. If gas concentrations are as follows, $2.10 \mathrm{M} \mathrm{NO}_{2}, 1.75 \mathrm{M} \mathrm{O}_{2}$, and $1.00 \mathrm{M} \mathrm{NO}_{3}$, calculate K_{eq}
$\mathrm{K}_{\mathrm{eq}}=\frac{[1.00 \mathrm{M}]^{2}}{[1.75 \mathrm{M}][2.10 \mathrm{M}]^{2}} \quad=\mathbf{0 . 1 3 0} \mathbf{M}^{-1}$ (NOTE: " \mathbf{M}^{-1} " is another way to write " $1 / \mathrm{M}^{\prime}$)
c. Using K_{eq} from part b , are the reactants or products predominant?

REACTANTS: K_{eq} is much less than 1
d. Using K_{eq} from part b, calculate $\left[\mathrm{NO}_{3}\right]$ if $\left[\mathrm{NO}_{2}\right]=\left[\mathrm{O}_{2}\right]=4.3 \times 10^{-6}$
$\mathrm{K}_{\mathrm{eq}}=\frac{\left[\mathrm{NO}_{3}\right]^{2}}{\left(4.3 \times 10^{-6} \mathrm{M}\right)\left(4.3 \times 10^{-6} \mathrm{M}\right)^{2}} \quad=\mathbf{0 . 1 3 0} \mathbf{M}^{-1}$

SOLVING THIS EQUATION FOR [$\mathbf{N O}_{3}$] GIVES:

$\left[\mathbf{N O}_{3}\right]=\sqrt{\left(0.130 \mathrm{M}^{-1}\right)\left(4.3 \times 10^{-6} \mathrm{M}\right)\left(4.3 \times 10^{-6} \mathrm{M}\right)^{2}}=\mathbf{3 . 2 \times 1 0 ^ { - 9 } \mathbf { M } , ~}$
5. For each of the following, write whether it describes acids/acidic (A), bases/basic (B), or both (A \& B):
a. B
f. A
k. A
b. B
g. A

1. B
c. B
h. B
d. A
i. B
e. B
j. A \& B
2. For each of the following neutralization reactions, predict the products \& balance the equation:
a. $\mathbf{H C l}+\mathrm{KOH} \rightleftarrows \mathbf{K C l}+\mathbf{H}_{\mathbf{2}} \mathbf{O}$
b. $\mathbf{2} \mathrm{HCN}+\mathrm{Ca}(\mathrm{OH})_{2} \rightleftarrows \mathbf{C a}(\mathbf{C N})_{2}+\mathbf{2} \mathbf{H}_{\mathbf{2}} \mathbf{O}$
3. Identify the acid and the base (for the forward direction) in each of the following reactions:
a. $\mathrm{BH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{BH}_{4}^{+}+\mathrm{OH}^{-}$

Base Acid
b. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$

Acid Base
c. $\mathrm{HCO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}_{3}^{-2}+\mathrm{H}_{3} \mathrm{O}^{+}$

Acid Base
d. $\mathrm{HCN}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CN}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$

Acid Base
e. $\mathrm{HNO}_{3}+\underset{\text { Bas }}{\mathrm{H}_{2} \mathrm{O}} \rightarrow \mathrm{NO}_{3}{ }^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$

Acid Base
8. What is the conjugate acid of...
a. NH_{3} Conjugate acid $=\mathbf{N H}_{4}{ }^{+}$
b. $\mathrm{HCO}_{3}{ }^{-}$Conjugate acid $=\mathbf{H}_{\mathbf{2}} \mathbf{C O}_{3}$
c. $\mathrm{H}_{2} \mathrm{O}$ Conjugate acid $=\mathbf{H}_{3} \mathbf{O}^{+}$
9. What is the conjugate base of...
a. $\mathrm{H}_{2} \mathrm{O}$ Conjugate base $=\mathbf{O H}^{-}$
b. HF Conjugate base $=\mathbf{F}^{-}$
c. HPO_{4}^{-2} Conjugate base $=\mathbf{P O}_{4}{ }^{-3}$
10. a. In a neutral solution, what is the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$?
$1.0 \times 10^{-7} \mathrm{M}$
b. In a neutral solution, what is the concentration of OH^{-}?
$1.0 \times 10^{-7} \mathrm{M}$
11. Solutions in which the...
a. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is greater than $1 \times 10^{-7} \mathrm{M}$ are acidic
b. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is less than $1 \times 10^{-7} \mathrm{M}$ are basic
c. $\left[\mathrm{OH}^{-}\right]$is greater than $1 \times 10^{-7} \mathrm{M}$ are basic
d. $\left[\mathrm{OH}^{-}\right]$is less than $1 \times 10^{-7} \mathrm{M}$ are acidic
e. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is equal to $1 \times 10^{-7} \mathrm{M}$ are neutral
12. What is the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}for each of the following conditions?
a. $\mathrm{pH}=8.0 \quad \mathbf{H}_{\mathbf{3}} \mathrm{O}^{+}=\mathbf{1} \times \mathbf{1 0}^{-\mathbf{8}} \mathbf{M} \quad \mathbf{O H}=\mathbf{1} \times \mathbf{1 0}^{-\mathbf{6}} \mathbf{M}$
b. $\mathrm{pH}=6.50 \mathbf{H}_{\mathbf{3}} \mathrm{O}^{+}=\mathbf{3 . 2} \times \mathbf{1 0}^{-7} \mathbf{M} \quad \mathbf{O H}=\mathbf{3 . 1} \times \mathbf{1 0}^{-\mathbf{8}} \mathbf{M}$
c. $\mathrm{pH}=10.60 \mathbf{H}_{\mathbf{3}} \mathrm{O}^{+}=\mathbf{2 . 5} \times \mathbf{1 0}^{-\mathbf{1 1}} \mathbf{M} \mathbf{O H}=\mathbf{4 . 0} \times \mathbf{1 0}^{-4} \mathbf{M}$
13. If the $\mathrm{pH}>\mathrm{pK}_{\mathrm{a}}$, for a buffer, which is larger, the concentration of the acid [HA] or the concentration of the base [A^{-}].
Base form [A]

Chapter 9 Lecture Notes: Carboxylic Acids, Amines, and Amides

Educational Goals

1. Given the structure of a carboxylic acid, carboxylate ion, ester, amide, or amine molecule, be able to give the systematic names and vice versa.
2. Know and understand the intermolecular forces that attract carboxylic acid, amine, or amide molecules to one another, and how these forces affect boiling points and melting points.
3. Identify amines as primary $\left(1^{\circ}\right)$, secondary $\left(2^{\circ}\right)$, or tertiary $\left(3^{\circ}\right)$. Compare and contrast amines and quaternary ammonium ions.
4. Predict the products for the reactions of carboxylic acids with water, alcohols, amines, ammonia, or with strong bases.
5. Predict the products for the reactions of amines with water or with strong acids.
6. Predict the products for the acid-catalyzed hydrolysis of an amide.
7. Identify chiral carbon atoms in structural formulas. Given the number of chiral carbons in a molecule, determine the number of stereoisomers.
8. Define the term enantiomer. Compare and contrast enantiomers and diastereomers.

Organic compounds are categorized into various \qquad by the presence of distinct functional groups.

A functional group is an \qquad , \qquad of atoms, or \qquad that gives a compound a particular set of physical and chemical properties.

Carboxylic Acids

The Structure of Carboxylic Acids

Carboxylic acids contain a \qquad functional group attached to a hydrocarbon (alkyl group) part.

Carboxyl groups contain both a \qquad group, which is a carbon double bonded to an oxygen ($\mathrm{C}=\mathbf{O}$), and a \qquad group $(\mathbf{- O H})$ that are connected to each other and the hydrocarbon part as shown below.

The carboxyl group is sometimes drawn as "COOH" or " $\mathbf{C O}_{2} \mathbf{H}$ " in condensed structures:

Chemists use the letter "R" in the general structures to represent either a hydrocarbon/alkyl group part or any other organic group of atoms.

general form of a carboxylic acid molecule

A specific example of a carboxylic acid is acetic acid.

- White vinegar is a mixture composed of 95% water and 5% acetic acid.

The hydrocarbon part (\mathbf{R}) in acetic acid is a methyl group $\left(\mathbf{C H}_{\mathbf{3}}\right)$.

The skeletal structure of acetic acid is shown below. I have added dots to indicate the carbon atom positions.

skeletal structure of acetic acid

methanoic acid

Naming Carboxylic Acids

We will use the IUPAC system for naming carboxylic acid molecules. The systematic naming of carboxylic acids is based on the hydrocarbon naming method.
Step 1: Find and name the parent chain.
The parent chain of a carboxylic acid is the longest continuous chain of carbon atoms that \qquad the carbonyl carbon. The carbonyl carbon is the carbon in the carbonyl group ($\mathbf{C = O}$).

Count the number of carbon atoms in the parent chain (include the carbonyl carbon). Starting with the alkane name that corresponds to the number of carbon atoms in the parent chain, replace the " e " at the end of the alkane name with "oic acid."
Example: the parent chain of a carboxylic acid that contains three carbons is called propanoic acid.

propane \longrightarrow propanoic acid
If there are no substituents on the parent chain, the naming is complete. In this case the name of the molecule (above) would be propanoic acid.
If there are substituents on the parent chain, you will need to continue with the steps that follow.

Step 2: Name any alkyl group substituents.
Alkyl groups are named in the same way as we did for hydrocarbons.

Example:

Step 3: Determine the point of attachment of alkyl group(s) to the parent chain.
In order to assign "position numbers" to the substituents, the carbons in the parent chain are numbered.
\qquad numbering at the \qquad carbon.

Example: the carbons in the parent chain of the molecule shown below are assigned position numbers:

Step 4: Construct the name of the carboxylic acid by placing the alkyl groups in alphabetical order and specifying their position numbers, followed by the name of the parent chain.
Use a dash between position numbers and letters.
Add the labels di, tri, or tetra in front of the alkyl group name if two, three, or four (respectively) identical substituents are present.

Example:

3-methylbutanoic acid

Naming Carboxylic Acids Example: Name the molecule that is shown below.

Step 1: Find and name the parent chain.

Step 2: Name any alkyl group substituents.

Step 3: Determine the point of attachment of alkyl group(s) to the parent chain.
Step 4: Construct the name of the carboxylic acid by placing the alkyl groups in alphabetical order and specifying their position numbers, followed by the name of the parent chain.

4-methylhexanoic acid
Understanding Check: Name the molecule that is shown below.

Understanding Check

The common name of the molecule shown below is acetic acid. What is the IUPAC systematic name for acetic acid?

Let's do a problem in which we are given the name of a carboxylic acid and wish to draw its structural formula.

Example: Draw the line bond structure of 2-methylpropanoic acid.
For comparison, the condensed and skeletal structure of 2-methylpropanoic acid are shown below.

Draw the line bond, condensed, and skeletal structural formulas of decanoic acid.

Hydroxyl, Fluorine, Chlorine, and Bromine Substituents

So far, you have only seen alkyl group substituents. It is not uncommon to see carboxylic acids that contain other atoms or groups of atoms that are named as substituents.

A hydroxyl group $(-\mathrm{OH})$, fluorine atom, chlorine atom, or bromine atom that is bonded to the parent chain of a carboxylic acid is named as a substituent.

The table below list the names used for these substituents.

Names of Non Alkyl Substituents	
Substituent	Name
OH	hydroxy
F	fluoro
Cl	chloro
Br	bromo

Use position numbers and alphabetize these substituents, along with any alkyl group substituents, when naming carboxylic acids.

Examples:

4
3-chlorobutanoic acid

3-hydroxy-5-methylhexanoic acid

Alpha (α) and Beta (β) Carbons

Two of the carbon positions in the parent chain of carboxylic acids are designated as " α " or " β."

- The α and $\boldsymbol{\beta}$ designations are not part of the IUPAC naming system, however they are commonly used.

The carbons that are designated as carbon number $\mathbf{2}$ and $\mathbf{3}$ in the IUPAC system are often referred to as the α carbon and β carbon, respectively.

Example: The α carbon and $\boldsymbol{\beta}$ carbon are labeled in the structure of butanoic acid shown below.

Example: The IUPAC systematic name of the molecule shown below is 3-hydroxybutanoic acid. It is named $\boldsymbol{\beta}$-hydroxybutanoic acid when using the $\boldsymbol{\alpha} / \boldsymbol{\beta}$ designation.

Understanding Check

Lactic acid is another name for $\boldsymbol{\alpha}$-hydroxypropanoic acid.
a. Draw the condensed structure of lactic acid.
b. What is the IUPAC systematic name for lactic acid?

Water Solubility of Carboxylic Acids

The water solubility of an organic compound depends on the compound's ability to interact with water. All carboxylic acid molecules have a significantly strong attraction to water through hydrogen bonding and dipole-dipole interactions.

Small carboxylic acid molecules have significant water solubility.

As the \qquad region (hydrocarbon part) of carboxylic acids gets larger, their water solubility \qquad ; this is true not only for carboxylic acids, but for all organic molecules.

Water Solubility of Carboxylic Acids		
Molecule Name	Condensed Structure	Water Solubility $(\mathbf{g} / 100 ~ \mathbf{~ m L})$
methanoic acid	HCOOH	miscible*
ethanoic acid	$\mathrm{CH}_{3} \mathrm{COOH}$	miscible
propanoic acid	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$	miscible
butanoic acid	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$	miscible
pentanoic acid	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$	3.7
hexanoic acid	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$	1.0

*miscible indicates that the substance will mix/dissolve at any carboxylic acid to water ratio.

Names, Structural Formulas, and Natural Sources of Various Carboxylic Acids				
Number of Carbons	IUPAC Name	Common Name	Condensed Structure	Source(s)
1	methanoic acid	formic acid	HCOOH	insect stings
2	ethanoic acid	acetic acid	$\mathrm{CH}_{3} \mathrm{COOH}$	bacterial fermentation
3	propanoic acid	propionic acid	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$	bacterial production
4	butanoic acid	butyric acid	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{COOH}$	butter
5	pentanoic acid	valeric acid	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{COOH}$	valerian (an herb)
6	hexanoic acid	caproic acid	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COOH}$	goat fat
7	heptanoic acid	enanthic acid	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{COOH}$	rancid oils
8	octanoic acid	caprylic acid	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{COOH}$	coconuts and breast milk
9	nonanoic acid	pelargonic acid	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{COOH}$	pelargonium (a genus of flowering plants)
10	decanoic acid	capric acid	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{8} \mathrm{COOH}$	coconuts and palm kernel oil
12	dodecanoic acid	lauric acid	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{COOH}$	coconut oil
16	hexadecanoic acid	palmitic acid	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{14} \mathrm{COOH}$	palm oil
18	octadecanoic acid	stearic acid	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{16} \mathrm{COOH}$	chocolate
20	icosanoic acid	arachidic acid	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{18} \mathrm{COOH}$	peanut oil

Chemical Reactions of Carboxylic Acids

1) Reaction of Carboxylic Acids with Water

Carboxylic acids have the word " \qquad " in their names because they readily donate an H^{+}in acid-base reactions.

When placed in water, a carboxylic acid molecule acts as an acid and water acts as a base. An H^{+}from the hydroxyl group (OH) of the carboxylic acid is donated to $\mathrm{H}_{2} \mathrm{O}$.

The base form of a carboxylic acid is called a \qquad .

- A carboxylate ion has a charge of (1-) because of the \qquad charge on the single-bonded oxygen. Recall that an oxygen atom with just one single bond has a (1-) formal charge.

A specific example of the reaction of a carboxylic acid and water is the reaction ethanoic acid and water.

The base form of ethanoic acid is named ethanoate ion.

Carboxylate ions are named by replacing the "- \qquad " suffix of their acid form name with "- \qquad .$"$

Examples:

When a carboxylic acid is placed in water, a reaction occurs between the acid and the water, and an equilibrium is established.

There is some of the acid form present and some of the base form present at equilibrium.
Carboxylic acids are considered to be "weak acids" because their K_{a} values are much less than 1.

Acid Name	Acid Formula	$\mathbf{K} a$	$\mathrm{pK} a$ $\mathrm{pK} a=-\log (\mathrm{K} a)$
Acetic acid	$\mathrm{CH}_{3} \mathrm{COOH}$	$1.8 \times 10^{-5} \mathrm{M}$	4.74
2-hydroxypropanoic acid (lactic acid)	$\mathrm{CH}_{3} \mathrm{CH}_{2}(\mathrm{OH}) \mathrm{COOH}$	$1.4 \times 10^{-4} \mathrm{M}$	3.86
propanoic acid	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$	$1.3 \times 10^{-5} \mathrm{M}$	4.88

When carboxylic acid/carboxylate ion conjugate pairs are in a solution, even if the solution contains other dissolved species, the relative amounts of the acid form and base form can be predicted by the Henderson-Hasselbalch Equation.

- The implications of the Henderson-Hasselbalch Equation are shown in the table below.

Solution Condition	Relative Amounts of Acid and Base Forms
$\mathrm{pH}<\mathrm{pK}_{a}$	$[\mathrm{HA}]>\left[\mathrm{A}^{-}\right]$
$\mathrm{pH}>\mathrm{pK}_{a}$	$\left[\mathrm{~A}^{-}\right]>[\mathrm{HA}]$
$\mathrm{pH}=\mathrm{pK}_{a}$	$[\mathrm{HA}]=\left[\mathrm{A}^{-}\right]$

Understanding Check

Add the products for the following reaction:

Understanding Check

Draw the condensed structure of the base form (carboxylate ion) for each of the following carboxylic acids and write the name of each carboxylate ion.
a. octanoic acid
b. 3-methylbutanoic acid
c. 5-methylhexanoic acid

Understanding Check

When a carboxylic acid is placed in water, it reacts with water and an equilibrium is established. For example, butanoic acid reacts with water as shown here:

In many biochemical applications, it is of interest to understand whether the acid form or the base form of a species is predominant. We use the implications of the Henderson-Hasselbalch Equation to predict the predominant species at any particular pH .
The pK_{a} of butanoic acid is about 4.8. Is the acid form or base form of butanoic acid predominant at physiological $\mathrm{pH}(\sim 7.4)$?

2) Neutralization: Reaction of a Carboxylic Acid and a Hydroxide Ion

In a neutralization reaction, a carboxylic acid will react with a hydroxide-containing base compound to produce $\mathbf{H}_{2} \mathrm{O}$ and a carboxylic acid salt.

This is the same neutralization reaction that you learned in a previous chapter; the \mathbf{H}^{+}from the acid bonds to the $\mathbf{O H}^{-}$to produce $\mathbf{H}_{\mathbf{2}} \mathbf{O}$.

The \qquad ion and the \qquad from the base make an ionic compound called a carboxylic acid \qquad -

A specific example of the neutralization of a carboxylic acid is the reaction of propanoic acid and sodium hydroxide:

Water Solubility of Carboxylate Ions

A carboxylic acid salt formed from a carboxylate anion and a $\mathbf{N a}^{+}$or \mathbf{K}^{+}cation is water soluble if its " \mathbf{R} " group contains less than twelve carbon atoms.

If its "R" group contains twelve or more carbons, then it is \qquad -

- The attraction of water to the \qquad -
\qquad of the carboxylate ion makes the salts more water soluble than their carboxylic acid conjugates.

A carboxylic acid salt formed from a carboxylate anion and a $\mathbf{C a}^{\mathbf{2 +}}$ or $\mathbf{M g}^{\mathbf{2 +}}$ cation is water insoluble.
It is the Ca^{2+} and Mg^{2+} ions that are responsible for the build up of soap scum in bathtubs and showers.

The Water Solubility of Carboxylic Acids and the Carboxylate Ions of Their Na^{+}or K^{+}Salts

Water with significant amounts of Ca^{2+} and/or Mg^{2+} ions is called hard water.
The long-chain carboxylate ions in soap combine with Ca^{2+} or Mg^{2+} to form insoluble solids (precipitates) called soap scum.
In order to prevent the formation of soap scum and other Ca^{2+} and Mg^{2+} precipitates, Ca^{2+} and Mg^{2+} can be removed from water, in a device called a water softener before the water is distributed throughout a home's plumbing system. Water softeners operate by exchanging Na^{+}ions for Ca^{2+} and Mg^{2+} ions.

Understanding Check: Add the products for the following neutralization reaction.

3) Esterification: The Reaction of a Carboxylic Acid and an Alcohol

In an esterification reaction, a carboxylic acid reacts with an alcohol to produce an \qquad and water.

The general form for the esterification reaction is:

In order to keep track of them in the general reaction, we use " \mathbf{R} " for the hydrocarbon part of the carboxylic acid, and " \mathbf{R} '" for the hydrocarbon part of the alcohol.

- \mathbf{R} and \mathbf{R} ' may, or may not, be identical.

An ester is produced when the $\mathbf{O H}$ from the carboxylic acid is replace with the $\mathbf{O R}{ }^{\prime}$ from the alcohol. The $\mathbf{O H}$ from the carboxylic acid combines with the \mathbf{H} from the alcohol to produce $\mathbf{H}_{\mathbf{2}} \mathbf{O}$.

Replace this OH with this OR'

Esterification reactions can be done in the lab by heating a carboxylic acid and alcohol mixture in the presence of a strong acid catalyst.
A specific example of an esterification reaction is the reaction of ethanoic acid and pentanol (an alcohol):

ethanoic acid pentanol pentyl ethanoate water
The ester formed in the reaction above, pentyl ethanoate, has the distinct aroma of bananas.
Many esters have pleasant aromas and flavors, and occur naturally in foods. Esters are often added to foods as artificial flavors. They are also used in perfumes.
The Greek delta symbol (Δ) is written below the arrows in the chemical equation when heat is used to increase the rate of a reaction, as shown in the equation above.
Likewise, when catalysts, such as $\mathrm{H}_{3} \mathrm{O}^{+}$, are used, the formula or name of the catalyst is written above the arrows.

Understanding Check

Add the products for the following esterification reactions:
a.

b.

Naming Esters

The IUPAC method for naming esters involves naming the \mathbf{R}^{\prime} alkyl group part first, followed by the "carboxylate-like" part.

Example: Name the ester shown below:

SOLUTION:

1) Identify the alkyl group (\mathbf{R}^{\prime}) part and the carboxylate-like part.
2) The ester is named by writing the alkyl group (\mathbf{R}^{\prime}) part name first, then a space, followed by the name that the "carboxylate-like" part would have if it were an actual carboxylate ion.

In this example, the "carboxylate-like" part contains three carbons, therefore its name would be propanoate if it were an actual carboxylate ion. The alkyl group (\mathbf{R}^{\prime}) is an ethyl group. The name of this ester is ethyl propanoate.

Many naturally-occurring esters contain alkyl groups composed of more than four carbons. In chapter 4, you learned the names of alkyl groups with four or fewer carbons (i.e. methyl, ethyl, propyl, butyl).
The table below lists the names and structures of nonbranched alkyl groups composed of 5-10 carbons.

Names and Structures of Some Alkyl Groups			
Number of Carbons	Alkyl Group Name	Condensed Structure	
5	pentyl	$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	
6	hexyl	$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	
7	heptyl	$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	
8	octyl	$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	
9	nonyl	$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	
10	decyl	$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	

Understanding Check

Write the name of each of the esters shown below:

Understanding Check
Draw the condensed structure of octyl butanoate.

4) Decarboxylation of Carboxylic Acids

Carboxylic acids undergo a decomposition reaction called \qquad .
This reaction is very important in the citric acid cycle and other biological processes.

- The carbon dioxide that we exhale is produced by decarboxylation reactions in two of the reactions of the citric acid cycle.

In decarboxylation reactions, a \qquad $\boldsymbol{g r o u p}(\mathrm{COOH})$ is \qquad and replaced by a

hydrogen atom.

The general form for the decarboxylation reaction is:

Decarboxylation reactions require heat and/or a catalyst.
The enzymes in biological systems that catalyze decarboxylation reactions are called decarboxylases.
Carboxylic acids with an \mathbf{R} group composed of an alkyl group only do not readily undergo decarboxylation reactions. However, when the alpha $(\boldsymbol{\alpha})$ or beta carbon $(\boldsymbol{\beta})$ of the \mathbf{R} group is double bonded to an oxygen, then decarboxylation reactions readily occur.

- Example: the decarboxylation of pyruvic acid (an important reaction in yeast):

Note that we have expanded our definition of the " R " group to be any organic group that is unchanged in a reaction. The carbonyl group at pyruvate's $\boldsymbol{\alpha}$-carbon is unchanged in this decarboxylation reaction.
Decarboxylation is not only an important reaction in yeast, it also take place in cellular respiration in other animals.

Understanding Check

The production of molecules called ketone bodies occurs in humans when large amounts of stored fat are used to produce energy. This can occur during dieting, starvation conditions, or other conditions in a process called ketosis. The production of ketone bodies is useful since cells in the brain cannot get energy from molecules other than sugars or ketone bodies. When acetoacetic acid (one of the three ketone body molecules) is produced in ketosis, it is subsequently converted to another ketone body molecule in a decarboxylation reaction.
Predict (draw) the products of this decarboxylation reaction of acetoacetic acid (shown below).

NOTE: The carbonyl $(\mathrm{C}=\mathrm{O})$ group at the β-carbon of acetoacetic acid is not affected by the reaction; it is considered to be part of the R group.

- The carboxyl group $(\mathbf{C O O H})$ is removed and replaced with a hydrogen.

Summary of the Reactions of Carboxylic Acids

1) Reaction of Carboxylic Acids with Water

When placed in water, a carboxylic acid molecule acts as an acid and water acts as a base. An H^{+}from the hydroxyl group (OH) of the carboxylic acid is donated to $\mathrm{H}_{2} \mathrm{O}$.

2) Neutralization: Reaction of a Carboxylic Acid and a Hydroxide Ion

In a neutralization reaction, a carboxylic acid will react with a hydroxide-containing base compound to produce $\mathbf{H}_{2} \mathrm{O}$ and a carboxylic acid salt.

3) Esterification: The Reaction of a Carboxylic Acid and an Alcohol

In an esterification reaction, a carboxylic acid reacts with an alcohol to produce an ester and water.
Replace this OH with this OR'

4) Decarboxylation of Carboxylic Acids

In decarboxylation reactions, a carboxyl group (COOH) is removed and replaced by a hydrogen atom.

Amines

The Structure of Amines

Amines contain a \qquad atom with one lone pair and three single bonds to \mathbf{R} groups or hydrogens.
Amines are classified as primary $\left(1^{\circ}\right)$, secondary $\left(2^{\circ}\right)$, or tertiary $\left(3^{\circ}\right)$ based on the number of \mathbf{R} groups that they contain.

The general forms of the three categories of amines are:

primary $\left(1^{\circ}\right)$ amine
$\mathrm{NH}_{2} \mathrm{R}$

secondary ($\left(2^{\circ}\right.$) amine
NHR_{2}

tertiary (3°) amine
NR_{3}

In \qquad $\left(\mathbf{1}^{\circ}\right)$ amines, a nitrogen is bonded to \qquad \mathbf{R} group and \qquad hydrogen atoms.

An example of a primary amine is methanamine. The structural formula and ball-and-stick model for methanamine are shown below (blue sphere $=$ nitrogen, black sphere $=$ carbon, and white sphere $=$ hydrogen).

methanamine
In \qquad $\left(\mathbf{2}^{\mathbf{0}}\right)$ amines, a nitrogen is bonded to \qquad \mathbf{R} groups and \qquad hydrogen atom.

secondary (2°) amine

NHR_{2}
One \mathbf{R} group is written as \mathbf{R}, and the other as \mathbf{R} ', to indicate that they are not necessarily the same alkyl group.
An example of a secondary amine is N-methylethanamine:

N-methylethanamine

In tertiary ($\mathbf{3}^{\circ}$) amines, a nitrogen is bonded to three \mathbf{R} groups.

tertiary $\left(3^{\circ}\right)$ amine

$$
\mathrm{NR}_{3}
$$

An example of a tertiary amine is N, N-dimethylmethanamine:

N, N-dimethylmethanamine
Understanding Check
Identify each of the amines shown below as either primary $\left(1^{\circ}\right)$, secondary $\left(2^{\circ}\right)$, or tertiary $\left(3^{\circ}\right)$.
a. $\xrightarrow[\substack{\mathrm{H} \\ \text { I } \\ \mathrm{CH}_{3} \mathrm{CHCH}_{3}}]{ }$
b. $\mathrm{CH}_{3} \mathrm{CHCH}_{2} \mathrm{CH}_{3}$
c. $\begin{gathered}\mathrm{CH}_{3}-\mathrm{N}-\mathrm{CH}_{3} \\ \mathrm{CH}_{3} \mathrm{CHCH}_{2} \mathrm{CH}_{3}\end{gathered}$
d.

e.

f.

Understanding Check

Draw the skeletal structure of each of the amines shown below:
a.

b.

C.

A quaternary ammonium ion is formed when an \qquad hydrogen or alkyl group (\mathbf{R}) is added to an amine.

The nitrogen in a quaternary ammonium ion does not have a lone pair and, therefore has a \qquad of $\mathbf{1 +}$.

An example of a quaternary ammonium ion is the tetramethylammonium ion, which occurs naturally in some animals.

tetramethylammonium ion

Some molecules contain more than one type of functional group.
For example, molecules called amino acids contain both an amino group (-NH2) and a carboxyl group (-COOH).

An example of an amino acid is alanine:

Amino acids are the precursors to proteins.

Naming Amines

The systematic method that we will use for naming amines is based on the hydrocarbon naming method.

Step 1. Find and name the parent chain.

The parent chain is the longest, continuous chain of carbon atoms that contains the point of to the nitrogen.

- Starting with the alkane name that corresponds to the number of carbon atoms in the parent chain, replace the "e" at the end of the alkane name with "amine."

Example: if the parent chain of an amine contains two carbons, it would be called ethanamine.
ethane \longrightarrow ethanamine
For amines with more than two carbons, the position of the point of attachment to the nitrogen must be indicated by adding a number before the parent chain name, as described below.

Assign position numbers to the carbons in the parent chain. Position number $\mathbf{1}$ is assigned to the carbon at the end of the parent chain that is nearest to the point of attachment to the \qquad .

If the nitrogen is bonded to carbon number $\mathbf{1}$ of the parent chain, then " $1-$ " is used as a prefix to the parent chain name.

- For example, in the molecule below, the parent chain is called 1-pentanamine.

If the nitrogen is bonded to carbon number 2 of the parent chain, then " $2-$ " is used as a prefix to the parent chain name.

- For example, in the molecule below, the parent chain is called 2-pentanamine.

This is analogous to the numbers that you used as prefixes for the parent chain names of alkenes to indicate the position of the double bond.

Step 2. Name any alkyl group substituents.

Alkyl group substituents that are attached to the parent chain are named in the same way as you did for alkanes.

For secondary and tertiary amines, the nonparent chain \mathbf{R} group(s) attached to the nitrogen are named as substituents.

- " N-" is written in front of the \mathbf{R} group substituent name, instead of a position number, in order to indicate that the \mathbf{R} group is attached to the \qquad .
- For example, the amine shown below has a methyl substituent attached to the parent chain and an ethyl substituent attached to the nitrogen.

Step 3. Construct the name of the amine by placing the alkyl groups in alphabetical order and specifying their position, followed by the name of the parent chain.

- This is done the same way as you did for hydrocarbons and carboxylic acids.
- Remember to use a dash between position numbers (or " N ") and letters.

The name of the amine shown below is: N-ethyl-2-methyl-3-heptanamine.

Other Examples:

Names and Structures of Primary ($\mathbf{1}^{\mathbf{0}}$) Amines

Names and Structures of Secondary ($\mathbf{2}^{\mathbf{0}}$) Amines

N -methyl-2-butanamine

N-ethyl-4-methyl-2-pentanamine

Names and Structures of Tertiary ($\mathbf{3}^{\mathbf{0}}$) Amines

N, N-dimethyl-2-butanamine

N -ethyl-N-methyl-1-butanamine

Common Names for Amines

Simple amines, those with a relatively few number of carbon atoms, are often identified by common names by placing "amine" after the names of the alkyl group(s) that are attached to the nitrogen.

Examples:

$\mathrm{CH}_{3} \mathbf{N H}_{2}$
methylamine
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$
ethylamine
$\mathrm{NH}\left(\mathrm{CH}_{3}\right)_{2}$
dimethylamine
$\mathbf{N}\left(\mathrm{CH}_{3}\right)_{3}$ trimethylamine

Understanding Check
Write the systematic names for each of the amines shown below:
a. $\quad \mathrm{CH}_{3} \mathrm{CH}_{2}$

b. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\underset{\sim}{\mathrm{N}}-\mathrm{CH}_{3}$
c. $\mathrm{H}-\mathrm{N}-\mathrm{CH}_{2} \mathrm{CH}_{3}$ CH_{3}
d. $\mathrm{CH}_{3} \mathrm{CHCHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$

e.

f.

Understanding Check
Draw the condensed and skeletal structure of each of the amines listed below.
2-methyl-3-hexanamine
N -methyl-2-propanamine
N, N-diethylethanamine

Heterocyclic Compounds

You have seen cyclic compounds such as cyclohexane and cyclopentane. The rings of the cyclic compounds that you have seen so far have contained only carbon atoms.
Cyclic compounds that contain atoms \qquad
\qquad carbon are known as heterocyclic compounds.
Examples of heterocyclic compounds are:

pyridine

pyrimidine

purine

Heterocyclic, nitrogen-containing rings are very common in plants and animals.

- Example: Nicotine is a naturally occurring, nitrogencontaining heterocyclic molecule from the tobacco plant.

nicotine

Adenosine triphosphate (ATP), used by nature in both plants and animals, is an important compound for energy storage.

ATP has nitrogen-containing heterocyclic rings and an oxygen-containing heterocyclic ring.

adenosine triphosphate (ATP)

DNA and RNA have both nitrogen-containing and oxygen-containing heterocyclic ring structures.
A structural formula for a small portion of DNA is shown here.

Properties of Amines

Many amines have the foul odor of decomposing fish.
Amines frequently occur in plants and animals.
\qquad amines can irritate skin, eyes, and mucous membrane and are toxic when ingested.
Many synthetic and naturally occurring amines are \qquad active.

- Examples of physiologically active amines:

Pseudoephedrine and phenylephrine cause vasoconstriction and are used as a nasal decongestant.
Epinephrine (also called adrenaline) is a naturally occurring hormone and neurotransmitter that is associated with the stimulation of the fight-or-flight response.
Amphetamine and methamphetamine are strong stimulators of the central nervous system.

- Amphetamine is used as a treatment for attention deficit hyperactivity disorder (ADHD), obesity, and narcolepsy.
- Methamphetamine has widespread use as an illegal "recreational" psychostimulant and was the focus of the popular TV drama "Breaking Bad." Methamphetamine is rarely prescribed as a therapeutic drug because of its many undesirable side effects.

The term " \qquad $"$ is used for physiologically active amines that occur in nature (i.e. bacteria, fungi, plants, and animals).

- Some examples of alkaloids are shown below.

caffeine

codeine

cocaine

morphine

Caffeine is a stimulant that is produced in high concentration by coffee plants and is also found in seeds, leaves, nuts, and berries of other plants. It serves as a natural insecticide.

Cocaine is a very strong, central nervous system stimulant that is produced in the leaves of the coca plant.
Codeine and morphine are the two most abundant psychoactive components of opium, the dried extract of opium poppy seeds. Codeine is used as a pain reliever and to treat coughs. Morphine is used to treat severe pain. It is highly addictive.

Heroin is produced from morphine by a chemical reaction that replaces the hydrogens of the hydroxyl (-OH) groups with acetyl groups $\left(\mathrm{CH}_{3} \mathrm{C}=\mathrm{O}\right.$, highlighted in blue).

Water Solubility of Amines

All amine molecules have the ability to interact with water through hydrogen bonding and dipole-dipole interactions.
Small amines have significant water solubility.
As the hydrocarbon parts of amines get larger, their water solubility decreases; as is the case for all organic molecules.

Boiling and Melting Points of Amines

Amines are polar and can interact with each other through dipole-dipole forces, therefore they have higher boiling and melting points than hydrocarbon molecules of similar size.
Tertiary amines do not have $\mathbf{N}-\mathbf{H}$ bonds, and are therefore \qquad of hydrogen bonding with each other.

Only the 1° and 2° Amines Exhibit Hydrogen
Bonding Between their Molecules.

For this reason, primary and secondary amines have higher boiling points than tertiary amines of similar size.

Chemical Reactions of Amines

1) Reactions of Amines with Water

An amine acts as a \qquad when it reacts with water to produce a quaternary ammonium ion and a hydroxide ion.

- The general form of the reaction of an amine with water is shown below.

The lone pair on the amine nitrogen forms a bond to the \mathbf{H}^{+}from water.
When amines are put into pure water, the pH is \qquad since hydroxide ions are produced in this reaction.

The amine and the quaternary ammonium ion are a \qquad pair.

- The amine is the base form and the quaternary ammonium ion is the acid form.
- When an amine/quaternary ammonium ion conjugate pair is in a mixture that contains other dissolved species, the relative amounts of the acid form and base form can be predicted by the Henderson-Hasselbalch Relationship.

A specific example of the reaction of an amine with water is the reaction of ethanamine with water:

2) Reaction of Amines with Acids

An amine will react with an acid to produce a quaternary ammonium compound in a \qquad

reaction.

- The general form of the equation for the reaction of an amine with an acid is shown below:

The lone pair on the amine nitrogen forms a bond to the \mathbf{H}^{+}from the acid.

Amines that are used as medications, both legal and illegal, are often administered as quaternary ammonium ions in order to increase their water-solubility.

- For example, pseudoephedrine hydrochloride, used in the decongestant sold as Allegra \boldsymbol{D} by Bayer Healthcare, and as Benadryl by Johnson and Johnson, can be prepared by the reaction of pseudoephedrine and HCl .

- Pseudoephedrine sulfate, used in Claritin D, can be prepared by the reaction of pseudoephedrine and sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$.

Understanding Check

Add the product for the following reaction:

Amides

The Structure of Amides

Amides contain both a carbonyl group $(\mathbf{C}=\mathbf{O})$, and a nitrogen (\mathbf{N}), with the nitrogen bonded to the carbonyl carbon. The general form of an amide is shown below.

A specific example of an amide is ethanamide. The condensed structural formula, skeletal formula, and a ball-and-stick model for ethanamide are shown below.

black sphere $=$ carbon, red sphere $=$ oxygen, blue sphere = nitrogen, and white sphere $=$ hydrogen

The amide bonding pattern occurs in nature in the structure of proteins.

Naming Amides

We will use the IUPAC system for naming amide molecules. The systematic method for naming amides is based on the hydrocarbon naming method.
Step 1: Find and name the parent chain.
The parent chain of an amide is the longest continuous chain of carbon atoms that includes the
\qquad carbon - just as we did with carboxylic acids.
Starting with the alkane name that corresponds to the number of carbon atoms in the parent chain, replace the "e" at the end of the alkane name with "amide."

- For example, if the parent chain of an amide contains three carbons, it is called propanamide.

$$
\text { propane } \rightleftharpoons \text { propanamide }
$$

Step 2: Name any alkyl group substituents.
Alkyl groups are named in the same way as was done for hydrocarbons.
Step 3: Determine the point of attachment of any alkyl groups.
Substituents are assigned positions based on their point of attachment to the parent chain or to the nitrogen. Begin numbering the parent chain at the carbonyl carbon.

- For example, the amide shown below has a "3-methyl" substituent.

Step 4: Construct the name of the amide by placing the alkyl groups in alphabetical order and specifying their positions, followed by the name of the parent chain.

- Use a dash between positions and letters.
- Add the labels di, tri, or tetra in front of the alkyl group name if two, three, or four (respectively) identical substituents are present.

Example: Name the amide shown below.

Step 1: Find and name the parent chain. hexanamide
Step 2: Name any alkyl group substituents. methyl
Step 3: Determine the point of attachment of any alkyl groups. 4-methyl
Step 4: Construct the name of the amide by placing the alkyl groups in alphabetical order and specifying their positions, followed by the name of the parent chain.

4-methylhexanamide

Understanding Check: Name the molecules that are shown below.

Understanding Check:

Draw the line bond, condensed, and the skeletal structural formula of pentanamide.

Formation of Amides: The Reaction of Carboxylic Acids with Amines
An amide is produced when a \qquad reacts with an \qquad or ammonia $\left(\mathrm{NH}_{3}\right)$. The general form of this reaction is shown below.

a carboxylic acid

$$
\begin{aligned}
& \text { an amine } \\
& \left(\text { (or } \mathrm{NH}_{3}\right. \text {) }
\end{aligned}
$$

an amide
water

An easy way to predict and draw the products of this reaction is to:

1) Draw the structures of the carboxylic acid and the amine (or ammonia) with the $(\mathbf{O H})$ from the carboxylic acid and an \mathbf{H} from the amine (or ammonia) adjacent to each other.
 combine the \mathbf{H} and $\mathbf{O H}$ to make $\mathbf{H}_{2} \mathbf{O}$.
2) Bond the nitrogen and its remaining groups to the carbonyl carbon of the carboxylic acid.

An amide can form when a carboxylic acid reacts with ammonia, with a primary, or with a secondary amine.

- Examples:

a) Formation of an amide by the reaction of a carboxylic acid and ammonia.

b) Formation of an amide by the reaction of a carboxylic acid and a 1° amine.

c) Formation of an amide by the reaction of a carboxylic acid and a 2° amine.

The " N, N-dimethyl" in " N, N-dimethylethanamide" indicates that there are two methyl substituents bonded to the nitrogen.

Amides are not formed from 3° amines because 3° amines do not have a
\qquad attached to the nitrogen.

tertiary $\left(3^{\circ}\right)$ amine
NR_{3}

Understanding Check:

Add the products for the following reaction and name the amide that is produced:

Naming Hint: There will be a substituent attached to the nitrogen (not the parent chain). You will use " N-" in the name to indicate that a substituent is bonded to the nitrogen.

Hydrolysis of Amides

The \qquad of the amide formation reaction is the hydrolysis of amides.
With heat and an acid catalyst, an amide can be hydrolyzed to produce a carboxylic acid and an amine (or ammonia).

A specific example of this reaction is the hydrolysis of N -methylpropanamide.

Beginning with the structure of any amide and water, an easy way to predict and draw the products of this reaction is to:

1) Break the bond between the carbonyl group and the nitrogen.

2) Bond the $\mathbf{O H}$ from water to the carbonyl carbon, and bond the \mathbf{H} from water to the nitrogen.

Understanding Check:

Add the products for the following amide hydrolysis reaction and name both of the products:

Enantiomers and Diastereomers

Stereoisomers are molecules that have the same molecular formula, have the same atomic connections, but have different three-dimensional arrangements of the atoms.

We have seen some examples of stereoisomers in the past (chapter 4) - geometric isomers.
When stereoisomers exist because of limited bond rotation, they are called geometric isomers.
You saw that geometric isomers could occur for certain cycloalkanes and alkenes.

- We designated the geometric isomers as either cis or trans.

Another type of stereoisomers occurs when \qquad groups are bonded to the \qquad atom.

- In these cases, there are two distinct, three-dimensional arrangements of the atoms.

For our purposes, we will be concerned with the pairs of stereoisomers that result whenever four different groups are bonded to the same carbon atom.

A carbon atom that carries four different groups is called a " \qquad .$"$

The two distinct, three-dimensional arrangements of the atoms around the chiral carbon are mirror images of each other.

When four different groups are arranged in the tetrahedral geometry (we called it AB_{4}), the mirror images are \qquad identical.

- Another way to describe nonidentical mirror images is with the term "nonsuperimposable mirror images."

Stereoisomers such as these, which are nonsuperimposable mirror images of each another, are called
\qquad .

An example of a pair of stereoisomers (an enantiomer pair) that results from the presence of a chiral carbon is shown below.

Recall that in wedge and dash illustrations of three-dimensional objects, solid wedges indicate bonds that would be coming out and above the page (toward the viewer). Dashed shapes indicate bonds that would be coming out and behind the page (away from the viewer). Regular lines (neither wedge nor dash) indicate bonds that would exist on the plane of the page.

The image shown here may help you to visualize and understand that the two molecules shown in the previous slide are not identical.
I have graphically depicted the failed attempt to superimpose the pair of enantiomers.

Pairs of enantiomers have very \qquad physical properties.

- For this reason, they are very difficult to separate (purify) from each other. For example, their boiling points are so similar that separation by distillation is not possible.

They do \qquad in a couple of important ways.

- Since enantiomers' arrangements of electrons are mirror images of each other, they interact with light in different ways. It is for this reason that enantiomers are sometimes called "optical isomers."
- Another important difference in enantiomers is the way they behave in biological systems.
- Since enantiomers do not have identical three-dimensional shapes, they do not behave identically when interacting with biomolecules such as enzymes or the receptors that are responsible for taste.
- Example: One of the enantiomers of asparagine (L-asparagine) has a sweet taste. The other enantiomer (D-asparagine) has a bitter taste.

Many enzymes are "stereospecific." This means that they will catalyze a reaction for only one particular enantiomeric reactant and/or will catalyze the formation of only one enantiomeric product.
For example, when the antibiotic that we call penicillin is made by enzymatic reactions by mold, only one of the enantiomers (penicillin) is produced.

Plants produce only one enantiomer of the glucose molecule (D-glucose). It is therefore understandable that all organisms - with only one known exception of particular bacterium - will only metabolize the D-glucose enantiomer.

Let's do an example problem in order to help you identify chiral carbons.
Example: The line bond structure of 2-bromo-3-chlorobutane is shown below. How many chiral carbons are in this molecule?

Solution: Consider each carbon individually. A carbon is chiral if it is bonded to four different groups.
Carbon number 1 is not chiral. It is bonded to four groups, however, the four groups are not all different from each other. I have highlighted the four groups that are bonded to carbon number $\mathbf{1}$ in the structure shown below. Three of the groups are hydrogens.

Carbon number 2 is chiral; it is bonded to four different groups

IMPORTANT: A mistake that chemistry students sometimes make is to consider only the four atoms to which a carbon is bonded. If you were to do that with this molecule, you might think that carbon number 2 is not chiral since it is bonded to two other carbons (carbon number $\mathbf{1}$ and $\mathbf{3}$). Be careful; you must consider the entire group of atoms to which a carbon is bonded in order to determine if that carbon is chiral. It is for this reason that I highlighted the entire groups that are bonded to carbon number $\mathbf{2}$ in the structure shown above.

Carbon number 3 is chiral; it is bonded to four different groups.

Carbon number 4 is not chiral. Three of the groups are the same - three hydrogens.

There are two chiral carbons in 2-bromo-3-chlorobutane - carbons number 2 and 3.

Diastereomers

When \qquad than one chiral carbon is present in a molecule, then more than one pair of enantiomers will exist.

The number of stereoisomers that can exist depends on the number of \qquad carbons.

If we let " n " represent the number of chiral carbons in a molecule, then the maximum number of stereoisomers is calculated as follows:

Maximum Number of Stereoisomers $=\mathbf{2}^{\text {n }}$

Example: In our previous example problem, we determined that 2-bromo-3-chlorobutane contained two chiral carbons.

Therefore the maximum number of stereoisomers that 2-bromo-3-chlorobutane has is:

$$
\text { Maximum Number of Stereoisomers }=2^{n}=2^{2}=4
$$

The four stereoisomers of 2-bromo-3chlorobutane, two pairs of mirror images, are shown on the right.

You learned about the relationship between nonsuperimposable mirror image molecules, called enantiomers.

Nonsuperimposable molecules that are not mirror images of each other, but are in the group of $\mathbf{2}^{\mathrm{n}}$ stereoisomers, are called

- The enantiomer relationships are indicated with blue arrows.
- The diastereomer relationships are indicated with yellow arrows.

It may be helpful for you to compare and contrast enantiomers and diastereomers by using a "family relationship" analogy of siblings (for enantiomers) and cousins (for diastereomers).
You will see more enantiomers, diastereomers, and geometric isomers in the biochemistry chapters of this course.

Understanding Check:

What is the maximum number of stereoisomers that can exist for each of the molecules shown below?

Naming the Organic Molecules of Chapter 9 Worksheet and Key

1) Write the names of the following organic molecules:

NOTE: If you are having a hard time with these, you may wish to try drawing them as line bond structures.

$\mathrm{CH}_{3} \mathrm{NH}_{2}$

\qquad
$\stackrel{\stackrel{\mathrm{O}}{\|}}{\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C}-\mathrm{O}^{-}}$

$\mathrm{H}-\mathrm{N}-\mathrm{CH}_{2} \mathrm{CH}_{3}$
$\mathrm{CH}_{3} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
2) Write the condensed formula for the following compounds

NOTE: If you are having a hard time with these, try drawing the Line Bond Structure, then convert it to a condensed structure.
a) 1-butanamine
b) pentanoic acid
c) N-ethylethanamine
d) pentanoate ion
e) methyl pentanoate
f) 5-methylhexanoic acid
g) N-methyl-2-propanamine

KEY

1) Write the names of the following organic molecules:

\qquad propanoic acid

$\mathrm{CH}_{3} \mathrm{NH}_{2}$

\qquad methanamine
$\mathrm{CH}_{3}-\mathrm{N}-\mathrm{H}$
$\mathrm{CH}_{2} \mathrm{CH}_{3}$.......................... N-methylethanamine

............................. propanoate ion

$\mathrm{H}-\mathrm{N}-\mathrm{CH}_{2} \mathrm{CH}_{3}$
$\mathrm{CH}_{3} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ \qquad N-ethyl-2-pentanamine
2) Write the condensed formula for the following compounds
a) 1-butanamine

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$

b) pentanoic acid
O
||
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}-\mathrm{OH}$
c) N-ethylethanamine

$\mathrm{HNCH}_{2} \mathrm{CH}_{3}$

$\mathrm{CH}_{2} \mathrm{CH}_{3}$
d) pentanoate ion

e) methyl pentanoate
O
||
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{C}-\mathrm{O}-\mathrm{CH}_{3}$
f) 5-methylhexanoic acid

g) N-methyl-2-propanamine

Summary of the Reactions of Chapter 9:

1) Reactions of Carboxylic Acids

a) Reaction of a Carboxylic acid and water.

- When placed in water, a carboxylic acid molecule acts as an acid and water acts as a base. An H^{+} from the hydroxyl group (OH) of the carboxylic acid is donated to $\mathrm{H}_{2} \mathrm{O}$.

b) Neutralization: Reaction of a Carboxylic Acid and a Hydroxide Ion
- In a neutralization reaction, a carboxylic acid will react with a hydroxide-containing base compound to produce $\mathbf{H}_{2} \mathrm{O}$ and a carboxylic acid salt.

c) Esterification: The Reaction of a Carboxylic Acid and an Alcohol
- In an esterification reaction, a carboxylic acid reacts with an alcohol to produce an ester and water.

d) Decarboxylation of Carboxylic Acids
- In decarboxylation reactions, carboxyl group (COOH) is removed and replaced by a hydrogen atom.

2) Chemical Reactions of Amines

a) Reactions of Amines with Water

- An amine acts as a base when it reacts with water to produce a quaternary ammonium ion and a hydroxide ion.

b) Reaction of Amines with Acids
- An amine will react with an acid to produce a quaternary ammonium compound in a neutralization reaction.

3) Formation of Amides: The Reaction of Carboxylic Acids with Amines

- An amide is produced when a carboxylic acid reacts with an amine or ammonia $\left(\mathrm{NH}_{3}\right)$.

4) Hydrolysis of Amides

- The reverse of the amide formation reaction is the hydrolysis of amides.
- With heat and an acid catalyst, an amide can be hydrolyzed to produce a carboxylic acid and an amine (or ammonia).

1) Write the chemical equation for the reaction of propanoic acid with 1-butanol (an alcohol). The formula of 1-butanol is $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$.
2) Write the chemical equation for the reaction of ethanoic acid with N-methylethanamine.
3) Write the chemical equation for a pentanoate ion acting as base when it reacts with hydrochloric acid (HCl).
4) Write the chemical equation for the decarboxylation of 2-methyl-propanoic acid.
5) Write the chemical equation for the reaction of propanoic acid with water.
6) Write the chemical equation for the reaction of N, N-diethyl-1-propanamine with water. (Hint: the amine is a base):
7) Complete the following reactions:
a)

b)

$$
\begin{gathered}
\mathrm{CH}_{3}-\mathrm{N}-\mathrm{H}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \rightleftarrows \\
{ }_{\mathrm{CH}}^{2} \mathrm{CH}
\end{gathered}
$$

c)

d)
 $=$
e) decarboxylation

g)

h)

i)

8) Fill in the missing reactant (s):
a)

$$
\rightleftarrows \quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \quad+\mathrm{CO}_{2} \quad \text { (decarboxylation reaction) }
$$

b)

c)
d)

e)

f)

h)

$$
\begin{aligned}
& +\quad \mathrm{HNCH}_{2} \mathrm{CH}_{3} \quad \rightleftarrows \quad \mathrm{CH}_{3} \mathrm{CH}_{2}-\stackrel{\mathrm{C}}{\mathrm{C}}-\mathrm{NCH}_{2} \mathrm{CH}_{3} \quad+\mathrm{H}_{2} \mathrm{O} \\
& \stackrel{\mid}{\mathrm{CH}_{2} \mathrm{CH}_{3}} \stackrel{\mid}{\mathrm{CH}_{2} \mathrm{CH}_{3}}
\end{aligned}
$$

Key

1) Write the chemical equation for the reaction of propanoic acid with 1-butanol (an alcohol). The formula of 1-butanol is $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$.

2) Write the chemical equation for the reaction of ethanoic acid with N-methylethanamine.

3) Write the chemical equation for a pentanoate ion acting as base when it reacts with hydrochloric acid (HCl).
$\stackrel{\mathrm{O}}{\|}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}-\mathrm{O}^{-}$
+HCl $\quad \rightleftarrows \quad \begin{gathered}\mathrm{O} \\ \| \\ \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}-\mathrm{OH}+\mathrm{Cl}^{-}\end{gathered}$
4) Write the chemical equation for the decarboxylation of 2-methyl-propanoic acid.

5) Write the chemical equation for the reaction of propanoic acid with water.

6) Write the chemical equation for the reaction of N, N-diethyl-1-propanamine with water. (Hint: the amine is a base):

7) Complete the following reactions:
a)

b)

c)

d)

e)

f)

h)

i)

8. Fill in the missing reactant(s):
a)

b)

c)

e)

f)

g)

h)

Chapter 10 Lecture Notes: Alcohols, Ethers, Aldehydes, and Ketones

Educational Goals

1. Given the structure of an alcohol, ether, thiol, sulfide, aldehyde, or ketone molecule, be able to give the systemic names and vice versa.
2. Know and understand the intermolecular forces that attract alcohol, ether, thiol, sulfide, disulfide, aldehyde, and ketone molecules to one another, and how these forces affect boiling points and melting points.
3. Identify alcohols as primary $\left(1^{\circ}\right)$, secondary $\left(2^{\circ}\right)$, or tertiary $\left(3^{\circ}\right)$.
4. Predict the products of the reactions in chapter 10 that involve alcohols, thiols, aldehydes, and/or ketones:

- oxidation of thiols to produce disulfides
- nucleophilic substitution reaction of alkyl halides and hydroxide
- hydration of alkenes
- dehydration of alcohols
- oxidation of alcohols
- oxidation of aldehydes
- reduction of aldehydes and ketones
- hemiacetal and acetal formation

5. Predict the major and minor products for the hydration of an alkene.
6. Predict the major and minor products for the dehydration of an alcohol.

Alcohols

The Structure of Alcohols

Alcohols contain one or more \qquad functional groups ($\mathbf{(- O H)}$ attached to a hydrocarbon (alkyl group) part. The general form of an alcohol is shown below.

A specific example of an alcohol is ethanol. Condensed structural formulas and a ball-and-stick model for ethanol are shown below.
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{OH}$ or $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$

black sphere $=$ carbon
red sphere = oxygen white sphere $=$ hydrogen

The skeletal structure of ethanol is shown below. I have added large dots to indicate the carbon atom positions.

Alcohols are classified as primary $\left(1^{\circ}\right)$, secondary $\left(2^{\circ}\right)$, or tertiary $\left(3^{\circ}\right)$ based on the number of \mathbf{R} groups attached to the carbon that is " \qquad " (bonded to) the hydroxyl group.

In primary ($\mathbf{1}^{\mathbf{0}}$) alcohols, the carbon that is "carrying" the hydroxyl group is bonded to one \mathbf{R} group. An example of a primary alcohol is 1-propanol.

1-propanol (a 1° alcohol)
In secondary $\left(\mathbf{2}^{\mathbf{0}}\right)$ alcohols, the carbon "carrying" the hydroxyl group is bonded to two \mathbf{R} groups. An example of a secondary alcohol is 2-butanol:

2-butanol (a 2° alcohol)
In tertiary ($\mathbf{3}^{\mathbf{0}}$) alcohols, the carbon "carrying" the hydroxyl group is bonded to three \mathbf{R} groups. An example of a tertiary alcohol is 2-methyl-2-propanol:

2-methyl-2-propanol (a 3° alcohol)

Understanding Check

Identify each of the alcohols shown below as either primary $\left(1^{\circ}\right)$, secondary $\left(2^{\circ}\right)$, or tertiary $\left(3^{\circ}\right)$.
a.

b.

c.

d.

e.

f.

Naming Alcohols

The systematic method for naming alcohols is based on the hydrocarbon naming method.

Step 1: Find and name the parent chain.

The parent chain is the longest, continuous chain of carbon atoms that contains the \qquad $\boldsymbol{o f}$
\qquad to the \qquad group (OH).

- Count the number of carbon atoms in the parent chain. Starting with the alkane name that corresponds to the number of carbon atoms in the parent chain, replace the " e " at the end of the alkane name with "ol."
- For example, if the parent chain of an alcohol contains two carbons, it would be called ethanol.

$$
\text { ethane } \rightleftharpoons \text { ethanol }
$$

- For alcohols with more than two carbons, the position of the point of attachment to the hydroxyl group must be indicated by adding a number before the parent chain.
- Assign position numbers to the carbons in the parent chain. Position number $\mathbf{1}$ is assigned to the carbon at the \qquad of the parent chain that is \qquad to the hydroxyl group.
- If the hydroxyl group is bonded to carbon number $\mathbf{1}$ of the parent chain, then " $\mathbf{1 -}$ " is used as a prefix to the parent chain name. For example, in the molecule below, the parent chain is called 1-pentanol.

- If the hydroxyl group is bonded to carbon number $\mathbf{2}$ of the parent chain, then "2-" is used as a prefix to the parent chain name. For example, in the molecule below, the parent chain is called 2-pentanol.

Steps 2, 3, and 4 are done the same way as you did when naming other organic molecules.

Step 2: Name any alkyl group substituents.

Step 3: Determine the point of attachments of alkyl groups to the parent chain.
Step 4: Construct the name of the alcohol by placing the alkyl groups in alphabetical order and specifying their position number, followed by the name of the parent chain.

Example: Name the molecule that is shown below.

Solution:

Step 1: Find and name the parent chain.

- The parent chain is the longest, continuous chain of carbon atoms that contains the point of attachment to the hydroxyl group (OH).

The hydroxyl group is bonded to carbon number 1 of the parent chain, so " $1-$ " is used as a prefix to the parent chain name. The parent chain is called 1-hexanol.

Step 2: Name any alkyl group substituents. methyl
Step 3: Determine the point of attachments of alkyl groups to the parent chain. 4-methyl
Step 4: Construct the name of the alcohol by placing the alkyl groups in alphabetical order and specifying their position number, followed by the name of the parent chain.

The name of the molecule is 4-methyl-1-hexanol.

Understanding Check Write the systematic name for each of alcohol molecules that are shown here.		
$\mathrm{CH}_{3}-\mathrm{OH}$		

Let's do a problem where we are given the name of an alcohol, and wish to draw its structural formula.
Example: Draw the line bond structure of 3-methyl-2-butanol.

Solution:

First draw the carbons of the parent chain. The parent chain is 2-butanol, therefore it contains four carbons.

$$
\mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{C}
$$

The "2-" prefix in 2-butanol indicates that the hydroxyl group is bonded to carbon number 2 of the parent chain. Since we are drawing a line bond structure, we must include the bonds to all atoms and all lone pairs. Remember to add the lone pairs to the oxygens on the hydroxyl group.

Next, add the carbon of the methyl substituent.

- Since we are drawing the structure of 3-methyl-2-butanol, the methyl group's carbon is attached to carbon number 3 of the parent chain.

To finish, add enough hydrogens to each carbon in order to satisfy the octet rule.

Understanding Check: We just drew the line bond structure of 3-methyl-2-butanol. Draw the condensed and the skeletal structural formula of 3-methyl-2-butanol.

Understanding Check: Draw the line bond structure of 4-methyl-3-heptanol.

Polyhydroxy Alcohols

Molecules with more than one hydroxyl group are called \qquad alcohols.

- An example of a polyhydroxy alcohol is glycerol (also known as glycerin).
- Glycerol is an important biomolecule because it is one of the precursors to triglycerides (fats and vegetable oils) and some of the compounds found in cell membranes (glycerophospholipids and glycerooglycolipids).
- The condensed structure and the ball-and-stick model of glycerol are shown below.

glycerol (a polyhydroxy alcohol)

Cyclic Alcohols

When the hydroxyl group of an alcohol is bound to a \qquad structure it is called a cyclic alcohol.

Cyclic alcohols can be secondary $\left(2^{\circ}\right)$ or tertiary $\left(3^{\circ}\right)$.
Cyclic alcohols are named in a manner similar to that for cycloalkanes.

- Starting with the cycloalkane name that corresponds to the number of carbon atoms in the ring structure, cyclic alcohols are named by replacing the " e " at the end of the cycloalkane name with "ol."
- The ring-carbon that is carrying the $\mathbf{O H}$ is always designated as position number $\mathbf{1}$. Note the names of the cyclic alcohols that are shown above.

cyclopentanol (2° alcohol)

cyclohexanol
(2° alcohol)

1-methylcylohexanol
(3° alcohol)

Understanding Check

Draw a skeletal structural formula for cyclopropanol and for cyclobutanol.

Properties of Alcohols

Water Solubility of Alcohols

Smaller alcohol molecules have significant water solubility because of their ability to interact with water through \qquad bonding and \qquad - \qquad interactions.

As their nonpolar (hydrocarbon) parts get larger, the water solubilities of alcohols decrease.

Melting and Boiling Points of Alcohols

Alcohol molecules have higher melting and boiling points than alkanes of similar size because of their ability to interact with each other through hydrogen bonding and dipole-dipole interactions.

As their nonpolar (hydrocarbon) parts get larger, the melting and boiling points of alcohols increase because of increasing \qquad forces.

Water Solubility and Melting Points of Some Alcohols

Molecule Name	Condensed Structure	Water Solubility $(\mathbf{g} / \mathbf{1 0 0} \mathbf{~ m L})$	Boiling Point $\left({ }^{\circ} \mathbf{C}\right)$
methanol	$\mathrm{CH}_{3} \mathrm{OH}$	miscible*	65.0
ethanol	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	miscible	78.5
1-propanol	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	miscible	97.4
1-butanol	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	8.0	117
1-pentanol	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	2.2	138

*miscible indicates that the substance will mix/dissolve at any alcohol to water ratio.

Alcohols have biological, industrial, and medical applications.
Alcohols are used as fuels, medications, recreational drugs, antiseptic agents, industrial solvents, antifreeze, detergents, and preservatives. Humans have consumed ethanol as a recreational drug since the Neolithic age (stone age).

Annual Per Capita Ethanol Consumption (liters) by Country

Annual per capita recorded ethanol consumption (liters) by country in 2004. Based on the data of WHO Global Status Report on Alcohol 2004 and Statistical Information System.

Ethanol, 1-propanol, and 2-propanol are used, with about $10-30 \%$ water, as antiseptic (surface antimicrobial) agents. One or more of these three alcohols serve as the active ingredients in many hand sanitizers, such as Purell.
Methanol is added to automotive windshield washer fluid, de-icers, and gasoline additive products as an antifreeze agent. Antifreeze agents lower the melting points of liquids.

Aqueous ethylene glycol ($50 \% \mathrm{v} / \mathrm{v}$), a polyhydroxy alcohol, is used as engine antifreeze. It is quite effective as an antifreeze because of its ability to disrupt water-
ethylene glycol water hydrogen bonding (because of its own ability to hydrogen bond with water). A trace of fluorescent color is added to antifreeze to facilitate in leak detection.

Methanol, ethanol, and some other small alcohol molecules are used as fuel. This includes use in internal combustion engine automobiles. Since alcohol can be produced by renewable resources and lowers pollutant emissions, many countries require the addition of alcohol to gasoline. In the United States, many states mandate that alcohol be added to gasoline.

Alcohols are used as preservatives for specimens in biological sciences, and as solvents for medical drugs, perfumes, and the preparation of plant extracts, such as vanilla.

Formation of Alcohols

1) Alcohol Fermentation

Louis Pasteur (1822-1895) French microbiologist and chemist.

Ethanol is produced in nature in a process called alcohol \qquad .

In the 1850 s and 1860 s, Louis Pasteur discovered that fermentation involved living organisms.
It was not until 1897 that Eduard Buchner found that ground fragments of dead yeast could produce ethanol and CO_{2}.

- As a result of Buchner's work, the term "enzyme" was applied to materials that

Eduard Buchner (1860-1917) German chemist and zymologist. enabled fermentation, and the understanding that fermentation was a result of enzymatic processes gained acceptance.

- Buchner's results are often regarded as the birth of biochemistry, and he was awarded the Nobel Prize in chemistry for this work in 1907.

Alcohol fermentation is a series of chemical reactions that convert sugar molecules, such as glucose, into ethanol and CO_{2}.

- The final step in this reaction series involves an enzyme which is only present in yeast and some bacteria.
The overall reaction of ethanol formation from a sugar molecule (glucose) is shown below.

2) Alcohol Formation in Nucleophilic Substitution Reactions

If you were a chemistry major, you would take a year-long organic chemistry class in which you would study the mechanisms of all of the reactions that we cover in this course.

A reaction mechanism is a description of the sequence of bond-breaking and bond-formation that occurs in a chemical reaction.

Since the intention of this course is to cover general, organic, and biochemistry in just one semester, we don't have the time - or need - to study the reaction mechanisms for all of the chemical reactions that I present. However, I do wish to introduce you to one very commonly observed reaction mechanism - the "nucleophilic substitution II" $\left(\mathrm{S}_{\mathrm{N}} 2\right)$ reaction mechanism.

In the nucleophilic substitution $\left(\mathrm{S}_{\mathrm{N}} 2\right)$ reaction for the formation of an alcohol, a hydroxide ion reacts with an \qquad molecule.

- An alkyl halide is a hydrocarbon that had one of its hydrogens replaced with a halogen (group VII element: $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$, or I).

X represents
$\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$, or I

- Specific examples of nucleophilic substitution reactions for the formation of alcohols are shown below.

The negative charge of the hydroxide ion is quite attracted to the partial positive charge of the carbon that is bonded to the halogen atom.

The reaction mechanism is called nucleophilic substitution because the nucleophile $\left(\mathbf{O H}^{-}\right)$is attracted to the nucleus of the partially positive carbon, and then substitutes for (replaces) the halogen (X).

The $\mathrm{S}_{\mathrm{N}} 2$ chemical reaction involves making one new bond and breaking one old bond. First, a lone pair from the hydroxide nucleophile forms a bond to the carbon that is carrying the halogen.

The species which is formed by the newly-made bond is called a \qquad . The transition state is a high-energy molecule because there are ten electrons (five single bonds) around a carbon atom instead of the lower-energy octet.

The transition state has a high energy, which means that it is \qquad . The weakest of the five bonds (the bond to the halogen) will quickly break. When this bond breaks, the halogen takes with it the two electrons that were in its bond to the carbon, and an alcohol is produced.

Let's consider the energy reaction diagram for this $\mathrm{S}_{\mathrm{N}} 2$ reaction:

$S_{N} 2$ Reaction Energy Diagram

Understanding Check: Predict the products of the following nucleophilic substitution reaction.

$$
\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{Br}+\mathrm{OH}^{-} \rightleftarrows
$$

3) Hydration of Alkenes

In chapter 6, you learned that an \qquad can react with water to produce an alcohol.

- A hydrogen from $\mathbf{H}_{\mathbf{2}} \mathbf{O}$ is added to one of the double-bonded carbon atoms and $\mathbf{O H}$ from the $\mathbf{H}_{2} \mathbf{O}$ is added to the other double-bonded carbon atom in the alkene, to produce the corresponding alcohol.

General Form of the Chemical Equation for the Hydration of an Alkene:

Alkene produced when you add $\mathbf{H}_{\mathbf{2}} \mathbf{O}$ "across a double bond."
Step 1: Draw the $\mathbf{H}_{\mathbf{2}} \mathbf{O}$ to be added across the double bond and the alkene as shown below.

$$
\mathrm{H}-\mathrm{OH}
$$

Step \#1:
Draw the $\mathrm{H}-\mathrm{OH}$ directly above the double bond.

Alcohol
In chapter 6 , I showed you a bond flipping method to help you predict the structure of the alcohol that is

Steps 2 and 3: Flip the bonds, as shown below, to get the alcohol product of the reaction.

In chapter 6, we always began with symmetric alkenes when doing hydration reactions.
An alkene is \qquad when a line drawn perpendicular to, and through, the middle of the double bond of its structural formula results in \qquad parts on each side of the line.

ethene (a symmetric alkene)

Another example of a symmetric alkene is 2-butene.
Note that parts of the molecule on each side of the dashed line bisecting the carbon-carbon double bond are identical.

2-butene (a symmetric alkene)
When a symmetric alkene undergoes a hydration reaction, there is only \qquad possible product.

Example: The hydration of 2-butene. $\quad \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}+\mathrm{H}_{2} \mathrm{O}$

The \qquad alcohol molecule is produced regardless of which of 2-butene's double-bonded carbons gets the added $\mathbf{O H}$ group.

The reason that the addition of the $\mathbf{O H}$ to either double-bonded carbon results in the same alcohol (2butanol) is that the 2-butene is symmetric.

An example of an \qquad alkene is propene.

Note that the dashed line bisecting the carbon-carbon double bond results in \qquad identical parts on each side of the line.

When an asymmetric alkene undergoes a hydration reaction, there are \qquad different alcohol molecules produced.

Example: The hydration of propene.

The addition of the $\mathbf{O H}$ group to propene's right-most double-bonded carbon produces 2-propanol.
The addition of the $\mathbf{O H}$ group to the left-most double-bonded carbon produces 1-propanol.

The hydration of an asymmetric alkene does \qquad produce an \qquad amount of each alcohol product.

- For example, in the hydration of propene, there is more 2-propanol than 1-propanol produced.

The product made in greater quantity is called the " \qquad product."

The product made in lesser quantity is called the " \qquad product."

It is possible to predict the major and minor products for the hydration of an asymmetric alkene using Markovnikov's Rule.

- This rule says that, the major product is formed by adding the \mathbf{H} - from water - to the alkene's double-bonded carbon that originally carried the most hydrogens, and adding the $\mathbf{O H}$ to the other double-bonded carbon.
- An easy way to remember this rule is by using the old saying, "the rich get richer," where the H's represent money.

The minor product is formed by adding the \mathbf{H} and $\mathbf{O H}$ in a manner opposite to that described for the major product.

Understanding Check

Draw and name the major and minor products for the hydration of 2-methyl-2-butene.

Compounds that are Related to Alcohols

Water and alcohols are said to be "structurally \qquad " because of their bonding patterns. If one of the hydrogens from water is replaced by an alkyl group (\mathbf{R}), then an alcohol is obtained.

water

alcohol

Ethers and alcohols are structurally related compounds. If the hydrogen from an alcohol is replaced by an alkyl group (\mathbf{R}^{\prime}), then an \qquad is obtained.

Peroxides are structurally related to water, ethers, and alcohols. If a \qquad oxygen is added to water, ethers, or alcohols, as in the arrangement shown below, then a \qquad is obtained.

Ethers

The Structure of Ethers

Ethers contain an \qquad atom that is attached to \qquad alkyl (R) groups.

A specific example of an ether is diethyl ether.

- Diethyl ether was introduced as a surgical anesthetic in the 1840s. It is rarely used as an anesthetic currently because of the availability of more desirable substances.

Both of the alkyl (\mathbf{R}) groups in diethyl ether are ethyl groups $\left(-\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.

condensed structures of diethyl ether

skeletal structure of diethyl ether

ball-and-stick model of diethyl ether
black sphere = carbon red sphere = oxygen white sphere = hydrogen

Cyclic Ethers

A cyclic compound that has an oxygen atom in one of the ring positions is called a \qquad ether.
Cyclic ethers are heterocyclic compounds because their rings contain more than one type of element.

- Examples of cyclic ethers:

tetrahydrofuran (THF)

dioxane

Naming Ethers

We will use what is referred to as the " \qquad names" for ethers.

- This trivial method for naming ethers is not based on the IUPAC hydrocarbon naming method.

Step 1. Identify the alkyl group names for the two alkyl (R) groups.

- If the two \mathbf{R} groups are identical use the "di" prefix before alkyl group name.

Step 2. Construct the name of the ether by placing the alkyl groups in alphabetical order followed by the word "ether."

- Use a space between the alkyl group names and before the word "ether."

Examples:

$\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{3}$
ethyl methyl ether

$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{3}$
diethyl ether

$$
\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}
$$

Water Solubility of Ethers

Smaller ethers have significant water solubility because of their ability to interact with water through hydrogen bonding and dipole-dipole interactions.
As their nonpolar (hydrocarbon) parts get larger, the water solubilities of ethers decrease.

Melting and Boiling Points of Ethers

Ethers have higher melting and boiling points than hydrocarbons of similar size because they can interact with each other through dipole-dipole interactions - they are polar molecules.
As their nonpolar (hydrocarbon) parts get larger, the melting and boiling points of ethers increase because of increasing London forces.
Ethers are unable to hydrogen bond with each other, and therefore, they have lower melting and boiling points than alcohols and carboxylic acids of similar size.

Ethers in Nature and Industry

Ethers have natural, industrial, and biochemical applications.
Dimethyl ether and ethyl methyl ether are used as aerosol spray propellants.
Dimethyl ether is used as an industrial solvent and in the perfume industry for the extraction of fragrant compounds from their natural sources.
Ethylene oxide, a cyclic ether, is used in the medical industry and hospitals as a disinfectant or sterilization agent for heat sensitive equipment.

- For example, disposable plastic syringes are sterilized using pure ethylene oxide.

Peroxides

Peroxides contain two oxygen atoms that are single-bonded to each other and situated between hydrogens, alkyl groups, or any other organic groups.

Peroxides are quite reactive because of the two oxygen atoms that are single-bonded to each other. A much more stable configuration (lower energy) results when the oxygen-oxygen single bond breaks, and the oxygen atoms acquire more electrons by oxidizing another molecule. It is for this reason that peroxides are very effective oxidizing agents, and are frequently used as disinfectants and bleaching agents.

A specific example of a peroxide is hydrogen peroxide.

Hydrogen peroxide is important in human and animal metabolism. An extremely toxic byproduct of the production of ATP in the mitochondria is the superoxide ion $\left(\mathrm{O}_{2}^{-}\right)$ion. This is not the monoatomic oxide ion $\left(\mathrm{O}^{2-}\right)$; it is an unstable diatomic ion with a 1^{-}charge. The superoxide ion is extremely toxic to cells because it can react with and damage (oxidize) DNA, proteins, and membrane component compounds. Almost all organisms have evolved enzymes called superoxide dismutases (SOD) to quickly remove superoxide ions. These enzymes are antioxidant agents. SOD enzymes catalyze the reaction of superoxide ions and water to produce hydrogen peroxide, oxygen, and hydroxide ions.

$$
2 \mathrm{O}_{2}^{-}+2 \mathrm{H}_{2} \mathrm{O} \xrightarrow{\text { SOD }} \mathbf{H}_{2} \mathrm{O}_{2}+\mathrm{O}_{2}+2 \mathrm{OH}^{-}
$$

Though not quite as strong an oxidizer as superoxide, hydrogen peroxide is also an oxidizing agent, and is therefore quite toxic to cells. However, the hydrogen peroxide produced from superoxide is quickly converted to oxygen and water by an enzyme called catalase.

$$
2 \mathrm{H}_{2} \mathrm{O}_{2} \xrightarrow{\text { catalase }} 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}
$$

Sulfur Analogs

When the oxygen atom(s) of water, alcohol, ether, or peroxide is replaced by \qquad , the resulting compound is called a sulfur analog.

- For example, the sulfur analog of water, dihydrogen sulfide, is obtained if the oxygen in a water molecule is replaced by sulfur.

Dihydrogen sulfide $\left(\mathrm{H}_{2} \mathrm{~S}\right)$ is often called hydrogen sulfide. Although $\mathrm{H}_{2} \mathrm{~S}$ is heavier than $\mathrm{H}_{2} \mathrm{O}$, it is a gas at room temperature. The reason for this difference is that, unlike water, $\mathrm{H}_{2} \mathrm{~S}$ molecules are unable to hydrogen bond with each other. $\mathrm{H}_{2} \mathrm{~S}$ has the foul odor of rotten eggs. It is toxic and very reactive (explosive, flammable, and corrosive). $\mathrm{H}_{2} \mathrm{~S}$ occurs in nature when bacteria metabolize organic matter in the absence of oxygen. This often happens in sewers and swamps. It is also found in natural gas, some water wells, and volcanic gases. It is found in very low concentration in humans, where it acts as a chemical signaling molecule.

Thiols

The sulfur analog of an alcohol is obtained if the oxygen in an alcohol is replaced by sulfur.
The resulting molecule is called a \qquad .

alcohol

thiol

Thiols are often referred to as mercaptans. Many thiols have the aroma of garlic. Thiol aromas can be pungent and annoying. There are several thiols in the spray of skunks.

black sphere = carbon
yellow sphere = sulfur white sphere = hydrogen

2-methyl-2-propanethiol

2-methyl-2-propanethiol is added, in very small amounts, to natural gas as an odorant in order to help detect gas leaks or mistakenly-opened valves.

The -SH functional group, which defines the thiol family of organic compounds, is referred to as a thiol group or a sulfhydryl group.

Naming Thiols

Thiols are systematically named in the same way as alcohols with only one exception:

- The term "thiol" is added to the end the alkane name that indicates the number of carbons in the parent chain (instead of replacing the "e" from the alkane name with "ol," as we did for alcohols).
- Examples:

ethanethiol

3-methyl-1-butanethiol

As was the case for alcohols, the point of attachment of the thiol group (-SH) must be indicated for thiols with more than two carbons in their parent chain. The point of attachment to the thiol group is indicated by writing the position number in front of the parent chain name.

Understanding Check: Name the molecule that is shown here.
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SH}$

Sulfides

The sulfur analog of an ether is obtained if the oxygen in an ether molecule is replaced by sulfur.
The resulting molecule is called a \qquad . Sulfides are also referred to as thioethers.

A specific example of a sulfide is dimethyl sulfide (DMS).

$$
\mathrm{CH}_{3}-\mathrm{S}-\mathrm{CH}_{3}
$$

dimethyl sulfide (DMS)
DMS is found in the atmosphere in greater concentration than any other organic sulfur-containing compound because it is produced by phytoplankton. It is also produced by bacteria in sewers. DMS has a characteristic cabbage-like odor. It is produced from cooking certain vegetables - corn, cabbage, beetroot - and seafood.

Naming Sulfides

We will use common names for sulfides, as we did for ethers.
Step 1. Identify the alkyl group names for each of the \mathbf{R} groups.

- If the two \mathbf{R} groups are identical use the "di" prefix before the alkyl group name.

Step 2. Name the sulfide by placing the alkyl groups in alphabetical order followed by the word "sulfide."

- Use a space between the alkyl group names and before the word "sulfide."

Examples:

$\mathrm{CH}_{3}-\mathrm{S}-\mathrm{CH}_{3}$	$\mathrm{CH}_{3}-\mathrm{S}-\mathrm{CH}_{2} \mathrm{CH}_{3}$	$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{S}-\mathrm{CH}_{2} \mathrm{CH}_{3}$
dimethyl sulfide	ethyl methyl sulfide	diethyl sulfide

Understanding Check: Name the molecule that is shown here.

$$
\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{S}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}
$$

Disulfides

The sulfur analog of a peroxide is obtained if the two oxygens in a peroxide molecule are replaced by two sulfurs.

The resulting molecule is called a \qquad .

The S-S bond is called a disulfide bond.
Disulfides can be made from the reaction of two thiols. In this reaction, the thiols are oxidized to form a disulfide.

You can recognize that the thiol reactants were \qquad because they \qquad hydrogen in the reaction.

Cysteine is one of the twenty common amino acid molecules that make up proteins. Cysteine, shown on the right, contains a thiol group that is capable of forming disulfide bonds with other cysteine-thiols.

cysteine

Two thiol (SH) groups on the same protein molecule or two thiol groups on two different protein molecules can react to form disulfide bonds. The disulfide bonds in protein play an important role in how many proteins maintain their shape, which is critical in their biological function. This concept is illustrated (on the right) in a large protein molecule represented as a thick orange ribbon - that is held into a particular shape with the help of some disulfide bonds. You will learn more details of protein structure and function in chapter 15.

Understanding Check

Draw the condensed structure of the disulfide that is formed by the reaction of two methanethiol molecules.

Aldehydes and Ketones

The Structure of Aldehydes and Ketones

The general forms of aldehydes and ketones are shown below.

In aldehydes, the carbonyl carbon is bonded to \qquad R group and \qquad hydrogen (H).

- Exception: the simplest aldehyde, formaldehyde, which has the carbonyl carbon bonded to two hydrogens.

In ketones, the carbonyl carbon is bonded to \qquad R groups.

An example of an aldehyde and a ketone:

propanone
(a ketone)
Sometimes a shorthand notation "CHO" is used for the carbonyl group and the hydrogen that is bonded to the carbonyl carbon when drawing aldehydes, as shown below.

two equivalent ways to draw an aldehyde

Any molecule that contains a carbonyl group ($\mathbf{C = O}$) is called a \qquad .
So far, you have been introduced to several carbonyl compounds: aldehydes, ketones, carboxylic acids, esters, and amides.

As a review, and for comparison, the general form for each of these families is shown below.

carboxylic acid

ester

amide

Understanding Check: Classify each of the following molecules as either an aldehyde or a ketone.
a.

b.

c.

Naming Aldehydes and Ketones

Common Names for Aldehydes and Ketones

Small aldehydes and ketones, those with a relatively few number of carbon atoms, are often identified by common names.

- Examples of common names used for aldehydes:

formaldehyde

acetaldehyde

benzaldehyde

Sometimes, common names for ketones list the names of the alkyl groups bonded to the carbonyl group followed by the word ketone.

- Examples:

dimethyl ketone (or acetone)

ethyl methyl ketone

Systematic Names for Aldehydes and Ketones

The systematic method for naming aldehydes and ketones is based on the hydrocarbon naming method.

Step 1: Find and name the parent chain.

The parent chain is the longest, continuous chain of carbon atoms that contains the \qquad carbon.

- For aldehydes, starting with the alkane name that corresponds to the number of carbon atoms in the parent chain, replace the " e " at the end of the alkane name with "al." For example, if the parent chain of an aldehyde contains two carbons, it would be called ethanal.

$$
\text { ethane } \longrightarrow \text { ethanal }
$$

- For aldehydes, the carbonyl carbon will always be at the \qquad of the parent chain and is assigned position number 1.
- For ketones, starting with the alkane name that corresponds to the number of carbon atoms in the parent chain, replace the " e " at the end of the alkane name with "one." For example, if the parent chain of a ketone contains three carbons, it would be called propanone.

$$
\text { propane } \longrightarrow \text { propanone }
$$

- For ketones with more than four carbons, the position of the carbonyl carbon must be indicated by adding a number as a prefix to the parent chain name.
- Position number $\mathbf{1}$ is assigned to the carbon at the end of the parent chain that is
\qquad to the carbonyl carbon.
- For example, if the carbonyl carbon is in position number 2 of a parent chain that contains five carbon atoms, then the parent chain is called 2-pentanone.

Steps 2, 3, and 4 are done the same way as you did when systematically naming other organic molecules.
Step 2: Name any alkyl group substituents.
Step 3: Determine the point of attachments of alkyl groups to the parent chain.
Step 4: Construct the name of the molecule by placing the alkyl groups in alphabetical order and specifying their position number, followed by the name of the parent chain.

Aldehyde Systematic Name Examples:

methanal

ethanal

2-methylpropanal

Ketone Systematic Name Examples:

propanone

2-pentanone

2-methyl-3-pentanone

Understanding Check: Write the systematic names for each of the molecules shown here.
a.

b.

c.

Understanding Check: Draw the condensed and skeletal structure for each of these molecules.
a. 4-methyl-2-pentanone
b. 5,5-dimethylhexanal
c. 3-ethyl-4-octanone

Cyclic Ketones

A cyclic ketone is a molecule in which a carbonyl carbon occupies a position between two other carbons in a ring structure.

- Examples:

cyclopentanone

cyclohexanone

Cyclic ketones are named in a manner similar to that for cyclic alcohols.

- Starting with the cycloalkane name that corresponds to the number of carbon atoms in the ring structure chain, replace the "e" at the end of the cycloalkane name with "one."

Frequently Encountered Aldehydes and Ketones

methanal (or formaldehyde)
Methanal, (common name formaldehyde) is quite toxic; however, it is frequently used because of its ability to kill viruses, fungi, and bacteria. It is used to disinfect and sterilize equipment. Formaldehyde will react with other compounds, and chemically bond multiple molecules together into "polymers." Polymers are molecules composed of multiple repeated subunits. The polymers that are formed using formaldehyde as linking agents are used to make plastics and adhesives, and for binding plywood. Formaldehyde-linked polymers may "out-gas" formaldehyde in the curing process, therefore it is important to use safety precautions when handling these materials. In 2011, the US National Toxicology Program categorized formaldehyde as "known to be a human carcinogen".

ethanal (or acetaldehyde)
Ethanal (common name acetaldehyde) has a sweet aroma. It is narcotic if taken in large enough amounts. It occurs in smaller quantities, naturally, in coffee, bread, and ripe fruit, especially in apples. Its use is widespread in industry, notably in the formation of polymer adhesives such as carpenter's glue (also known as white glue or Elmer's glue). I will discuss acetaldehyde's biological significance later in this chapter.

propanone (or acetone)
Propanone (common name acetone) is often used as a solvent and cleaning agent. It has the ability to dissolve many organic compounds and is also miscible with water. It is used as household nail-polish remover. Acetone has a high vapor pressure, and is highly flammable. It is not significantly toxic and is not currently regarded as a carcinogen, a mutagenic chemical, or a concern for chronic neurotoxicity issues.

Properties of Aldehydes and Ketones

Water Solubility and Boiling Points of Some Aldehydes and Ketones

Aldehyde Name	Condensed Structure	Water Solubility $(\mathbf{g} / \mathbf{1 0 0} \mathbf{~ m L})$	Boiling Point $\left({ }^{\circ} \mathrm{C}\right)$
ethanal	$\mathrm{CH}_{3} \mathrm{CHO}$	miscible	21
propanal	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$	16	49
butanal	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$	7	76
pentanal	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$	1	103

Ketone Name	Condensed Structure	Water Solubility $(\mathbf{g} / 100 \mathrm{~mL})$	Boiling Point $\left({ }^{\circ} \mathrm{C}\right)$
propanone	$\mathrm{CH}_{3} \mathrm{COCH}_{3}$	miscible	56
2-butanone	$\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{3}$	26	80
2-pentanone	$\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	6	102

Water Solubility of Aldehydes and Ketones

Smaller aldehyde and ketone molecules have significant water solubility because of their ability to interact with water through hydrogen bonding and dipole-dipole interactions.
As their nonpolar parts get larger, the solubilities of aldehydes and ketones decrease.

Boiling Points of Aldehydes and Ketones

As their nonpolar parts get larger, the boiling points of aldehydes and ketones increase because of increasing London forces.

Aldehydes and ketones have higher boiling points than hydrocarbons of similar size because of their ability to interact with each other through dipole-dipole interactions.
Aldehydes and ketones have lower boiling points than alcohols or carboxylic acids of similar size because aldehydes and ketones are not capable of interacting with each other through hydrogen bonding.

- Although aldehydes and ketones do have lone pairs of electrons on their oxygen atoms, they do not contain a hydrogen bonded to an N, O, or F that would be needed for hydrogen bonding with each other.

Reactions Involving Alcohols, Aldehydes, and Ketones

Reactions of Alcohols

1. The Dehydration of Alcohols

I introduced you to the dehydration of alcohols reaction in chapter 6. Dehydration of alcohols is the reverse of the hydration of alkenes. $\mathbf{H}_{2} \mathrm{O}$ is \qquad from an alcohol to form an alkene.

- In the dehydration of an alcohol, a hydroxyl group $(\mathbf{O H})$ is removed from one carbon, and an \mathbf{H} is removed from another carbon that is \qquad to the carbon from which the hydroxyl group was removed. A \qquad bond forms between these two carbons.
- This reaction is catalyzed by a strong acid $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$or an enzyme.

The general form of the equation for the dehydration of an alcohol reaction.

alcohol
alkene
In chapter 6, I showed you a bond flipping method to help you predict the structure of the alkene that is produced when you "remove $\mathbf{H}_{\mathbf{2}} \mathbf{O}$ " to form a double bond." Let's review that method now by removing $\mathbf{H}_{2} \mathrm{O}$ from 1-propanol (dehydration of 1-propanol). Beginning with the structure of the alcohol, perform the following steps:

Step \#1: Flip the bond between the C and OH up to an H on an adjacent carbon.

Step \#2: Flip the C-H bond from the adjacent carbon down to make a double bond to the C that originally carried the OH

Alkene and $\mathrm{H}_{2} \mathrm{O}$
Products

For the dehydration of a primary $\left(\mathbf{1}^{\circ}\right)$ alcohol there is only one carbon that is adjacent to the carbon carrying the $\mathbf{O H}$, therefore there is only \qquad possible alkene product.

The dehydration of a \qquad secondary $\left(\mathbf{2}^{\mathbf{0}}\right)$ or a symmetric tertiary $\left(\mathbf{3}^{\circ}\right)$ alcohol only produces a single alkene product.

- A 2^{0} or 3^{0} alcohol is symmetric if the alkyl groups bonded to the carbon carrying the $\mathbf{O H}$ are identical.
- For example, 2-propanol, shown below, is symmetric. Note that the alkyl groups bonded to the carbon carrying the $\mathbf{O H}$ are identical; they are both methyl groups.

2-propanol
a symmetric secondary ($\mathbf{2}^{\circ}$) alcohol

When a symmetric alcohol is dehydrated, it makes no difference from which adjacent carbon a hydrogen is removed to form the double bond; the alkene product is the same.

2-propanol

 2^{o} or 3^{0} alcohol undergoes a dehydration reaction, there are \qquad
When an \qquad 2^{o} or 3^{o}
oduced.

different alkene molecules produced.

- 2° and 3^{0} alcohols are asymmetric when the alkyl groups bonded to the carbon carrying the OH are \qquad identical.
- An example of an asymmetric alcohol is 2-butanol, shown here.

2-butanol (an asymmetric alcohol)

- Note that the alkyl groups that are bonded to the carbon carrying the $\mathbf{O H}$, are not identical; one is a methyl group and the other is an ethyl group.

Let's have a look at the two different alkenes that are produced when 2-butanol undergoes a dehydration reaction.

CASE 1: remove an \mathbf{H} from the adjacent carbon on the left-hand side of the carbon carrying the $\mathbf{O H}$.

2-butanol

2-butene and $\mathrm{H}_{2} \mathrm{O}$
$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}$

CASE 2: remove an H from the adjacent carbon on the right-hand side of the carbon carrying the $\mathbf{O H}$.

2-butanol

You have previously learned that the hydration of an asymmetric alkene does not produce equal amounts of both alcohol products. A similar situation occurs for the dehydration of alcohols.

For example, in the dehydration of 2-butanol, about four times as much 2-butene (major product) as 1butene (minor product) is produced.
It is possible to predict the major and minor products for the dehydration of an alcohol; in the major product, the double bond is formed between the carbon that was carrying the $\mathbf{O H}$ and the adjacent carbon that originally carried fewer hydrogens.

The minor product is formed between the carbon that was carrying the $\mathbf{O H}$ and the adjacent carbon that originally carried more hydrogens.

In the formation of the \qquad alkene product, the adjacent carbon that originally contained \qquad hydrogens will \qquad another hydrogen when the double bond is formed.

- An easy way to remember the alcohol dehydration rule for the major product is with the old saying, "the poor get poorer," where hydrogen atoms (H) represent money.

Understanding Check

Draw and name the major and minor products for the dehydration of 3-ethyl-4-octanol.

Major Product	Minor Product

2) The Oxidation of Alcohols

An oxidation can only occur when it is accompanied by a reduction.

- The reactant that is oxidized loses one or more electrons and the reactant that is reduced gains those electrons.

You learned that the oxidation of an organic compound in a reaction can be identified by the addition of oxygen and/or loss of hydrogen.

For the reduction of an organic compound, the opposite occurs; the addition of hydrogen and/or loss of oxygen.

When an alcohol is oxidized, the hydrogen from the hydroxyl group $(\mathbf{O H})$ and a hydrogen (\mathbf{H}) attached to the carbon that is carrying the hydroxyl group are both removed, and the C-O single bond is changed to a \qquad bond.

General form of the equation for the oxidation of an alcohol:

The reason that this reaction is classified as an oxidation (loss of electrons) is that the hydrogen that is bonded to the hydroxyl-carrying carbon, leaves the alcohol and takes \qquad of the electrons from the bond with it.
A hydrogen with two electrons is called a \qquad ion ($\mathrm{H}:{ }^{-}$).

The " $[\mathbf{O}]$," drawn above (or below) the arrows in a chemical equation, is often used to indicate that the reactant is being oxidized, and should not be confused with the presence of a catalyst.

When oxidation is indicated by using "[O]," then the identity of the oxidizing agent - which is actually a reactant - and the destination of the hydrogens are often omitted from the chemical equation.

- When doing so, it is acceptable - and expected - that the equation is not balanced.

The structure of the alcohol determines the identity of its oxidation product.
a) Oxidation of Primary ($\mathbf{1}^{\mathbf{0}}$) Alcohols

Oxidation of a primary $\left(1^{\circ}\right)$ alcohol produces an \qquad .

an aldehyde
a primary (1°) alcohol

The oxidation of a primary alcohol produces an aldehyde because the hydroxyl group of a primary alcohol is attached to a carbon at an end of the parent chain, and therefore the carbonyl group in the product is at the end of the chain.
A specific example of the oxidation of a primary alcohol is the oxidation of ethanol:

The \mathbf{H}^{+}that is produced will quickly react with water to form a hydronium ion $\left(\mathbf{H}_{3} \mathbf{O}^{+}\right)$. The evolution of the alcohol dehydrogenase enzyme for this reaction was important in order to remove naturally-occurring ethanol that we consume in some foods. Ethanol is toxic to cells. Although not an evolutionary requirement, the existence of this enzyme allows for the consumption of alcoholic beverages. The drug disulfiram (sold as Antabuse), is designed to deter individuals from drinking. It works by inhibiting the alcohol dehydrogenase enzyme, and thereby produces very undesirable effects when alcohol is consumed.

Certain organic molecules and inorganic oxidizing agents, such as $\mathrm{MnO}_{4}{ }^{-}$, can \qquad oxidize aldehydes to produce \qquad .

Example: For humans (and many animals) the conversion of the ethanal (an aldehyde) to acetic acid (a carboxylic acid) in the second step of the alcohol oxidation reaction, shown below, is catalyzed by an enzyme called acetaldehyde dehydrogenase.

Most individuals of Asian descent have one of two variations in their DNA that each result in an especially efficient form of the alcohol dehydrogenase enzyme that catalyzes the first reaction (ethanol to ethanal). These individuals convert ethanol to ethanal very quickly. About half of the Asian individuals who have one of those DNA variants, also have a second DNA variation that results in a less functional acetaldehyde dehydrogenase enzyme to catalyze the second reaction above. For individuals with both of these DNA variants, high ethanal levels occur when consuming alcoholic beverages, which cause the red blotches/flushes (erythema) on the face, neck, shoulders, and, sometimes, the entire body. This condition is known as alcohol flush. Alcohol flush has been correlated with a greatly-increased risk of esophageal cancer for those who drink. The DNA variants leading to alcohol flush are most common among individuals of Asian descent, but do also occur, though much less frequently, in individuals of other geographical descents.

b) Oxidation of Secondary ($\mathbf{2}^{\circ}$) Alcohols

The oxidation of a secondary alcohol produces a \qquad .

a secondary ($\mathbf{2}^{\circ}$) alcohol

a ketone

A ketone is produced because the hydroxyl group of a secondary alcohol is attached to a carbon that is not at the end of the parent chain, and therefore the carbonyl group in the product is not at the end of the parent chain.
A specific example of the oxidation of a secondary alcohol is the oxidation of 2-propanol.

[O]

propanone
c) Oxidation of Tertiary ($\mathbf{3}^{\mathbf{0}}$) Alcohols

A tertiary alcohol \qquad be oxidized to an aldehyde or a ketone because tertiary alcohols do not have a hydrogen attached to the carbon that is carrying the hydroxyl group.

Understanding Check

MnO_{4}^{-}will first oxidize a primary alcohol to an aldehyde, and then it will oxidize the aldehyde to produce a carboxylic acid.

$$
\underset{\substack{\text { butanol } \\ \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}}}{\stackrel{[\mathrm{O}]}{\rightleftarrows}} \text { an aldehyde } \stackrel{[\mathrm{O}]}{\rightleftarrows} \quad \text { a carboxylic acid }
$$

Draw and name the aldehyde that is initially formed, and then the carboxylic acid that is subsequently formed in the oxidation of butanol when $\mathrm{MnO}_{4}{ }^{-}$is used as the oxidizing agent.

Understanding Check

Draw and name the organic molecule that is formed in the reaction shown here.

Reactions of Aldehydes and Ketones

1. The Oxidation of Aldehydes

Aldehydes can be oxidized to carboxylic acids.

- I told you about the oxidation of aldehydes when I discussed the oxidation of primary alcohols to form aldehydes, which, under certain conditions are further oxidized to carboxylic acids.

A specific example of the oxidation of an aldehyde is a reaction that my students do in a laboratory activity. They use the permanganate ion $\left(\mathrm{MnO}_{4}{ }^{-}\right)$to oxidize benzaldehyde.

benzaldehyde

In the following review problem, I would like you to draw the carboxylic acid that is produced when this reaction occurs.

Understanding Check

Draw the structure of the carboxylic acid that is formed in the oxidation of benzaldehyde.

- The \mathbf{R} group in benzaldehyde is a benzene ring.

2) The Reduction of Aldehydes and Ketones

Reduction of an aldehyde or a ketone produces an \qquad .

- This is the \qquad of the oxidation of alcohols reaction.

As was the case for " $[\mathbf{O}]$," an " $[\mathbf{R}]$ " is often written above the arrows in a chemical equation to indicate that the reactant is being reduced.

- When reduction is indicated by using " $[\mathbf{R}]$," then the identity of the reducing agent reactant and the source of the hydrogens (or destination of oxygens) are often omitted from the chemical equation. In this case, the equation need not be balanced.

Reduction of aldehydes or ketones involves the formation of a bond to the carbonyl carbon by a
\qquad ($\mathbf{H}:-{ }^{-}$), accompanied by the bonding of an \mathbf{H}^{+}ion to the carbonyl-oxygen atom, and the conversion of the carbon-oxygen double bond into a single bond.

Aldehydes are reduced to \qquad $\left(1^{\circ}\right)$ alcohols.

an aldehyde
$\stackrel{\text { [R] }}{\rightleftarrows}$

a 1° alcohol

Ketones are reduced to \qquad $\left(2^{\circ}\right)$ alcohols.

a ketone

a 2° alcohol

In biological systems, the hydride ion (\mathbf{H}^{-}) used in the reduction of aldehydes or ketones is supplied by nicotinamide adenine dinucleotide hydride (NADH) or other organic hydride ion sources.

- For example, the final reaction in yeast's alcohol fermentation process is the reaction of ethanal with NADH and an \mathbf{H}^{+}to form ethanol and NAD^{+}.

In the laboratory, hydride ions from aluminum hydride $\left(\mathbf{A l H}_{4}{ }^{-}\right)$, or borohydride $\left(\mathbf{B H}_{4}{ }^{-}\right)$are used as reducing agents.
Hydrogen gas $\left(\mathbf{H}_{2}\right)$ is used as a reducing agent in laboratory and industrial applications.

- Reductions that use hydrogen gas $\left(\mathbf{H}_{2}\right)$ are called \qquad reactions.
They occur at high temperatures and in the presence of metal catalysts - often platinum (Pt) metal surfaces. Hydrogenation reactions do not use the mechanism of the addition of hydride $\left(\mathbf{H}:^{-}\right)$and \mathbf{H}^{+} ions that I previously described. A discussion of the mechanism for catalytic hydrogenation is beyond the scope of this book; however, you can predict the products for the reduction/hydrogenation of aldehydes or ketones by adding $\mathbf{H}_{\mathbf{2}}$ "across" the carbon-oxygen double bond (the carbonyl group), as we did for adding H_{2} and $\mathrm{H}_{2} \mathrm{O}$ "across" a $\mathrm{C}=\mathrm{C}$ double bond.

To more easily visualize the addition of $\mathbf{H}_{\mathbf{2}}$ across the carbonyl group, it is convenient to redraw the aldehyde or ketone reactant with the \mathbf{R}^{\prime} or \mathbf{H} group flipped downward, as shown below.

Next, draw the $\mathbf{H}_{\mathbf{2}}$ molecule to the side of the carbonyl group, and then flip the bond between the hydrogens downward to make a new bond to the carbonyl carbon:

Finally, flip one pair of electrons from the carbonyl group's double bond upward to form a bond with the remaining unbound hydrogen (H).

- A specific example of the hydrogenation of a ketone is the reaction of propanone with \mathbf{H}_{2}.

Understanding Check

Draw the condensed structure and name the alcohol produced in the reduction of each of the following aldehydes or ketones.

- NOTE: When reduction reactions are indicated by "[R]," you do not need to include the source of hydrogens, and the equation will therefore not be balanced.
a.

b.

c.

3) The Reaction of Aldehydes or Ketones with Alcohols: Hemiacetal and Acetal Production

A \qquad is a molecule that contains both an $\mathbf{O R}$ group and $\mathbf{O H}$ group that are bonded to the \qquad carbon.

general form of a hemiacetal

An \qquad is a molecule that contains \qquad OR groups, where both OR groups are bonded to the same carbon.

general form of an acetal

An aldehyde or a ketone will react with an alcohol to form a hemiacetal.
The OR" from the alcohol forms a bond to the carbonyl-carbon of the aldehyde or ketone, the \mathbf{H} from the alcohol bonds to the carbonyl-oxygen, and the carbonyl group's double bond is changed to a single bond.

The hemiacetal that is formed can react with a \qquad alcohol molecule to form an acetal and an $\mathbf{H}_{2} \mathrm{O}$ molecule. The structure of the acetal that is produced is drawn by exchanging the \mathbf{R} " group of the alcohol and the \mathbf{H} from the hemiacetal's hydroxyl group $(\mathbf{O H})$, as shown below.

Example: Draw the structure of the hemiacetal - and then the acetal - that is formed by the reaction of ethanal with ethanol.

Solution: To form the hemiacetal, the OR from the alcohol forms a bond to the carbonyl carbon of the aldehyde or ketone, the \mathbf{H} from the alcohol bonds to the carbonyl oxygen, and the carbonyl group's double bond is changed to a single bond. A simple way to do this is to add the alcohol "across" the carbonyl double bond.

To add the alcohol $\left(\mathbf{C H}_{\mathbf{3}} \mathbf{C H}_{\mathbf{2}} \mathbf{O H}\right)$ across the carbonyl group, it is convenient to redraw the aldehyde as shown below.

Next, draw the alcohol molecule to the side of the carbonyl group, as shown below, and then flip the bond from the alcohol's hydroxyl group downward to make a new bond to the carbonyl carbon.

Finally, flip one pair of electrons from the carbonyl group upward to form a bond to the remaining unbound hydrogen (H).

The hemiacetal that is formed can react with a second ethanol molecule to form an acetal and an $\mathbf{H}_{2} \mathbf{O}$ molecule. The structure of the acetal can be drawn by exchanging the \mathbf{R} group of the alcohol $\left(\mathbf{C H}_{\mathbf{3}} \mathbf{C H}_{\mathbf{2}}\right)$ and the \mathbf{H} from the hemiacetal's hydroxyl group:

Understanding Check

Draw the hemiacetal, and then the acetal, that are formed in the reaction shown below.

Understanding Check

Draw the hemiacetal, and then the acetal, that are formed in the reaction shown below.

Naming the Molecules in Chapter 10 Worksheet and Key

1) Write the names of the following organic molecules.

NOTE: If you are having a hard time with these, try drawing the line bond structures first.

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{OH}$

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{OH}$

 $\mathrm{CH}_{2} \mathrm{CH}_{3}$

O

\qquad

2) Draw the condensed structural formula for the following compounds.
a) methanol
b) 2-butanol
c) 2-methyl-2-butanol
d) propanone
e) 3-methylpentanal
f) cyclopentanol
g) 3-methylcyclopentanone
h) butanone
i) 3-methyl-1-butanol

KEY

1) Write the names of the following organic molecules:

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{OH}$

 1-butanol$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHCH}_{2} \mathrm{OH}$ $\mathrm{CH}_{2} \mathrm{CH}_{3}$ 2-ethyl-1-butanol

.................. ethanal
O
||
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2} \mathrm{CH}_{3}$ 3-pentanone

.......... cyclohexanol

2) Draw the condensed structural formula for the following compounds
a) methanol
$\mathrm{CH}_{3} \mathrm{OH}$
b) 2-butanol

OH

$\mathrm{CH}_{3} \mathrm{CHCH}_{2} \mathrm{CH}_{3}$
c) 2-methyl-2-butanol

OH
|
$\mathrm{CH}_{3} \mathrm{CCH}_{2} \mathrm{CH}_{3}$
CH_{3}
d) propanone
$\stackrel{\mathrm{O}}{\mathrm{CH}_{3} \mathrm{CCH}_{3}}$
e) 3-methylpentanal

CH_{3}
f) cyclopentanol

g) 3-methylcyclopentanone

h) butanone

0
 ||
 $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CCH}_{3}$

i) 3-methyl-1-butanol

$\mathrm{CH}_{3} \mathrm{CHCH}_{2} \mathrm{CH}_{2}-\mathbf{O H}$
 CH_{3}

Reactions of Chapter 10 Worksheet and Key

1) Alcohol Fermentation

Alcohol fermentation is a series of chemical reaction that convert sugar molecules, such a glucose, into ethanol and CO_{2}. The overall reaction of ethanol formation from a sugar molecule called glucose is shown below:

$$
\underset{6}{\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}} \text { glucose } \longrightarrow \underset{\text { ethanol }}{2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}} \quad+\underset{\text { carbon dioxide }}{2 \mathrm{CO}_{2}}
$$

2) Nucleophilic Substitution

The general form of the equation for an $\mathrm{S}_{\mathrm{N}} 2$ reaction for the production of alcohol is shown below (\mathbf{X} represents $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$, or I).

3) Hydration of Alkenes

A hydrogen atom from $\mathrm{H}_{2} \mathrm{O}$ is added to one of the double bonded carbon atoms and the -OH from the $\mathbf{H}_{2} \mathrm{O}$ is added to the other double bonded carbon atom in the alkene to produce the corresponding alcohol. The general form of the chemical equation for the hydration of an alkene reaction is shown below:

Alkene
Alcohol

When an asymmetric alkene undergoes a hydration reaction, there are two different alcohol molecules produced - the product that is produced in greater quantity is called the major product, the product made in lesser quantity is called the minor product. It is possible to predict the major and minor products for the hydration of an asymmetric alkene using Markovnikov's Rule.

4) The Dehydration of Alcohols

A hydroxyl group $(\mathbf{O H})$ is removed from a carbon atom and an \mathbf{H} is removed from a carbon that is adjacent to the carbon that was bonded to the hydroxyl group. A double bond forms between these two carbons. The general form of the chemical equation for the hydration of an alcohol reaction is shown below:

alcohol

When an asymmetric 2° or 3° alcohol undergoes a dehydration reaction, there are two different alkene molecules produced (major and minor products).

5) The Oxidation of Alcohols

When an alcohol is oxidized, the hydrogen from the hydroxy group $(\mathbf{O H})$ and a hydrogen attached to the carbon that is carrying the hydroxy group are both removed, and the C-O single bond is changed to double bond. The general form of the equation for the oxidation of an alcohol is shown below.

Oxidation of Primary (19) Alcohols
Oxidation of a primary (10) alcohol produces an aldehyde:

Certain oxidizing agents, such as CrO_{3} or MnO_{4}^{-}, and/or enzymes can further oxidized aldehydes to produce carboxylic acids.

Oxidation of Secondary (2) Alcohols

The oxidation of a secondary alcohol produces a ketone as shown below.

Tertiary (3) alcohols cannot be converted to aldehydes or ketones by oxidation.

6) The Oxidation of Aldehydes

Aldehydes can be oxidized to carboxylic acids. The general form of the chemical equation for the oxidation of an aldehyde is shown below.

7) The Reduction of Aldehydes and Ketones

Reduction of aldehydes and ketones is the reverse of the oxidation of alcohol reactions. The general form of the equation for the reduction of an aldehyde or ketone is shown below.

aldehyde or ketone

alcohol

Aldehydes are reduced to primary alcohols.

Ketones are reduced to secondary alcohols.

ketone
8) The Reaction of Aldehydes or Ketones with Alcohols: Hemiacetal and Acetal Production An aldehyde or a ketone will react with an alcohol to form a hemiacetal.

The hemiacetal that is formed can react with a second alcohol molecule to form an acetal and an $\mathrm{H}_{2} \mathrm{O}$ molecule.

Questions:

1) Draw the condensed structure for the organic molecule that is produced when butanal is oxidized.
2) Draw the condensed structure for the aldehyde that is produced when ethanol is oxidized.
3) Draw the condensed structure for the organic molecule that is produced when 2-butanol is oxidized.
4) Write the chemical equation for the formation of (a) the hemiacetal, and, (b) the acetal when 2-methyl-propanal reacts with methanol.
5) Draw the condensed structure for the organic molecule that is produced when propanone is reduced.
6) Write the chemical equation for the hydration of cis-3-hexene and explain why there is only one possible product (no major or minor product) for this particular reactant.
7) Draw the condensed structure of the major and minor products for the dehydration reaction of 2-pentanol.
8) Write the chemical equation for the hydration of cyclopentene.
9) Complete the following reactions. If there is more than one possible product, draw both products and label the major and minor product. If no reaction is possible, write "NO REACTION".
a)

b) write the product formed using excess oxidizing agent

c)

d) Draw the hemiacetal product.

e)

f)

g) Draw the acetal product.

h)

i)

j)

k)

10) Dehydration

m) Reduction

11) Fill in the missing reactant(s):
a)

$$
+\quad \Longleftrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{OH}+\mathrm{Br}^{-}
$$

b)

c)

d)

e)

Major Product
f) Draw the alcohol that is oxidized when excess $\mathrm{MnO}_{4}{ }^{-}$is used as an oxidizing agent.

g)

$$
\rightleftarrows \quad \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}+\mathrm{H}_{2} \mathrm{O}
$$

h)

i)

Major Product
\rightleftarrows

Minor Product
k)

1)

$$
\stackrel{[\mathrm{R}]}{\rightleftarrows} \quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}
$$

m)

Key

1) Draw the condensed structure for the organic molecule that is produced when butanal is oxidized.

2) Draw the condensed structure for the aldehyde that is produced when ethanol is oxidized.

3) Draw the condensed structure for the organic molecule that is produced when 2-butanol is oxidized.

[O]
\rightleftarrows

4) Write the chemical equation for the formation of (a) the hemiacetal and, (b) the acetal when 2-methyl-propanal reacts with methanol.

5) Draw the condensed structure for the organic molecule that is produced when propanone is reduced.

6) Write the chemical equation for the hydration of cis-3-hexene and explain why there is only one possible product (no major or minor product) for this particular reactant.

- There is only one product because the alkene is symmetric. No matter what carbon receives the OH , the product is 3-hexanol.

7) Draw the condensed structure of the major and minor product for the dehydration reaction of 2pentanol.

8) Write the chemical equation for the hydration of cyclopentene.

9) Complete the following reactions. If there is more than one possible product, then draw both products and label the major and minor product. If no reaction is possible, write "NO REACTION".
a)

b) write the product formed using excess oxidizing agent

$\stackrel{[\mathrm{O}]}{\rightleftarrows}$

c)

d) draw the hemiacetal product

e)

f)

g) Draw the acetal product.

h)

i)

j)

$\stackrel{[\mathrm{R}]}{\rightleftarrows}$

k)

10) Dehydration

m) Reduction

11) Fill in the missing reactant(s):
a)

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}+\mathbf{O H}^{-} \quad \rightleftarrows \quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathbf{O H}+\mathrm{Br}^{-}
$$

b)

c)

d)

e) Two possible answers:

f) Draw the alcohol that is oxidized when excess $\mathrm{MnO}_{4}{ }^{-}$is used as an oxidizing agent.

h)

i)

j)

Major Product

$$
+\mathrm{H}_{2} \mathrm{O}
$$

Minor Product
k)

110

1)

$\stackrel{[\mathrm{R}]}{\rightleftarrows} \quad \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
m)

Chapter 11 Lecture Notes: Carbohydrates

Educational Goals

1. Given a Fischer projection of a monosaccharide, classify it as either aldoses or ketoses.
2. Given a Fischer projection of a monosaccharide, classify it by the number of carbons it contains.
3. Given a Fischer projection of a monosaccharide, identify it as a D-sugar or L-sugar.
4. Given a Fischer projection of a monosaccharide, identify chiral carbons and determine the number of stereoisomers that are possible.
5. Identify four common types of monosaccharide derivatives.
6. Predict the products when a monosaccharide reacts with a reducing agent or with Benedict's reagent.
7. Define the term anomer and explain the difference between $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ anomers.
8. Understand and describe mutarotation.
9. Given its Haworth projection, identify a monosaccharide either a pyranose or a furanose.
10. Identify the anomeric carbon in Haworth structures.
11. Compare and contrast monosaccharides, disaccharides, oligosaccharides, and polysaccharides.
12. Given the structure of an oligosaccharide or polysaccharide, identify the glycosidic bond(s) and characterize the glycosidic linkage by the bonding pattern [for example: $\boldsymbol{\beta}(1 \longrightarrow 4)$].
13. Given the Haworth structures of two monosaccharides, be able to draw the disaccharide that is formed when they are connected by a glycosidic bond.
14. Understand the difference between homopolysaccharides and heteropolysaccharides.
15. Compare and contrast the two components of starch.
16. Compare and contrast amylopectin and glycogen.
17. Identify acetal and hemiacetal bonding patterns in carbohydrates.

An Introduction to Carbohydrates

Carbohydrates are quite abundant in nature. More than half of the carbon found in living organisms is contained in carbohydrate molecules, most of which are contained in plants.
The primary reason for such an abundance is that a carbohydrate is produced by a series of chemical reactions that we call photosynthesis.
Energy from sunlight is used by plants to provide energy to drive the photosynthesis process. In the photosynthesis process, carbon dioxide and water are converted to oxygen gas and a carbohydrate called glucose.
Plants can use glucose to produce the ATP molecules that are needed to do the work necessary for life.
Plants store excess glucose as starch, for later use.
Animals obtain energy that is stored in starch by eating plants, or by eating animals that ate plants or had herbivores in their food-chain.

Carbohydrates are also referred to as \qquad or \qquad .

Monosaccharides

\qquad are the smallest carbohydrates and serve as the building blocks of larger carbohydrates.

- They are also referred to as \qquad sugars.

Monosaccharides have the general chemical formula of $\mathbf{C}_{\mathbf{n}}\left(\mathbf{H}_{\mathbf{2}} \mathbf{O}\right)_{\mathrm{n}}$; where \mathbf{n} (the number of carbon atoms) can be three to seven.

They are polyhydroxyl aldehydes or ketones:

- Monosaccharides contain either an \qquad group or a \qquad bonding pattern.
- Monosaccharides contain more than one \qquad (OH) group.

A monosaccharide that contains an aldehyde group is called an \qquad .

A monosaccharide that contains the ketone bonding pattern is called a \qquad .

general form of an aldose

general form of a ketose

Note that the group in the parenthesis can repeat.

an aldose structure where $\mathrm{X}=3$

a ketose structure where $X=3$

Understanding Check:

Classify each of the following monosaccharides as either an aldose or a ketose
a.

b.

c.

Monosaccharides can be classified according to the number of they contain.

Number of Carbons	Classification
3	triose
4	tetrose
5	pentose
6	hexose
7	heptose

A monosaccharide may also be classified by \qquad the number of carbons \qquad whether it is an aldose or a ketose.

- This is done by using the prefix " \qquad " for aldoses, or " \qquad " for ketoses, in front of "triose," "tetrose," "pentose," "hexose," or "heptose."
- For example, an aldose that contains five carbons is an aldopentose.

Understanding Check:

Classify each of the following monosaccharides using the prefix "aldo" for aldoses, or "keto" for ketose, in front of " triose," "tetrose," "pentose," "hexose," or "heptose."
a.

b.

c.

Stereochemistry of Monosaccharides

Except for the ketotriose, monosaccharides contain \qquad one chiral carbon.

Recall, that a chiral carbon is a carbon that is surrounded by four different groups.
Molecules with just one chiral carbon have a pair of geometric isomers called enantiomers.

Enantiomers have the same atomic connections, but a different three-dimensional arrangement of atoms, and are nonsuperimposable mirror images of each other.

If a molecule has \qquad than one chiral carbon, then it will have more than one pair of enantiomers.

If a monosaccharide has \mathbf{n} chiral carbons, then it will have $\mathbf{2}^{\mathbf{n}}$ stereoisomers. For example, if a molecule has three chiral carbons, then it will have $\mathbf{2}^{3}=(2 \times 2 \times 2)=$ 8 stereoisomers (four pairs of enantiomers).

Example: How many stereoisomers are possible for the monosaccharide shown below?

Solution: Identify the number of chiral carbons, and then calculate the number of stereoisomers.

- There are four chiral carbons in this molecule. The chiral carbons are highlighted in the structure below.

Since this monosaccharide structure has four chiral carbons, there are $2^{4}=(2 \times 2 \times 2 \times 2)=\mathbf{1 6}$ possible stereoisomers (eight pairs of enantiomers).

We found that there are $\mathbf{1 6}$ different molecules (stereoisomers) that share this molecular formula and structural formula.

Most of the physical properties of these $\mathbf{1 6}$ stereoisomers are quite similar; however, the way they each behave in \qquad systems can be very \qquad .

Let's consider the three dimensional arrangement of the atoms in the smallest monosaccharide, glyceraldehyde. Glyceraldehyde has only \qquad chiral carbon.

glyceraldehyde
Since there is one chiral carbon in glyceraldehyde, then there are $2^{\mathbf{n}}=2^{1}=2$ stereoisomers (one pair of enantiomers/nonsuperimposable mirror images).

the pair of glyceraldehyde enantiomers
(nonsuperimposable mirror images)
In order for professionals in healthcare, engineering, and science fields to discuss and depict the various monosaccharide stereoisomers, it is necessary to be able to draw two-dimensional (flat) structural formulas on a page or computer display, such that they still contain the three-dimensional information particular to each stereoisomer.

In previous chapters, we used the wedge and dash system to retain the three-dimensional information on a flat surface.

For monosaccharides, \qquad are used for this purpose.

Fischer Projections

Fisher projections are related to an imaginary " \qquad " that would be produced if a chiral carbon and its four bonded groups were placed in a particular orientation between a light source and a surface.

In Fischer projections, chiral carbons are \qquad to be at the \qquad of a vertical and horizontal line.

Fischer's choice of the particular orientation of the chiral carbon and its four groups was arbitrary, any orientation could have been used; however, for consistency, one specific orientation needed to be chosen.

The chosen orientation of a chiral carbon and the four groups that are bonded to it relative to the drawing surface/page in all Fischer Projections is as follows:

The bonds from the chiral carbon to the
\qquad carbon atoms point at a downward angle, and their shadows form lines on the Fischer projection.

- In this model, these are the bonds from the chiral carbon to groups \mathbf{Y} and \mathbf{W}.

The bonds from the chiral carbon to the
\qquad carbon groups point at an upward
 angle, and their shadows form lines on the Fischer projection.

- In this model, these are the bonds from the chiral carbon to groups \mathbf{X} and \mathbf{Z}.

For aldoses, the aldehyde group is positioned at the end of the molecule that is closest to the top of the page (position W).

For ketoses, the carbonyl carbon is positioned as close as possible to the end molecule that is nearest the top of the page.

Let's consider the Fischer projections for both of the glyceraldehyde stereoisomers.
Recall that glyceraldehyde has one chiral carbon.
Because the other two carbons in glyceraldehyde are not chiral, shorthand notation is used to simplify the structure.

The derivation for the Fischer projections of glyceraldehyde's enantiomers is illustrated below.

The Fischer projections for the two enantiomers of glyceraldehyde are:

We do not need to draw the bonds around the top or bottom carbon atoms because they are not chiral. Note that we draw the hydroxyl groups that are on the left-hand side of Fischer projections as "HO."

For monosaccharides with more than one chiral carbon, Fischer projections must be drawn (or interpreted) by considering the orientation around \qquad of the chiral carbons.

This is done one chiral carbon at a time. As an example, let's consider aldotetroses, which contain two chiral carbons:

Since aldotetroses each have two chiral carbons, there are $2^{2}=(2 \times 2)=\mathbf{4}$ stereoisomers (two pairs of enantiomers).

an enantiomer pair (mirror images)

an enantiomer pair
(mirror images)

Note that the hydrogen (\mathbf{H}) and the hydroxyl group $(\mathbf{O H})$ positions are reversed on chiral carbons for each particular enantiomer pair.

Implication of a Fischer Projection:

Wedge and Dash Representation

Understanding Check: An aldopentose contains three chiral carbons, and therefore there are $2^{3}=\mathbf{8}$ aldopentose stereoisomers. Draw Fischer projections of the eight stereoisomers.

D- and L- Designations for Monosaccharides

Carbohydrates are most often referred to by their common names, all of which use the " \qquad " suffix.

- A common name is assigned to each pair of enantiomers.

In order to differentiate the two individual monosaccharides of an enantiomer pair, 'D-' or 'L-' designations are used with the common name.

- The ' \mathbf{L}-' designation is used for the enantiomer in which the chiral carbon that is furthest from the top of the Fischer projection has its \qquad group on the \qquad .
- The 'D-' designation is used for the \qquad enantiomer of the pair.

Monosaccharides with the \mathbf{L} - designation are sometimes referred to as "L-sugars," and those with the \mathbf{D} designation are sometimes referred to as "D-sugars."

Monosaccharides are produced in living organisms by chemical reactions, some of which require enzymes that can only produce \qquad particular enantiomer.

For example, the stereoisomer of glucose that is made in photosynthesis is D-glucose.
Fischer projections for both of the glucose enantiomers are shown below.

Dashed boxes are shown around the chiral carbons and hydroxyl groups responsible for the \mathbf{D} - and L- designations.

D-glucose
(an enantiomer pair)

The glucose enantiomer pair (D-glucose and L-glucose) are two of the sixteen aldohexose stereoisomers.

- There are seven more aldohexose enantiomer pairs that can be drawn by varying the positions of the \mathbf{H} and $\mathbf{O H}$ on each side of a Fischer projection.
- These seven other enantiomer pairs are differentiated from glucose, and each other, by their common names.

I do not require my students to memorize the common names and structures for particular monosaccharides, however, you should check with your own instructor to see if you are required to do so.

An example of a \qquad is fructose. D-Fructose is one of our major dietary carbohydrates.

Understanding Check

Classify each of the eight stereoisomers shown below as either D- or \mathbf{L} - stereoisomers.

The Cyclic Forms of Monosaccharides

When monosaccharides that contain five to seven carbons are in aqueous solutions, they can undergo a reaction in which they \qquad their bonding pattern to form \qquad structures.

It is a reversible reaction in which the \qquad form is interconverted with the \qquad form.

- Example: The cyclization rearrangement reaction is shown below for a D-glucose molecule.

The cyclic form is lower in energy and is therefore the predominant form.

- In most solutions, the equilibrium ratio of cyclic form to open-chain form is about one hundred to one.
The side view structures of cyclic monosaccharides (above, right), are called \qquad projections or Haworth structures.
- The carbon atoms that form the ring are not drawn explicitly, but are implied to occur where lines/bonds meet.

To help you understand the three-dimensional implications of Haworth projections, I have drawn a ball-and-stick model that shows the actual geometry/bond angles of the cyclic form of D-glucose, next to its Haworth Projection representation:

Haworth projection

- I used large black dots at the ring-carbon positions in both structures.
- Each ring-carbon is bonded to two other ring-atoms and two other groups.
- Groups that are oriented upward relative to the ring-carbons are shaded green.
- Groups that are oriented downward from ring-carbons are shaded red.

The rearrangement/cyclization reaction of a monosaccharide is actually a form of the hemiacetal formation reaction that you learned about at the end of the previous chapter.

Let's take a moment to review that reaction.

A hemiacetal is a molecule that contains both an OR group and $\mathbf{O H}$

general form of a hemiacetal group that are bonded to the same carbon.

An aldehyde or a ketone will react with an alcohol to form a hemiacetal.
The OR" from the alcohol forms a bond to the carbonyl-carbon of the aldehyde or ketone, the \mathbf{H} from the alcohol bonds to the carbonyl-oxygen, and the carbonyl group's double bond is changed to a single bond.

Now let's think about how this reaction can occur for a monosaccharide.
A hemiacetal is formed when a monosaccharide's hydroxyl group reacts with its carbonyl group.

- The hydroxyl group is added "across" the carbonyl double bond.

Note that, beginning at carbon number 1 and moving counter-clockwise, as indicated by the red arrow, the OR bonding pattern is seen.

When the OR bonding pattern occurs in this way, forming a ring, the molecule is referred to as a \qquad hemiacetal.

D-glucose (cyclic form)

An example of the cyclization of a ketose (fructose) is shown below.

The most common cyclic monosaccharide structures are \qquad and \qquad member rings.

Cyclic monosaccharides with five-member rings are called \qquad , and those with sixmember rings are called \qquad .

- These terms are often used as suffixes when naming cyclic monosaccharide structures.
- Examples:

A six-member ring

D-glucopyranose (a pyranose)

A five-member ring

D-fructofuranose (a furanose)

The cyclization reaction is reversible; the cyclic form interconverts with the open-chain form when monosaccharides are in \qquad .

Each time that the open-chain form is converted to the cyclic form, one of two cyclic enantiomers will be formed.

- Example: The cyclization of D-glucose.

In the open-chain form of D-glucose that is shown in top-left of the illustration above, the carbonyl group $(\mathbf{C}=\mathbf{O})$ is oriented upward from the ring; therefore, when the cyclic hemiacetal is formed (bottom, left), the new hydroxyl group $(\mathbf{O H})$ will be oriented upward from carbon number 1. Free rotation occurs around single bonds in the open-chain form (as depicted in the box in the top-middle of the illustration). Rotation around the bond between carbon number $\mathbf{1}$ and carbon number $\mathbf{2}$ of the open-chain form causes the carbonyl group to, at times, be oriented downward from the ring (as seen in the open-chain form in the top-right of the illustration). In this arrangement, when the cyclization reaction occurs, the cyclic hemiacetal is formed with the new hydroxyl group $(\mathbf{O H})$ oriented downward from carbon number $\mathbf{1}$ (as seen in the bottom-right structure of the illustration).

The formation of either of two different cyclic structures, a cyclic enantiomer pair, is possible because of the four different groups bonded to a chiral hemiacetal carbon (the carbon which contains an $\mathbf{O H}$ and an OR).

This carbon is called the \qquad carbon.

The cyclic enantiomers are almost identical; the only difference is that the bonding pattern around the anomeric carbons are mirror images.

The sugar produced in photosynthesis, and almost all of the other monosaccharides found in plants and animals, are D-sugars. At some point in the history of Earth, nature showed a preference for \mathbf{D}-sugars.
For the remainder of this course, you will only see D-sugars.
It is easy to identify the anomeric carbon in a Haworth projection of a D-sugar; it is the ring-carbon to the
\qquad -hand side of the ring- \qquad .

The two enantiomers that can be formed during the cyclization process are called \qquad .

They are classified, based on the orientation of the \qquad group $(\mathbf{O H})$ on the anomeric carbon, as the $\boldsymbol{\alpha}$-anomer or the $\boldsymbol{\beta}$-anomer.

- The $\boldsymbol{\alpha}$-anomer has the $\mathbf{O H}$ on the anomeric carbon oriented \qquad from the ring.
- The $\boldsymbol{\beta}$-anomer has the $\mathbf{O H}$ on the anomeric carbon oriented \qquad from the ring.

The conversion from $\boldsymbol{\alpha}$-anomer, to the open-chain form, then to the $\boldsymbol{\beta}$-anomer (and vice versa) is called
\qquad .

The formation of $\boldsymbol{\beta}$-anomers or $\boldsymbol{\alpha}$-anomers also occurs, for the same reason, for ketoses.

- For example, the cyclization of D-fructose results in the formation of two possible anomers, as shown below.

Understanding Check: For the molecules shown below,
a) Classify each of the molecules as either a pyranose or a furanose.
b) Label the anomeric carbon.
c) Classify each as either a $\boldsymbol{\beta}$-anomer or an $\boldsymbol{\alpha}$-anomer.

I would like you to be able to do the following on an examination:
Given a Haworth projection of a D-monosaccharide:

1. Identify the molecule as a pyranose or a furanose.
2. Identify the anomeric carbon.
3. Identify the molecule as the $\boldsymbol{\beta}$-anomer or the $\boldsymbol{\alpha}$-anomer.
4. Understand the definition of mutarotation.
5. Understand how the three-dimensional arrangement of atoms in a monosaccharide (as seen in a ball-and-stick model) is implied by a Haworth projection.

Summary of Monosaccharides Stereochemistry

Monosaccharide Derivatives and Reactions

Monosaccharide derivatives are compounds that are \qquad from monosaccharides.

I will introduce you to four classes of monosaccharide derivatives:

1) Amino Sugars
2) Carboxylic Acid Sugars
3) Alcohol Sugars
4) Deoxy Sugars

Amino Sugars

In an amino sugar, a hydroxyl group $(\mathbf{O H})$ of a monosaccharide has been replaced by an \qquad group $\left(\mathbf{N H}_{2}\right)$.

An example of an amino sugar is D-glucosamine. D-Glucosamine is derived when the hydroxyl group on carbon number $\mathbf{2}$ of D-glucose is replaced by an amino group.

open-chain D-glucosamine

Like monosaccharides, amino sugars undergo mutarotation.

D-Glucosamine of the larger monosaccharide-containing polymers that make up the exoskeletons of crustaceans (e.g. shrimp, lobster, crab) and other arthropods. D-glucosamine is purified for commercial use by processing exoskeletons or other organic material that contains it. Although it has been deemed safe for human consumption and sold as a "dietary supplement," its actual effectiveness in the treatment of any health/medical condition, according to the US National Institutes of Health, has not been established.

Carboxylic Acid Sugars

In a carboxylic acid sugar, an aldehyde group (CHO) of a monosaccharide has been replaced by a
\qquad group $(\mathbf{C O O H})$.
This is done by a reaction that you have previously seen, oxidation of aldehydes to carboxylic acids.

- Example: D-glucose can be oxidized to produce D-gluconic acid:

This oxidation of aldoses reaction was used for about 50 years in the measurement of blood sugar levels.
Stanley Benedict first discovered and published a method in which a solution containing Cu^{2+} ions acts as an oxidizing agent in the conversion of \qquad to carboxylic acid sugars.

This solution is now referred to as \qquad reagent.
It is used as a test for aldoses since it will oxidize the aldehyde groups but \qquad the hydroxyl groups or the ketone bonding patterns.
Cu^{2+} ions appear clear-blue when in solution. If a sample that contains an aldose is placed in a test tube that contains hot Benedict's reagent, the Cu^{2+} will be reduced to Cu^{1+}. The Cu^{1+} then reacts with hydroxide to form a colored solid. As the aldose concentration in a sample increases, more of the colored solid is made and the color of the Benedict's test goes from blue to green to orange to red to brown. When a color change is observed, we say that it is a "positive" test.

Exception: Although fructose is a ketose (not an aldose), it gives a positive Benedict's test result.

D-glucose

D-gluconic acid

Sugars that produce a color change in Benedict's reagent are called " \qquad ," since they reduce Cu^{2+} to Cu^{1+}.

Because Benedict's reagent is not specific for D-glucose, which is the important blood sugar species in diabetes monitoring, its use in most medical diagnostic work has been replaced by glucometers. Glucometers are much more specific in sensing only D-glucose since they are based on a naturallyoccurring enzyme which only catalyzes a reaction of D-glucose.
Understanding Check: Draw the Fischer projection of the carboxylic acid sugar that is formed when the aldehyde group of D-ribose (shown below) is oxidized.

D-ribose

Alcohol Sugars

Alcohol sugars, sometimes called "sugar alcohols," are derived when the carbonyl group $(\mathbf{C}=\mathbf{O})$ of a monosaccharide is reduced to a \qquad (OH) group.

This is done by a reaction that you have previously seen, reduction of aldehydes and ketones to alcohols.

- Example of the reduction of a monosaccharide (D-glucose) to form an alcohol sugar (sorbitol):

D-glucose

sorbitol (an alcohol sugar)

Alcohol sugars are used in the food and beverage industry as thickeners and sweeteners. Unlike sugars, alcohol sugars cannot be metabolized by oral bacteria, and therefore do not cause tooth decay. Unfortunately for chefs, alcohol sugars do not caramelize, as do natural sugars.
Sorbitol can be manufactured by the reduction of D-glucose and it also occurs naturally in pears, peaches, prunes, and apples. Sorbitol is used as a sugar substitute, mostly to replace natural sugars in order to prevent tooth decay. It is not so effective as a dietary aid because it can be metabolized by humans for energy. On a per gram basis, it provides 65% of the energy of natural sugars, yet is only 60% as sweet as table sugar (sucrose). Sorbitol is used in toothpaste, mouthwash, and chewing gum. It is also used, in greater quantities, as an orally or rectally administered laxative.

- Other examples of alcohol sugars are mannitol and xylitol:

mannitol

xylitol

Mannitol is used as a sweetener and has many applications in medicine. It is frequently used as a filler in the production of tablets of medicine.
Xylitol is used as a sweetener in chewing gum. Like other alcohol sugars, it is unusable by oral bacteria. However, unlike the other alcohol sugars, xylitol aids in the recalcification of teeth.

Understanding Check: Draw the Fischer projection of the alcohol sugar that is formed when Dribose (shown below) is reduced.

D-ribose

Deoxy Sugars

Deoxy sugars are derived when a hydroxyl group (OH) in a monosaccharide is replaced by a
\qquad atom.

- Example: D-2-deoxyribose (a deoxy sugar) is derived when the hydroxyl group on carbon number 2 of D-ribose (a monosaccharide) is replaced by a hydrogen atom:

D-ribose (a monosaccharide)

D-2-deoxyribose
(a deoxy sugar)

The " $\mathbf{2}$ " in D-2-deoxyribose indicates the carbon position where a hydrogen (H) replaces a hydroxyl group $(\mathbf{O H})$ of the D-ribose monosaccharide.

Like monosaccharides, deoxy sugars undergo mutarotation.

$\alpha-D-2-d e o x y r i b o f u r a n o s e$

D-2-deoxyribose
(a deoxy sugar)

D-2-deoxyribofuranose is one of the residues that make deoxyribonucleic acids (DNA).

Understanding Check

D-2-deoxyglucose is currently being used in the development of anticancer strategies.
Using the Fischer projection of D-glucose (shown below) as the starting point, draw the Fischer projection of D-2-deoxyglucose.

D-glucose

Table for the Review of Monosaccharide Derivatives

Monosaccharide Derivative	Defining Structural Trait
Amino Sugar	A hydroxyl group (OH) of a monosaccharide is replaced by an amino group $\left(\mathrm{NH}_{2}\right)$
Carboxylic Acid Sugar	The aldehyde group (CHO) of an aldose is oxidized to a carboxyl group (COOH).
Alcohol Sugar	The carbonyl group $(\mathrm{C}=\mathrm{O})$ of a monosaccharide is reduced to a hydroxyl (OH) group
Deoxy Sugar	A hydroxyl group (OH) of a monosaccharide is replaced by a hydrogen.

Understanding Check:

Identify each of the molecules shown below as either a monosaccharide, amino sugar, carboxylic acid sugar, alcohol sugar, or a deoxy sugar.
a.

b.

c.

d.

e.

f.

g

h.

Carbohydrates can be classified into three major groups based on their size:

1) monosaccharides
2) oligosaccharides
3) polysaccharides

Oligosaccharides

Oligosaccharides are molecules that are made when \qquad to \qquad monosaccharides chemically bond to each other.

Molecules from particular organic families (such as monosaccharides) are referred to as " \qquad $"$ when they bond together to form a large molecule.

Oligosaccharides are often subcategorized by the number of monosaccharide residues that they contain.

- For example, an oligosaccharide that is composed of two monosaccharide residues is called a
\qquad .
- Likewise, an oligosaccharide made from three monosaccharide residues is called a
\qquad .

Let's consider the bond formed between two $\boldsymbol{\alpha}$-D-glucose monosaccharides.
I will sometimes use large black dots at the position of the anomeric carbons in order to draw your attention to them.

Step 1: An \mathbf{H} atom is removed from the hydroxyl group (OH) that is bonded to the anomeric carbon of the left-most residue, and an $\mathbf{O H}$ is removed from any carbon in the right-most residue.

- The \mathbf{H} and $\mathbf{O H}$ that were removed form a water molecule.

Step 2: Draw a new bond from the oxygen (\mathbf{O}) that remains on the anomeric carbon in the left-most residue to the carbon from which the $\mathbf{O H}$ was removed in the right-most residue.

- This new bond is oriented in the same direction as was the bond to $\mathbf{O H}$ that was removed.

This method can be used to form a bond between any two sugar residues.
The disaccharide that is formed in this example is called maltose.
Maltose is found in malt, which is purified from germinated grains. Brewers interrupt the barley grain germination to obtain what is referred to as malted barley. Malted barley has a high concentration of maltose, which is fermentable, and therefore used in making beer and some other adult beverages. It is also used as a sweetener and thickener in frozen beverages called "malts."

The covalent bonding pattern linking the anomeric carbon of one residue to an oxygen, then to a carbon in the other sugar residue is referred to as a \qquad .
(even though it actually contains two single bonds)
a glycosidic bond

The Glycosidic Bond

Glycosidic bonds are described using alpha ($\boldsymbol{\alpha}$) or beta ($\boldsymbol{\beta}$).

- The alpha (α) designation indicates that the bond from the anomeric carbon to the oxygen (O) in the glycosidic bond is oriented \qquad from the ring.
- The beta (β) designation indicates that the bond from the anomeric carbon to the oxygen (0) in the glycosidic bond is oriented \qquad from the ring.
maltose

Maltose has the " α " designation because the bond from the anomeric carbon to the oxygen (0) of the glycosidic bond is oriented downward from the ring.

A glycosidic bond is characterized by its $\boldsymbol{\alpha} / \boldsymbol{\beta}$ orientation, and a description of \qquad two carbons are linked by the glycosidic bond.

For example, the glycosidic bond in maltose is classified as $\alpha-(\mathbf{1} \rightarrow \mathbf{4})$.
The numbers and arrow that are seen in the parenthesis (the " $1 \rightarrow 4$ " in the case of maltose) begins with the position number of the anomeric carbon where the glycosidic bond originates, then the arrow followed by the carbon position number where the glycosidic bond terminates in the other residue.
maltose

Maltose has the $(1 \rightarrow 4)$ designation because the glycosidic bond links the anomeric carbon (carbon number 1) to carbon number 4 of the other residue.

Note that the glycosidic bond in maltose has the $\boldsymbol{\alpha}$ designation because it was constructed from $\boldsymbol{\alpha}$-monosaccharides.

Later in this video, you will see that a glycosidic bond constructed from $\boldsymbol{\beta}$-monosaccharides will have the $\boldsymbol{\beta}$ orientation.

maltose

Oligosaccharides, such as maltose, with a residue that contains a hemiacetal anomeric carbon will interconvert (mutarotate) between closed anomers and an open-form.

mutarotation of maltose

Note that the mutarotation does not change the $\boldsymbol{\alpha} / \boldsymbol{\beta}$ designation of a glycosidic bond.

If the open-chain form of an oligosaccharide contains an aldehyde group, it will give a positive
\qquad test.

Let's now visualize the way that a glycosidic bond connects two $\boldsymbol{\beta}$-D-glucose monosaccharides.

- We will use the same two steps as we did for the formation of a disaccharide in our previous example.

Step 1: An H atom is removed from the hydroxyl group (OH) that is bonded to the anomeric carbon of the left-most residue, and an $\mathbf{O H}$ is removed from any carbon in the right-most residue.

The \mathbf{H} and $\mathbf{O H}$ that were removed form a water molecule.

Step 2: Draw a new bond from the oxygen (\mathbf{O}) that remains on the anomeric carbon in the left-most residue to the carbon from which the $\mathbf{O H}$ was removed in the right-most residue.

- This new bond is oriented in the same direction as was the bond to $\mathbf{O H}$ that was removed.

The disaccharide that is formed in this example is called cellobiose.

Cellobiose has the " β " designation because the bond from the anomeric carbon to the oxygen (0) of the glycosidic bond is oriented upward from the ring.

Cellobiose has the ($1 \rightarrow 4$) designation because the glycosidic bond links the anomeric carbon (carbon number 1) to carbon number 4 of the other residue.

Note that since we began with $\boldsymbol{\beta}$ monosaccharides, the glycosidic bond, necessarily, has the $\boldsymbol{\beta}$ orientation.

Examples of Other Oligosaccharides

Lactose is a disaccharide that contains a β-D-galactose residue bonded to a D-glucose residue by a $\boldsymbol{\beta}-(\mathbf{1} \rightarrow \mathbf{4})$ glycosidic bond.

Most of us have an enzyme, called lactase, that will break galactose-glucose $\boldsymbol{\beta}-(\mathbf{1} \rightarrow \mathbf{4})$ glycosidic bonds so that we can digest and metabolize lactose. Lactose is a nutrient that is found in milk and dairy food made from milk. A small percentage of individuals are born with a mutation in the gene that is responsible for the production of the lactase enzyme, and are therefore unable to metabolize lactose. This condition is called congenital lactose intolerance. In many mammals, including humans, production of the lactase enzyme ceases at a very young age, this condition is known as primary lactose intolerance.

Over the last five to ten thousand years, human populations have evolved a genetic variant in a "lactose persistence DNA sequence" that allows them to continue to produce the lactase enzyme, and therefore continue lactose metabolism into adolescence and adulthood. The presence of this DNA variation was evolutionally beneficial and has spread to about half of the world's population. Individuals who lack the lactose persistent DNA variation suffer from primary lactose intolerance. Both congenital and primary lactose intolerance results in the build-up of undigested lactose in the large intestine. Intestinal bacteria ferment the lactose and produce gases such as carbon dioxide, hydrogen, and methane. The presence of these gases is quite uncomfortable since it results in flatulence and bloating. In order for individuals with lactose intolerance to enjoy dairy foods, they can add the lactase enzyme (produced by fungi or yeast) directly to their food or ingest it in tablet form. Milk that has been supplemented with the yeast lactase enzyme is sold in many countries for lactose intolerant consumers.

Sucrose, also referred to as "table-sugar" or just "sugar," is a disaccharide formed from an α-D-glucose residue and a $\boldsymbol{\beta}$-D-fructose residue.
sucrose

Its glycosidic bonding pattern is a bit different from the ones that you have seen so far because it involves two anomeric carbons.
The glycosidic bond in sucrose links the anomeric carbon in the glucose residue to the anomeric carbon in the fructose residue.

- Note that the anomeric carbon in the D-fructose residue is carbon number 2.

The glycosidic bond in sucrose is classified as $\boldsymbol{\alpha}, \boldsymbol{\beta}-(\mathbf{1} \longleftrightarrow \mathbf{2})$.

- This is because the stereochemistry at the anomeric carbon of the glucose residue (position number 1) has the $\boldsymbol{\alpha}$ orientation, and the anomeric carbon of the fructose residue (position number 2) has the $\boldsymbol{\beta}$ orientation.
- The double arrow (\longleftrightarrow) used in this notation indicates that the glycosidic bond is between two anomeric carbons.

Both residues are "locked" in their cyclic forms.
For this reason, sucrose, unlike the other disaccharides that you have seen, will give a \qquad Benedict's test and is therefore not classified as a reducing sugar.

Sucrose is consumed in relatively large quantities because of its desired "sweet" taste. It is manufactured by purification from sugar cane or sugar beets. Overconsumption of sucrose has been linked to tooth decay and obesity.

Examples of oligosaccharides that contain more than two monosaccharide residues are raffinose (a trisaccharide) and stachyose (a tetrasaccharide).

- Raffinose is made from a galactose, a glucose, and a fructose residue.

- It is categorized as a \qquad because it contains three monosaccharide residues.
- Stachyose is made from two galactose residues, a glucose residue, and a fructose residue.

- It is categorized as a \qquad because it contains four monosaccharide residues.

Raffinose and Stachyose are found together in many foods, most notably legumes (e.g. beans and peanuts) and cruciferous vegetables (e.g. broccoli, cauliflower, brussels sprouts, and cabbage). Monogastric (single stomach) animals, including humans, pigs, and poultry, cannot completely digest raffinose or stachyose because we do not have the enzyme, α-galactosidase, that is needed to break their α-galactose glycosidic bonds. Because raffinose and stachyose pass through the digestive track without being completely digested, they can be fermented by digestive microbes to produce gases. To avoid the discomfort of bloating and flatulence associated with such gases, the α-galactosidase enzyme can be taken as a nutritional supplement (marketed by Prestige Holdings Inc.) using the brand name of Beano.

Understanding Check

Classify each of the highlighted glycosidic bonds using the alpha " $\alpha-(\mathrm{X} \rightarrow \mathrm{Y})$ " or beta " $\beta-(\mathrm{X} \rightarrow \mathrm{Y})$ " designation.

Understanding Check

Draw the disaccharide that is formed when the two monosaccharide molecules below are connected by a $\boldsymbol{\beta}-(1 \rightarrow 4)$ glycosidic bond.

Sweeteners

A sweetener is a compound that is added to food in order to impart the sweet taste of sucrose, but with significantly fewer calories.

Sweeteners can be classified as " \qquad sweeteners" or " \qquad sweeteners."

- Natural sweeteners are carbohydrates, naturally occurring carbohydrate derivatives, or other naturally occurring non carbohydrate compounds.
- Example of a natural sweetener: fructose

- Artificial sweeteners do not occur in nature; they are synthesized in commercial laboratories.
- The structural formulas of some artificial sweeteners are shown below.

saccharin
(Sweet'N Low)

sucralose
(Splenda)

Sucrose is the reference standard for "sweetness."

A "sweetness value" of 100 is assigned to sucrose, and then other sweeteners are assigned sweetness values relative to the taste of the same mass of sucrose.

The sweeteners that are currently approved for sale in the US are: stevia, aspartame, sucralose, neotame, acesulfame potassium (Ace-K), saccharin, and advantame.

Although there are rumors to the contrary, none of these sweeteners, artificial or natural, have ever been shown to cause cancer in humans.

Carbohydrates can be classified into three major groups based on their size:

1) monosaccharides
2) oligosaccharides
3) polysaccharides

Polysaccharides

Polysaccharides are composed of more than \qquad residues.

- The residues can be monosaccharides or monosaccharide derivatives.

Polysaccharides are often subcategorized as either homopolysaccharides or heteropolysaccharides.

- Homopolysaccharides are composed of only \qquad type of residue.
- Heteropolysaccharides are composed of \qquad than one type of residue

Homopolysaccharides

Example of a Homopolysaccharide: Cellulose

Cellulose is composed of multiple D-glucose residues (only), bonded to each other by $\boldsymbol{\beta} \boldsymbol{\beta}(\mathbf{1} \rightarrow 4)$ glycosidic bonds.

The structure shown above represents a small section of a cellulose molecule.

- A cellulose molecule contains hundreds (sometimes thousands) of glucose residues.

Cellulose is found in the cell walls of green plants, some algae, and oomycetes.
Cellulose accounts for approximately 45% of the mass of dry wood and about 90% of the mass of cotton fibers.

The major industrial use for cellulose is the production of paper.
Humans lack the enzyme necessary to break the glucose-glucose $\beta-(1 \rightarrow 4)$ glycosidic bond, therefore we cannot metabolize cellulose to get energy. It is for this reason that we do not eat paper, cotton, wood, and many other plants. Some animals (ruminants and termites) are able to metabolize cellulose, not because they produce an enzyme that can break the glucose-glucose $\beta-(1 \rightarrow 4)$ glycosidic bond, but because they contain bacteria in their digestive track that can do so. In humans, dietary cellulose acts as a bulking agent for feces, and eases defecation. When consumed, it is classified as a dietary fiber.

Much of the rigidity of plant cell walls comes from the strong intermolecular forces, especially hydrogen bonding, that are present between the very long and straight cellulose molecules that lie next to each other in a side-by-side fashion.

Example of a Homopolysaccharide: Starch

Starch is a common component of plants.

- The excess glucose produced in photosynthesis is stored as starch in plants.

Starch is composed of \qquad different polysaccharides, both of which are homopolysaccharides. The two components of starch are \qquad and \qquad .

Amylose

Amylose is composed of multiple D-glucose residues (only), bonded to each other by $\boldsymbol{\alpha}$-($1 \rightarrow 4$) glycosidic bonds.

The structure shown above represents a small section of an amylose molecule. An amylose molecule contains hundreds to many thousands of D-glucose residues.

Note that amylose and cellulose have the same bonding pattern except for the $\boldsymbol{\alpha}$ vs. $\boldsymbol{\beta}$ orientation of their glycosidic bonds.

- The difference in stereochemistry ($\boldsymbol{\alpha}$ vs. $\boldsymbol{\beta}$) in amylose vs. cellulose makes a big difference in our ability to digest these two compounds. Humans (and many other animals) have digestive enzymes (called amylases) that are capable of breaking glucose-glucose $\boldsymbol{\alpha}-(1 \rightarrow 4)$ glycosidic bonds.
- The difference in stereochemistry ($\boldsymbol{\alpha}$ vs. $\boldsymbol{\beta}$) does result in a significant difference in the threedimensional arrangement of the residues. While cellulose molecules are relatively straight, the residues in amylose form a helical coil (helix) as illustrated below.

Amylopectin

The second component of starch, amylopectin, is also a homopolysaccharide composed of multiple Dglucose residues (only), bonded to each other by $\boldsymbol{\alpha}-(1 \rightarrow 4)$ glycosidic bonds (as in amylose) with other chains of D-glucose that \qquad from carbon number 6.

The branching occurs as an $\boldsymbol{\alpha}(\mathbf{1} \boldsymbol{\rightarrow 6})$ glycosidic bond, as shown below.

The structure shown here represents a small section of an amylopectin molecule. An amylopectin molecule typically contains 2,000 to 200,000 D-glucose residues.

Branching usually occurs every 24 to 30 glucose residues in amylopectin, as illustrated below.

Because of branching, amylopectin molecules have a large number of endpoints. Since the amylase digestive enzymes attach to starch molecules at the endpoints, amylopectin can be digested more quickly than amylose. Starch contains about 70-80\% amylopectin and 20-30\% amylose. One of the three amylase digestive enzymes is capable of breaking the branching $\boldsymbol{\alpha}-(\mathbf{1} \rightarrow \mathbf{6})$ glycosidic bonds.

Example of a Homopolysaccharide: Glycogen

Plants store excess glucose as starch; animals and fungi store excess glucose as glycogen.
Glycogen is a homopolysaccharide composed of multiple D-glucose residues (only).
It is almost identical to amylopectin, the only difference is that it branches more \qquad .

- Branching in glycogen usually occurs every 8 to $\mathbf{1 0}$ glucose residues.

In humans, glycogen is made and stored primarily in liver and muscle cells.

Understanding Check: Amylose vs. Amylopectin

Identify the following as properties of either amylose, amylopectin, or both amylose and amylopectin.
a. contains $\boldsymbol{\alpha}$-($\mathbf{1} \rightarrow \mathbf{4})$ glycosidic bonds
b. homopolysaccharide
c. contains glucose residues only
d. contains $\boldsymbol{\alpha}-(\mathbf{1} \rightarrow \mathbf{6})$ glycosidic bonds
e. contains branching points
f. more quickly digested (amylose or amylopectin?)

Understanding Check: Amylose vs. Cellulose
Identify the following as properties of either amylose, cellulose, or both amylose and cellulose.
a. contains $\alpha-(\mathbf{1} \rightarrow \mathbf{4})$ glycosidic bonds
b. contains glucose residues only
c. found in plants
d. has a helical structure
e. is a homopolysaccharide
f. contains $\boldsymbol{\beta}-(\mathbf{1} \rightarrow \mathbf{4})$ glycosidic bonds
g. can be digested by humans
h. is a major component of cell walls

Understanding Check: Glycogen vs. Amylopectin

Identify the following as properties of either glycogen, amylopectin, or both glycogen and amylopectin.
a. contains $\boldsymbol{\alpha}-(\mathbf{1} \rightarrow \mathbf{4})$ glycosidic bonds
b. contains glucose residues only
c. contains $\boldsymbol{\alpha}-(\mathbf{1} \rightarrow \mathbf{6})$ glycosidic bonds
d. contains branching points
e. is a homopolysaccharide
f. produced by plants
g. produced by animals
h. branching occurs more frequently (glycogen or amylopectin)

Heteropolysaccharides

Heteropolysaccharides are composed of more than one type of residue.
The residues can be monosaccharides and/or monosaccharide derivatives.

Example of a Heteropolysaccharide: Hyaluronic acid

Hyaluronic acid contains D-glucuronic acid and N-acetyl-D-glucosamine residues, connected to each other in the bonding pattern shown below.

The D-glucuronic acid and N -acetyl-D-glucosamine residues are connected by alternating β-($1 \rightarrow 4$) and $\boldsymbol{\beta}-(\mathbf{1} \rightarrow \mathbf{3})$ glycosidic bonds.

The structure shown above represents only a small section of a hyaluronic acid molecule, which can contain up to about 50,000 residues.

Hyaluronic acid is found in the lubricating fluid that surrounds joints, and also in the vitreous humor inside the eye.

Review: Homopolysaccharides vs. Heteropolysaccharides
Homopolysaccharides contain only one type of residue.
Heteropolysaccharides contain more than one type of residue.

Summary of Carbohydrate Classification

Carbohydrates Worksheet and Key

1) Define: aldoses, ketose, hexose, aldopentose, ketotetrose, alcohol sugar, deoxy sugar, amino sugar, carboxylic acid sugar, anomeric carbon, glycosidic bond, hemiacetal, acetal, and cyclic hemiacetal

Compare and contrast: Haworth Projection vs. Fischer Projection

Compare and contrast: monosaccharide, oligosaccharide, and polysaccharide

Compare and contrast: D-sugar vs. L-sugar

Compare and contrast: starch vs. glycogen

Compare and contrast: amylose vs. amylopectin
Compare and contrast: cellulose vs. amylose
2) Identify the following as D - or L - monosaccharides:

3) Identify the following as the α or β anomer:

4) Identify the type of glycosidic bond for each of the following sugars. Choose from $\alpha-(1 \rightarrow 2)$, $\alpha-(1 \rightarrow 3), \alpha-(1 \rightarrow 4), \alpha-(1 \rightarrow 5), \alpha-(1 \rightarrow 6), \beta-(1 \rightarrow 2), \beta-(1 \rightarrow 3), \beta-(1 \rightarrow 4), \beta-(1 \rightarrow 5), \beta-(1 \rightarrow 6)$, or $\alpha, \beta-(1 \leftrightarrow 2)$ a)

b)

d)

e)

KEY

1) SEE YOUR LECTURE NOTES or the TEXBOOK
2) Identify the following as D - or L- monosaccharides:

D

L

D

L
3) Identify the following as the α or β anomer:

α

β

β
4) Identify the type of glycosidic bond for each of the following sugars. Choose from $\alpha-(1 \rightarrow 2)$, $\alpha-(1 \rightarrow 3), \alpha-(1 \rightarrow 4), \alpha-(1 \rightarrow 5), \alpha-(1 \rightarrow 6), \beta-(1 \rightarrow 2), \beta-(1 \rightarrow 3), \beta-(1 \rightarrow 4), \beta-(1 \rightarrow 5), \beta-(1 \rightarrow 6)$, or $\alpha, \beta-(1 \leftrightarrow 2)$
a) $\alpha-(1 \rightarrow 4)$
b) $\beta-(1 \rightarrow 4)$
c) $\alpha-(1 \rightarrow 6)$,
d) $\alpha, \beta-(1 \leftrightarrow 2)$
e)) β-($1 \rightarrow 3$)

Chapter 12 Lecture Notes: Lipids and Membranes

Educational Goals

1. Know the factors that characterize a compound as being a lipid.
2. Describe the structure of fatty acids and explain how saturated, monounsaturated, and polyunsaturated fatty acid structures differ from one another.
3. Predict how the number of carbons and the degree of unsaturation affect the melting points of fatty acids.
4. Describe the structure of waxes, how they are made, and understand the biological function of waxes.
5. Describe the general structure of triglycerides and list their biological functions.
6. Describe the reaction involved in the formation of triglycerides from fatty acid residues and glycerol.
7. Describe three reactions in which triglycerides are reactants.
8. Explain how the structures of saturated and unsaturated triglycerides differ from one another.
9. Explain the difference in melting points of vegetable oils vs. animal fats.
10. Distinguish phospholipids from glycolipids.
11. Distinguish glycerophospholipids from sphingophospholipid.
12. Distinguish glyceroglycolipids from sphingoglycolipids.
13. Identify the structural component that is common to all steroids and identify three important members of this class of lipids.
14. Describe the structure and function of bile salts.
15. Describe the structure and function of lipoproteins. List five types of lipoproteins.
16. Understand what is meant by the terms "total cholesterol," "good cholesterol," and "bad cholesterol" as they relate to lipid panel blood tests.
17. Understand the structural basis of the lipid class called eicosanoids.
18. Explain how aspirin, ibuprofen, and acetaminophen work to reduce fever, swelling, and pain.
19. Describe the components and structure of a cell membrane.
20. Compare and contrast passive transport and active transport.
21. Compare and contrast simple diffusion and facilitated diffusion.

Lipids are used as: cell membrane components, energy storage compounds, insulation, signaling compounds, and hormones.

Introduction to Lipids

Lipids are not defined by the presence of specific functional groups.
Lipids are defined as \qquad compounds that are \qquad in \qquad but soluble in nonpolar solvents.

- Biological compounds are organic compounds that occur in living organisms.
- There are three solubility classes for biological compounds: hydrophilic, hydrophobic, and amphipathic.
- Of these three classes, hydrophobic and amphipathic are water-insoluble.
- Amphipathic molecules are water-insoluble because they do not dissolve when placed in water; they form monolayers and micelles.

You will be introduced to seven classes of lipids in this chapter:

1) Fatty Acids
2) Waxes
3) Triglycerides
4) Steroids
5) Phospholipids
6) Glycolipids
7) Eicosanoids

Fatty Acids

Fatty acids are \qquad acids with \qquad -chain hydrocarbon parts.

general form of a fatty acid
Fatty acids typically contain between twelve and twenty carbon atoms.
A specific example of a fatty acid is lauric acid.

lauric acid

In order to save time when drawing structural formulas for large molecules such as fatty acids, an abbreviated condensed structure is used. Repeating units are shown in parenthesis with a subscripted number where the subscript is equal to the number of times that the structural unit within the parenthesis is repeated.

- For example, carbons that are single bonded to each other in a linear sequence, along with the hydrogens that are bonded to them, are abbreviated as $\left(\mathrm{CH}_{2}\right)_{\mathbf{n}}$, where \mathbf{n} is equal to the number of times that the CH_{2} is repeated.

Fatty acids usually contain an \qquad number of carbon atoms because they are made in nature by combining two-carbon molecules.

Fatty acids can differ from one another in the \qquad of carbon atoms they contain, and in the number of \qquad bonds they contain.

Some Fatty Acids that are Frequently Encountered in Biological Systems				
Number of Carbons	Number of Carbon-Carbon Double Bonds	Common Name	Condensed Structure	Major Source
12	0	lauric acid	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{COOH}$	coconut
14	0	myristic acid	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{12} \mathrm{COOH}$	nutmeg
16	0	palmitic acid	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right){ }_{44} \mathrm{COOH}$	palm
16	1	palmitoleic acid	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{COOH}$	macadamia, animals
18	0	stearic acid	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{16} \mathrm{COOH}$	animal fat
18	1	oleic acid	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{COOH}$	olives
18	2	linoleic acid	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4}\left(\mathrm{CH}=\mathrm{CHCH}_{2}\right)_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{COOH}$	safflower, soy
18	3	linolenic acid	$\mathrm{CH}_{3} \mathrm{CH}_{2}\left(\mathrm{CH}=\mathrm{CHCH}_{2}\right)_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{COOH}$	flax, corn

Classification of Fatty Acids

Fatty acids are classified as saturated, monounsaturated, or polyunsaturated based on the number of carbon-carbon double bonds they contain.

- Saturated fatty acids contain no carbon-carbon double bonds.
- Monounsaturated fatty acids contain one carbon-carbon double bond.
- Polyunsaturated fatty acids contain more than one carbon-carbon double bond.

Classification of Fatty Acids

Another way in which fatty acids can be classified is by their \qquad .
They are categorized as either cis or trans, based on the stereochemistry of the carbon-carbon double bonds in their hydrocarbon parts.

- Fatty acids that contain one or more double-bonded carbons with the trans geometry are referred to as trans fatty acids.
- Fatty acids that contain only the cis geometry are called cis fatty acids.

Most of the fatty acids that are produced in nature are \qquad ; the only known exceptions are the fatty acids produced by some bacteria.

- Examples of cis fatty acids:

Omega Notation and Classification of Unsaturated Fatty Acids

Although not used in IUPAC naming, omega notation is frequently seen in popular nutrition literature.
In omega notation, the carbon at the \qquad of a fatty acid's hydrocarbon chain is designated as the "omega carbon" or " ω-carbon."

- Omega ($\boldsymbol{\omega}$) is the last letter of the Greek alphabet, making the omega designation appropriate for the "last" carbon in a fatty acid's hydrocarbon chain.
Unsaturated fatty acids are put into omega notation classes by the position of the first double bond that occurs, counting from the omega carbon.
Example: If a carbon-carbon double bond in a fatty acid occurs at the seventh carbon, counting from the omega carbon, then it is classified as an omega-7 fatty acid (or $\omega-7$ fatty acid).

palmitoleic acid (an omega-7 fatty acid)
An example of an omega-3 fatty acid is linolenic acid.

linolenic acid (an omega-3 fatty acid)

Understanding Check: Use the structures in the table shown in the video to give the omega notation classification of:
a) oleic acid
b) linoleic acid

Properties of Fatty Acids: Melting Points of Fatty Acids

All fatty acids are attracted to each other through hydrogen bonding, dipole-dipole interactions of their carboxyl groups, and through London forces.

The melting points of fatty acids are related to the \qquad of their hydrocarbon part - as are, in general, the melting points of all organic compounds.
The larger the nonpolar hydrocarbon part, the stronger the \qquad forces and the higher the melting point.

Melting Points of some Saturated Fatty Acids

Number of Carbons	Common Name	Condensed Structure	Melting Point (${ }^{\circ} \mathrm{C}$)
12	lauric acid	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{COOH}$	43
14	myristic acid	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{12} \mathrm{COOH}$	54
16	palmitic acid	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{14} \mathrm{COOH}$	62
18	stearic acid	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{16} \mathrm{COOH}$	69

Another factor that influences the melting points of fatty acids is their degree of saturation.
The more carbon-carbon \qquad bonds that are present in a fatty acid, the \qquad the melting point. The inability of rotation around double bonds prevents less saturated molecules from getting as close to each other as is possible for more highly saturated molecules. The strength of London forces - and all other noncovalent interactions - are distant dependent; the closer the particles are to each other, the stronger the attractive force.

If two fatty acids have the same number of carbon atoms but differ in degree of saturation, molecules of the fatty acid with more carboncarbon double bonds cannot pack as close to to each other as the molecules of the more saturated fatty acid, and will therefore have a lower melting point than the more saturated fatty acid.

Understanding Check: Which fatty acid would you expect to have the higher melting point, oleic acid or palmitoleic acid?

Understanding Check: Which fatty acid would you expect to have the higher melting point, oleic acid or linoleic acid?

Properties of Fatty Acids: Water Solubility of Fatty Acids

Fatty acids are \qquad and therefore do not dissolve in water.

- This is because they contain eleven or more carbon atoms in their hydrocarbon part.

general form of a fatty acid

Properties of Fatty Acids: Formation of Carboxylate Ions from Fatty Acids

Fatty acids, like all carboxylic acids, will react with water to produce their corresponding
\qquad ion forms (base forms).

- Example: Lauric acid and its corresponding carboxylate ion (laurate ion).

In previous chapters, you learned that the relative amounts of a conjugate pair's acid form and base form that are present in an aqueous solution depends on the pH of the solution and the pK_{a} of the particular acid (as described by the Henderson-Hasselbalch Equation). The pK_{a} of carboxylic acids (including fatty acids) is about 5 . Since the physiological pH in cells, blood, and intercellular solutions is greater than $\mathbf{5}$, the carboxylate form of fatty acids are predominant in these solutions $\left(\mathrm{pH}>\mathrm{pK}_{\mathrm{a}}\right)$.

Carboxylate ions are named by replacing the "-ic acid" suffix of the fatty acid name with "-ate ion."

- Examples:

Waxes

Waxes are members of the \qquad family of organic compounds.

Waxes are esters with relatively \qquad hydrocarbon parts.

general form of a wax
Waxes are produced by plants and animals.

- Insects use wax to contain their larvae and store food or pollen. Examples of waxes are the esters in beeswax.
- Beeswax is a mixture of compounds, of which about 80% are waxes. The condensed and skeletal structural formulas for the most abundant wax molecule found in beeswax are shown below.

Waxes are hydrophobic because of their large and nonpolar hydrocarbon parts.

- Sheep secrete a wax called lanolin which protects their wool and skin from the environment and helps shed water from their coats.
- Plants secrete waxes which help them control hydration and evaporation.

Examples of Esters Found in Waxes

Common Name	Most Abundant Ester	Source	Uses
beeswax	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{13} \mathrm{COOCH}_{2}\left(\mathrm{CH}_{2}\right)_{27} \mathrm{CH}_{3}$	honeycomb	candles, shoe polish, wax paper
carnauba wax	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{24} \mathrm{COOCH}_{2}\left(\mathrm{CH}_{2}\right)_{27} \mathrm{CH}_{3}$	Brazilian palm	furniture, car, and floor wax
insect wax	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{24} \mathrm{COOCH}_{2}\left(\mathrm{CH}_{2}\right)_{27} \mathrm{CH}_{3}$	insects	shoe polish
spermaceti	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{30} \mathrm{COOCH}_{2}\left(\mathrm{CH}_{2}\right)_{14} \mathrm{CH}_{3}$	whale's head	lubricant
jojoba wax	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{18} \mathrm{COOCH}_{2}\left(\mathrm{CH}_{2}\right)_{18} \mathrm{CH}_{3}$	jojoba bush	candles, cosmetics, soap additive

Formation of Waxes

In chapter 9, you learned that in esterification, carboxylic acids react with alcohols to form esters.
Waxes are formed by the esterification reaction of fatty acids with large alcohols.

- In this reaction, the $\mathbf{O H}$ from the fatty acid and an \mathbf{H} from the alcohol are removed, and then combined to form $\mathbf{H}_{\mathbf{2}} \mathbf{O}$. The oxygen (\mathbf{O}) and hydrocarbon that was originally part of the alcohol, forms a new bond to the fatty acid's carbonyl carbon.

A specific example of the formation of a wax molecule in an esterification reaction is shown below.

Understanding Check

Draw the condensed structure of the wax that is produced in the reaction shown here.

Triglycerides

The Structure of Triglycerides

Triglycerides - also referred to as triacylglycerides - are triesters.

- The reason for this classification is that they contain three \qquad -type bonds.
The triglyceride bonding pattern can be seen in the line bond, condensed, and space-filling structures shown here. The ester bonding patterns are highlighted in yellow.

The Formation of Triglycerides

Triglycerides are formed in the esterification reaction of three fatty acid molecules with \qquad (an alcohol with three hydroxyl groups - a triol).

When molecules from particular organic families - such as the three fatty acids and glycerol in the formation of a triglyceride - react to form a large molecule, or when a large molecule is broken down to form them, they are often referred to as " \qquad ."

- For example, a triglyceride contains three fatty acid residues and a glycerol residue.

The part that was originally from glycerol - the glycerol residue - is sometimes called the "glycerol backbone."

Understanding Check

Draw the condensed structure of the triglyceride that is formed from the esterification reaction of three lauric acid molecules and a glycerol molecule.

lauric acid

Classification of Triglycerides: Fat vs. Oil

The terms "fat" and "oil" can each have multiple meanings and, worse, are often used ambiguously. In the most general sense, the term "oil" is defined as any nonpolar, viscous liquid.

In the context of triglycerides:

- The term " \qquad $"$ is generally used for a triglyceride that is \qquad at room temperature.
- The term " \qquad $"$ is generally used for a triglyceride that is \qquad at room temperature.

Our use of the term "fat" in this context should not be confused with the common practice using the term "fat" for adipose tissue in humans and animals. Adipose tissue is composed of cells that store triglycerides.

Solid triglycerides made by animals are referred to as animal fat.

- Animal fat can be separated from other animal parts in a process called rendering. Fat from pigs is used in food products and is called lard. Fat from chickens that is used in food products is called schmaltz. Fat from beef and sheep is called tallow, and is used primarily for producing soap and in animal feed. Fat from milk is called butterfat, clarified butter, or ghee. The food product that is commercially marketed as "butter" contains about 80% fat, 15% water, and 5% protein and other substances. Butterfat is usually, but not always, made from cow's milk.

Important Roles of Triglycerides in Animals:

- Energy storage
- Production of ATP
- Provision of fatty acids for the production of other lipids
- Insulation

Liquid triglycerides that are made by plants are referred to as vegetable oils. Vegetable oils are used for cooking and in food products, biofuels, cosmetics, and soaps. Evidence of human purification of vegetable oils goes as far back as 4000 years ("4,000-year-old 'kitchen' unearthed in Indiana". Archaeo News. January 26, 2006).

Some Vegetable Oils and Their World Consumption, Primary Uses, and Sources

Vegetable Oil	Worldwide Consumption (metric tons)	Primary Uses and Sources
palm oil	41.3	cooking oil, biofuel (from palm fruit mesocarp pulp)
soybean oil	41.3	cooking oil
canola oil	18.2	cooking oil (comes from a variety of rapeseeds)
sunflower oil	9.9	cooking oil, biodiesel (from sunflower seed)
cottonseed oil	5.0	food products
palm kernel oil	4.8	cooking oil, food products (from palm seed)
peanut oil	4.8	cooking oil
coconut oil	3.5	cooking oil and soap making
olive oil	2.8	cooking oil, cosmetics, soaps, fuel for traditional oil lamps (from whole olives)

Worldwide Consumption data is from the US Department of Agriculture for 2007/2008

Fish oil is purified from tissue and belly cavities of oily fish, such as sardines, herring, anchovies, salmon, trout, tuna, and mackerel. Some fish, such as shark and cod, have significant amounts of oil stored in their liver.

In nutritional labeling, all triglycerides, whether from plants or animals, solid or liquid, are often grouped together and called "fat" or included in the "total fat" category.

Sample label for Macaroni \& Cheese

Classification of Triglycerides: Saturated vs. Unsaturated Triglycerides

We classify triglyceride molecules as either saturated or unsaturated using the same criteria as we used for fatty acids.

- Saturated triglyceride molecules \qquad contain carbon-carbon \qquad bonds.
- Unsaturated triglyceride molecules contain \qquad carbon-carbon double bonds.
- Unsaturated triglycerides are often further subcategorized as either \qquad unsaturated or \qquad unsaturated.
- Monounsaturated triglycerides contain only \qquad carbon-carbon double bond.
- Polyunsaturated triglycerides contain \qquad carbon-carbon double bonds.

Just like fatty a cids, triglycerides with higher degrees of saturation (fewer carbon-carbon double bonds) are more flexible and can pack closer to each other than less saturated triglycerides.

- It is for this reason that the noncovalent interactions, and therefore the melting points of triglycerides increase with the degree of saturation.

Since animal fats have a relatively high degree of saturation, they are solid at room temperature.

- Consider beef-fat or butter.

Vegetable oils and fish oils have a lower degree of saturation than animal fats, and are therefore liquid at room temperature.

- Consider olive or corn oil.
- Palm and coconut oil are semi-solid at room temperature because they contain a higher degree of saturation than the other vegetable oils.

Understanding Check
Categorize each one of these triglycerides as being either saturated or unsaturated.

Understanding Check

Using table of fatty acids shown below, draw the skeletal structure of a saturated triglyceride.

Some Fatty Acids that are Frequently Encountered in Biological Systems

Number of Carbons	Number of Carbon-Carbon Double Bonds	Common Name	Condensed Structure	Major Source
12	0	lauric acid	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{10} \mathrm{COOH}$	coconut
14	0	myristic acid	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{12} \mathrm{COOH}$	nutmeg
16	0	palmitic acid	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{14} \mathrm{COOH}$	palm
16	1	palmitoleic acid	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{COOH}$	macadamia, animals
18	0	stearic acid	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{16} \mathrm{COOH}_{3}$	animal fat
18	1	oleic acid	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}_{3} \mathrm{CH}_{\left(\mathrm{CH}_{2}\right)_{7} \mathrm{COOH}}$	olives
18	2	linoleic acid	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4}\left(\mathrm{CH}_{3} \mathrm{CHCH}_{2}\right)_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{COOH}$	safflower, soy
18	3	linolenic acid	$\mathrm{CH}_{3} \mathrm{CH}_{2}\left(\mathrm{CH}_{2} \mathrm{CHCH}_{2}\right)_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{COOH}$	flax, corn

Reactions of Triglycerides

1) Catalytic Hydrogenation

- unsaturated triglyceride $+\mathrm{H}_{2} \rightarrow$ more saturated triglyceride

2) Oxidation

- triglyceride $+\mathrm{O}_{2} \rightarrow$ small organic molecules

3) Hydrolysis/Saponification

- hydrolysis of the ester group in the presence of hydroxide $\left(\mathrm{OH}^{-}\right)$

1) Catalytic Hydrogenation

The carbon-carbon double bonds of triglycerides will react with hydrogen gas $\left(\mathbf{H}_{\mathbf{2}}\right)$ in the presence of a catalyst (at high temperatures). In chapter 6, you learned about the hydrogenation of an alkene's carbon-carbon double bonds. We were able to predict the product by "adding \mathbf{H}_{2} across the carboncarbon double bond." We can do the same for triglycerides.

If enough $\mathbf{H}_{\mathbf{2}}$ is supplied, the carbon-carbon double bonds in unsaturated triglycerides become \qquad ; a saturated triglyceride is formed.
A hydrogen atom is added to each of the double-bonded carbons, thereby converting them into single bonds. The reaction must be done at a high temperature and on the surface of a metal catalyst. The catalysts used are typically platinum, palladium, rhodium, or ruthenium. An example of a chemical equation for complete saturation during a catalytic hydrogenation reaction is shown below.

an unsaturated triglyceride

a saturated triglyceride
If the amount of $\mathbf{H}_{\mathbf{2}}$ is limited, or the chemical reaction time is reduced, then the triglyceride product will contain some unreacted carbon-carbon double bonds.

- We call this process \qquad hydrogenation.
- Example of a partial hydrogenation reaction:

an unsaturated triglyceride
a partially hydrogenated triglyceride
Note that the triglyceride reactant in this example contains four double bonds, however, only two moles of $\mathbf{H}_{\mathbf{2}}$ were supplied, therefore only two of the carbon-carbon double bonds became saturated.
Triglycerides that are found in nature, with few exceptions, contain only cis fatty acid residues. Note that the reactant for the reaction shown above is drawn using cis configurations around all of the carbon-carbon double bonds.

The catalytic hydrogenation of vegetable oils is a very important reaction for the food industry.
Solid triglycerides are advantageous in baking because of the texture that is achieved when they are mixed with flour. Animal fat - butter - can be used, however it is more expensive than vegetable oils. The partial hydrogenation of vegetable oils produces what is referred to as partially hydrogenated vegetable oil or shortening.
Margarine and Crisco are examples of partially hydrogenated vegetable oil products.
An undesirable consequence of partial hydrogenation is the formation of trans fats - fats containing one or more carbon-carbon double bonds that have the trans configuration.

- Many of the unreacted cis carbon-carbon double bonds are converted to the trans configuration.
- Example: The partial hydrogenation of a naturally-occurring unsaturated cis-triglyceride (vegetable oil) to a partially hydrogenated trans-triglyceride.

The product is a partially hydrogenated vegetable oil molecule, which typically contains one or more trans fatty acid residues.

Understanding Check: Draw the condensed structure of the saturated triglyceride that is produced from the complete hydrogenation of the triglyceride shown here.

2) Oxidation of Triglycerides

Triglycerides are oxidized by oxygen gas $\left(\mathrm{O}_{2}\right)$ to form \qquad and \qquad .

Prediction of the specific aldehydes and carboxylic acids that are produced is beyond the scope of this book, however a couple of typical aldehydes and a carboxylic acid that can be produced in this reaction are shown here (below, right).

Many of the aldehydes and carboxylic acids that are produced in this reaction have foul odors.

When triglyceride food products undergo this reaction, it is called " \qquad "; the food substances are said to become "rancid."

In order to prevent or slow the rancidification of foods, the oxygen supply can be limited by air-tight containers and packaging, and the food can be stored at low temperatures.

an aldehyde

3) Saponification

In the saponification reaction, a triglyceride reacts with hydroxide ions to produce \qquad long-chain carboxylate ions and glycerol (an alcohol).

- The general form of this reaction is shown below.

Example of the hydrolysis of a specific triglyceride:

The hydroxide ions in the saponification reaction come from hydroxide-containing ionic compounds, usually sodium hydroxide $(\mathbf{N a O H})$ or potassium hydroxide (KOH).

- When the cation of the hydroxide-containing compound is specified, it is often written after the long-chain carboxylate ion products as shown below:

When the $\mathbf{N a}^{+}$or \mathbf{K}^{+}cations are included in chemical equations, as shown above, be careful to avoid the common misconception of interpreting the negative sign of the carboxylate ion's formal charge for a covalent bond to the sodium or potassium ion.

The compounds formed from the long-chain carboxylate anions and the $\mathbf{N a}^{+}$(or \mathbf{K}^{+}) cations are ionic and are called \qquad .

The long-chain carboxylate ions that are produced are \qquad .

When fatty acid salts are formed or placed in water, only the cations, $\mathbf{N a}^{+}$in our example, are solvated (dissolve).

The long-chain carboxylate ions form
\qquad and \qquad .

This is an important reaction because it is used to make soap.
Because the long-chain carboxylate ions that are produced are amphipathic, they act as emulsifying agents to remove nonpolar molecules (i.e. grease or oil) from surfaces, including - very importantly - skin and clothing.

An illustration of an oil droplet emulsified by a long-chain carboxylate ion micelle.

Understanding Check

Draw the condensed structure of the products for the saponification of the triglyceride shown below. Include the cations when drawing the fatty acid salts.

Phospholipids and Glycolipids

Phospholipids and glycolipids are best known for their presence in biological membranes.
They are amphipathic compounds that contain a polar "head" group that is very hydrophilic, and hydrophobic nonpolar "tail" groups.
Phospholipids and glycolipids are found in nature as either monolayers, micelles, or in a layer that is two molecules-thick called a "lipid \qquad " or a "lipid \qquad ."

Note that the polar heads are oriented either toward the water that is inside the cell, or toward the water that is outside of the cell. The nonpolar tails in the top of the double layer are much more attracted to the nonpolar tails in the bottom of the double layer than to water or polar head groups. It is for this reason that the two monolayers have the tail-to-tail orientation. Later in this chapter, you will see that there are other components distributed throughout the lipid double layer of biological membranes, however, for simplicity, those other components are not included in the illustration (above).

Lipid double layer membranes not only occur as cell membranes, they also form specialized compartments within cells. For example, intracellular double layer membranes occur in liposomes and form the outer boundary of a cell's nucleus.

Phospholipids

There are two main classes of phospholipids: \qquad phospholipids and \qquad phospholipids.

- Both of these classes contain a \qquad residue in their structure, it is for this reason that they are called phospholipids.

1) Glycerophospholipids

Glycerophospholipids are made from the components shown here.

one or two fatty acids

glycerol

(dihydrogen phosphate ion)

These components are bonded to each other by \qquad reactions to form glycerophospholipids.

When both OH's of a phosphate form phosphoester bonds, the bonding pattern is called a phospho \qquad bond.

Note the similarity in the way that a carboxyl group (COOH) of a fatty acid reacts with an alcohol, and the way that a phosphate reacts with an alcohol.

The ester and phosphodiester bonding patterns in a glycerophospholipid are highlighted and labeled in the structure shown below.

The various "residues" that make up a glycerophospholipid are labeled in the structure below.

The atoms that came from glycerol are referred to the "glycerol \qquad .$"$

The identity of the organic "X-group" varies.

The subclasses of glycerophospholipids are determined by the identity of their X-groups.

The Three Most Common "X-Groups" found in Glycerophospholipids

Phosphatidylethanolamines and phosphatidylserines are components of cephalin.

- Cephalin is found throughout the body, with especially large amounts present in the brain and nerve tissue.

Phosphatidylcholines are a component of lecithin.

- Lecithin is a term for the yellow-brown fatty substances present in animal and plant tissues.

A specific example of a glycerophospholipid is shown below.

This particular glycerophospholipid is classified as a phosphatidylethanolamine because the X-group is $-\mathbf{C H}_{2} \mathbf{C H}_{2} \mathbf{N H}_{3}{ }^{+}$.

Glycerophospholipids have a polar head region and nonpolar tails, as depicted for the glycerophospholipid below.

The polar head region is quite hydrophilic. This region is attracted to water through dipole-dipole interactions because it contains several "highly polar" bonds. It can hydrogen bond with water. The polar head is also attracted to water through ion-dipole interactions because of the formal charge on both an oxygen and a nitrogen. The hydrocarbon chains of the fatty acid residues make up the nonpolar tails.

2) Sphingophospholipids

The difference between the two classes of phospholipids - glycerophospholipids and sphingophospholipids - is that sphingophospholipids have a " \qquad backbone" instead of a glycerol backbone.

Sphingophospholipids are made from the components shown below.

Let's take a look at the bonds that are made in the formation of a sphingophospholipid.

The amide and phosphodiester bonding patterns for a sphingophospholipid are indicated in the structure shown below.

As was the case for glycerophospholipids, sphingophospholipids are classified based on their X-group.

Sphingomyelins have this name because they are the most abundant class of phospholipid found in myelin (although they are the most abundant phospholipids found in myelin, the most abundant lipids in

cross section of the myelin sheath myelin are glycolipids, which I will discuss soon). Myelin is a combination of lipids (85%) and proteins ($\sim 15 \%$), assembled as a bilayer that wraps around nerve cell axons. The myelin sheath is an electrical insulator and its main function is to increase the speed at which nerve impulses are propagated along axons.

If the X-group of a sphingophospholipid is a hydrogen (instead of an organic group), then it is classified as a ceramide. Ceramides are found in cell membranes and in the myelin sheath of nerve cells.

A specific example of a sphingophospholipid (a sphingomyelin) is shown below.

If you are looking at a color image, the atoms from sphingosine are in green font. I arbitrarily chose to use myristic acid as the fatty acid residue; any fatty acid could have been used.
This particular sphingophospholipid is classified as a sphingomyelin since the X -group is
$\mathbf{C H}_{2} \mathbf{C H}_{2} \mathbf{N}^{+}\left(\mathbf{C H}_{3}\right)_{3}$.
Sphingophospholipids are amphipathic; they have a polar head region and nonpolar tails.
Note that most of the atoms from sphingosine are part of one of the lipid's nonpolar tails.

Review of Phospholipid Structure: Glycerophospholipids vs. Sphingophospholipids

If you are given the structure of a phospholipid, you should be able to determine if it is a glycerophospholipid or a sphingophospholipid.

The key to doing so is to identify either a glycerol backbone (for glycerophospholipids) or a sphingosine backbone (for sphingophospholipids).

An easy way to do so is to
 look for the nitrogen in the amide bond between the fatty acid residue and the sphingosine
backbone. This amide bonding pattern is present in sphingophospholipids, but not in glycerophospholipids.

Understanding Check

Identify (circle) the nitrogen atom that is contained in the amide bonding pattern in the sphingophospholipid shown here.

Understanding Check

Categorized each of the following compounds as being either a glycerophospholipid or a sphingophospholipid.

b)

Understanding Check

Categorize each of the compounds shown here as being either a phosphatidylethanolamine, a phosphatidylcholine, a phosphatidylserine, a ceramide, or a sphingomyelin.

b)

Glycolipids

Glycolipids are lipids that contain one or more \qquad residues.

- A glycolipid is easily distinguished from a phospholipid by the presence of a monosaccharide residue and the \qquad of a phosphate residue.

Glycolipids are found in the cell membranes of plants and animals.

- In all eukaryotic cells, the monosaccharide residues of the glycolipid extend from the outer surface of the cell membrane double layer into the aqueous region outside of the cell, as illustrated below.

Inside of the Cell (Cytoplasm)
The specific monosaccharide residues that protrude from the membrane serve in maintaining membrane stability, attaching cells to one another to form tissues, and as a "recognition site" for "cell signaling" chemicals. Cell signaling chemicals make it possible for the cells to respond to their environment in order to enable functions such as tissue homeostasis, immunity, and the development of the organism. When signaling systems are not operating correctly to process the communication between cells and their environments, diseases such as cancer, diabetes, and autoimmune disorders occur.

An example of glycolipid recognition sites are the monosaccharides that protrude from red blood cells and form the basis of ABO blood typing. The illustration below shows the various bonding patterns of glycolipid/monosaccharides used for ABO blood typing and their classification.

This image shows the glycolipid monosaccharides that define the four "ABO" blood types. Note that type $A B$ red blood cells contain both type-A and type B glycolipids.

Glycolipids can be classified by their structures as glyceroglycolipids or sphingoglycolipids.

1) Glyceroglycolipids

Glycolipids with a glycerol backbone are called glyceroglycolipids.

general form of a glyceroglycolipid

A specific example of a glyceroglycolipid is the monogalactosyldiglyceride (MGDG) shown below.

The monosaccharide residue in all monogalactosyldiglycerides is galactose. The fatty acid residues of monogalactosyldiglycerides vary; I arbitrarily chose the two fatty acid residues in the structure shown above. MGDG occurs in high quantity in the membranes that surround chloroplast organelles.

All glycolipids are amphipathic. They have a polar head region and nonpolar tails.

The multiple highly-polar $\mathbf{O H}$ groups from the monosaccharide make the polar head region quite hydrophilic.

2) Sphingoglycolipids

Glycolipids with a sphingosine backbone are called sphingoglycolipids.
The general form of a sphingoglycolipid is shown below.

general form of a sphingoglycolipid

- Sphingoglycolipids are found predominantly in nerve and muscle cells.
- They are the major lipid component of the myelin sheath.

An example of a shpingoglycolipid is the glucosylceramide shown below:

The monosaccharide residue in all glucosylceramides is glucose. The fatty acid residue in glucosylceramides varies; I arbitrarily chose a stearic acid residue for the structure shown above.

The accumulation of large quantities of sphingolipids in cells and organs results from certain genetic diseases called lipidosis. The body normally controls the amount of sphingolipids that accumulate by using enzymes that catalyze reactions that break down sphingolipids. Genetic disorders result in a deficiency of an enzyme responsible for the breakdown of a sphingolipid. Gaucher's disease is caused by a deficiency in the enzyme that breaks down glucosylceramide. Krabbe disease is caused from a deficiency in the enzyme responsible for catalyzing the breakdown of galactosylceramine (a sphingolipid in which the monosaccharide residue is galactose). Tay-Sachs disease is a genetic disorder that causes a deficiency of the enzyme responsible for the breakdown of GM2-ganglioside (a sphingolipid in which the monosaccharide residues are a particular oligosaccharide). The other sphingolipidosis diseases are Fabry disease, Sandhoff disease, and metachromatic
leukodystrophy. Some of these diseases can be treated by a very costly enzyme replacement therapy, however most sphingolipidosis cases result in death before five years of age.

Review of Phospholipid and Glycolipid Classification

Understanding Check

Categorized each of the following compounds as being either a phospholipid or a glycolipid.

b)

Steroids

Steroids are lipids that contain a particular \qquad , \qquad structure.

- Fused rings are rings that share atoms.

The fused four-ring structure, which is common to all steroids, contains three six-member rings and one five-member ring, that are fused to each other in the pattern shown below.

the fused, four-ring structure common to steroids
Outside of the health and scientific communities, the term "steroid" is often only associated with the performance enhancing drugs (steroid hormones) that are used by some athletes/bodybuilders. Those steroid hormones are just one type of steroid.

The three types of steroids are:

1. cholesterol
2. steroid hormones
3. bile salts

Cholesterol

Cholesterol is the name of the particular molecule shown below.

Cholesterol's primary biological roles are as a \qquad component of animal biological membranes and as a starting material for the biosynthesis of \qquad steroids (steroid hormones and bile salts).
Cholesterol is not found in significant quantities in plants. Animals can make cholesterol from other compounds; therefore, cholesterol is present in your body even if you don't ingest it.
Cholesterol maintains the structural integrity and rigidity of biological membrane double layers by embedding its hydrophobic fusedring structure within the nonpolar tails of the double layer.

Cholesterol imparts rigidity to membranes because of the lack of free rotation within its fused-ring structure.

Animals produce other essential steroids (steroid hormones and bile salts) using cholesterol as a
\qquad material.

- The production of steroids is called \qquad .
- NOTE: You ARE NOT required to memorize the steroidogenesis figure (below).

A diagram of the processes in which steroid hormones are produced from cholesterol is shown above. The enzymes that catalyze these reactions and their locations are indicated by the colored boxes drawn atop the reaction arrows. The white circles and ovals indicate the groups that were changed in the synthesis reactions. The cholesterol structure (upper left) has the carbon positions numbered. Wedges and dashes are used to indicate bonds that are oriented upward or downwards, respectively, relative to the ring structure. a and β designations have the same meaning as used for carbohydrates.

Source: Häggström M, Richfield D (2014). "Diagram of the pathways of human steroidogenesis". Wikiversity Journal of Medicine 1 (1). DOI:10.15347/wjm/2014.005. ISSN 20018762. Author: David Richfield and Mikael Häggström, CC-BY-SA, http://creativecommons.org/licenses/by-sa/3.0/deed.en

Steroid Hormones

\qquad are a class of signaling compounds that are produced by the glands of the endocrine or exocrine system, then released into the bloodstream (or sap in the case of plants).

Hormones vary in their chemical structure; those that are derived from cholesterol, as shown in the steroidogenesis diagram here, are called \qquad hormones.

An example of a steroid hormone is a "male sex hormone" called testosterone. Testosterone and other male sex hormones (androgens) are responsible for the development of male characteristics such as larger muscle growth, thick facial hair, male sex organs, and sperm production. Although testosterone is classified as one of the male sex hormones, it is also present, at lower levels, in females. The structure of testosterone and other androgens are shown in the steroidogenesis diagram (see the previous page).

- Testosterone acts to decrease body fat and increase muscle mass. Synthetic derivatives of testosterone, called anabolic steroids, will enhance these effects. You have probably heard much in the news about the use of anabolic steroids by athletes. Many professional sports organizations ban their use, and periodically test athletes to enforce the policy. Anabolic steroids are currently used in medical practice to increase muscle growth and appetite, induce male puberty, and to treat chronic wasting conditions including cancer and AIDS. It is considered unwise to use anabolic steroids in order to enhance athletic performance and for recreational bodybuilding because of the detrimental side effects; this is especially true for high doses and/or long-term use. Such side effects for males include pattern baldness, breast development, a reduction in testicle size, low sperm count, and infertility. The side effects for females include abnormal menstrual function, breast atrophy, increased facial hair, voice-deepening, and baldness. Other possible adverse side effects - for both men and women - include liver disease, heart disease, and depression.

Other examples of steroid hormones are estrogens and progestogens, the "female sex hormones." They are responsible for the development of female characteristics related to menstruation and reproductive cycles, such as broadening of the pelvis, fat deposited in breasts, and uterus size increase. An example of female sex hormone is progesterone, which is responsible for many of the biological functions associated with pregnancy. For example, it causes the mucous membrane of the uterus to prepare for the implantation of eggs. If pregnancy does not occur, then progesterone levels decrease and cause menstruation. The structure of progesterone and other progestogens are shown in the steroidogenesis diagram.

Although the adrenal gland is best-known for its production of adrenaline (a nonsteroidal hormone), it does produce several steroid hormones. Steroid hormones produced by the adrenal gland are called adrenal corticosteroids. Examples of adrenal corticosteroids are cortisol and aldosterone. One of the many roles of cortisol is to suppress immune responses. It is administered as a therapeutic medication under the name hydrocortisone. Aldosterone plays an important role in regulating blood pressure and the concentration of some electrolytes. The structure of cortisol and aldosterone are shown in the steroidogenesis diagram.

Bile Salts

Bile salts are amphipathic compounds produced using \qquad as a starting material.

They are produced in the liver and stored in the gallbladder.
The biological role of bile salts is to \qquad and \qquad dietary triglycerides (fats and vegetable oils) and \qquad in their metabolism.

The structures of two bile salts are shown below; note the four fused-ring structures, which are present in all steroids.

The amphipathic structure of a bile salt differs from the arrangement that you have seen for other amphipathic compounds. All of the amphipathic compounds that you have previously seen had polar "heads" connected to nonpolar "tails". This is not the case for bile salts.

Bile salts can be modeled as oblong disks that have a polar \qquad and a nonpolar \qquad , as illustrated below.

How do bile salts emulsify and transport_dietary triglycerides and assist in their metabolism?
The triglycerides (fats and oils) that we eat are unable to pass through the intestine wall.

- In order for these nutrients to be used by the body, they must be broken down into smaller molecules, in a process called digestion.

Digestion of fats and oils involves the partial hydrolysis of triglycerides to produce fatty acid salts and
\qquad , as shown for a typical triglyceride in the chemical equation below.

a triglyceride

a monoglyceride

two fatty acids (base forms)

The enzyme responsible for catalyzing this reaction is called pancreatic lipase.
Bile salts disassemble the large globules of dietary triglycerides and cholesterol within the intestine into small droplets emulsified in micelles.

Pancreatic lipase enzymes are incorporated into the bile salt micelle monolayer, as illustrated in the cross sectional view shown below.

The fatty acids and monoglycerides that are formed by the digestion of fats and oils can pass through the walls of the intestine and then can be used by the body.
After being absorbed into the intestine walls, the fatty acids and monoglycerides are re-assembled back into triglycerides.

The triglycerides are then emulsified and transported, along with cholesterol, in a colloid called a
\qquad .

Transport of Cholesterol and Triglycerides

Since blood, lymph, and intercellular fluid are \qquad mixtures, cholesterol and triglycerides must be \qquad in order to be transported throughout the body.

- This is done by lipoproteins.

Lipoproteins are composed of a core that contains emulsified triglycerides and cholesterol, which is surrounded by a micelle monolayer made from proteins, phospholipids, and cholesterol.
Lipoproteins contain cholesterol in their micelle monolayers, and in their emulsified cores.
The cholesterol in the emulsified core of lipoproteins is in the form of cholesterol esters, formed by the esterification reaction of cholesterol with a fatty acid.

A cross-sectional illustration of a lipoprotein

There are five classes of lipoproteins: chylomicrons, very low-density lipoproteins (VLDL), intermediate-density lipoproteins (IDL), low-density lipoproteins (LDL), and high-density lipoproteins (HDL).

These classifications are based on the \qquad of the lipoprotein particles.

- Since protein is more dense than lipid, the greater the percentage of protein, the higher the density of the lipoprotein.

Density Ranges and Percent (w/w) Compositions for Lipoprotein Classes

Lipoprotein Classification	Density $\left(\mathbf{g} \mathbf{c m}^{\mathbf{3}}\right)$	\% Protein	\% Cholesterol	\% Phospholipids	\% Triglycerides and Cholesterol Esters
chylomicrons	<0.94	<2	8	7	84
VLDL	<1.006	10	22	18	50
IDL	$1.006-1.019$	18	29	22	31
LDL	$1.019-1.063$	25	50	21	8
HDL	$1.063-1.21$	33	30	29	4

The amounts of HDL and LDL in the blood have been correlated with the constriction (occlusion) of the coronary artery, which makes the heart work harder and can lead to myocardial infarction (heart attack). The thickening of the inner layer of the artery is caused by the accumulation of plaque, which is made from living white blood cells and remnants of dead cells, including cholesterol and triglycerides.

- A high LDL level is correlated with a greater risk of heart disease.
- A high HDL level is correlated with a lowered risk of heart disease.

For these reasons, it is recommended that adults have the lipid levels in their blood tested at least once every five years. The test is called a lipoprotein panel. Although the concentration of cholesterol is not directly measured in these tests, the terms "total cholesterol," "bad cholesterol", and "good cholesterol" are often used by practitioners when describing or discussing the results of lipid panels. Cholesterol is the name of a particular molecule, however, in lipid panels, the term "total cholesterol" is used for the concentration of HDL + LDL $+20 \%$ of the triglycerides. The term "bad cholesterol" is used for the concentration of LDL. The term "good cholesterol" is given to HDL since it transports cholesterol back to the liver (the liver can remove cholesterol from the body) and lowers the risk of heart disease.

Lipid Panel Level Concentration Categories

Substance	Desirable/Recommended Level	Borderline High Level	High Level
"Total Cholesterol" (HDL + LDL + 20\% of the triglycerides)	below $200 \mathrm{mg} / \mathrm{dL}$	200-239 mg/dL	$240 \mathrm{mg} / \mathrm{dL}$ and above
Triglycerides	below $150 \mathrm{mg} / \mathrm{dL}$	150-199 mg/dL	$200 \mathrm{mg} / \mathrm{dL}$ and above
LDL "Bad Cholesterol"	below $100 \mathrm{mg} / \mathrm{dL}$ (ideal)* $100-129 \mathrm{mg} / \mathrm{dL}$ (near ideal)	$130-159 \mathrm{mg} / \mathrm{dL}$	$160-189 \mathrm{mg} / \mathrm{dL}$ (high) 190 and above mg/dL (very high)
	Considered Protective Against Heart Disease	Intermediate Values (the higher, the better)	A Major Risk Factor for Heart Disease
HDL "Good Cholesterol"	$60 \mathrm{mg} / \mathrm{dL}$ and above	40-59 mg/dL	less than $40 \mathrm{mg} / \mathrm{dL}$

[^0]
Eicosanoids

The "eicosa" prefix in eicosanoids is from the Greek "eicosa," which means twenty.
The lipids called eicosanoids are \qquad molecules that contain \qquad carbon atoms.

- They are derived from one of three, twenty-carbon polyunsaturated fatty acids (arachidonic acid, eicosapentaenoic acid, or dihomo-gamma-linolenic acid).
Arachidonic acid, shown below, is the major precursor of eicosanoids.

Arachidonic acid, eicosapentaenoic acid, or dihomo-gamma-linolenic acid undergo reactions that transform them into the various classes of eicosanoids - such as prostaglandins, thromboxanes, leukotrienes, and prostacyclin.

- For example, arachidonic acid can be converted to various eicosanoids as shown in the diagram below.

NOTE: You are not responsible for memorizing the enzymes for these reactions or the structures of the various eicosanoids.

Prostaglandins

Prostaglandins have a wide range of biological effects, including causing pain, causing inflammation, causing fever, affecting blood pressure, inducing sleep, regulating blood flow to particular organs, controlling ion transport across membranes, and inducing labor.

Thromboxanes

Thromboxane A_{2} is the major biologically-active form of thromboxanes. It acts as vasodilator and is involved in the facilitation of blood clotting.

Leukotrienes

Leukotrienes are involved in the regulation of immune responses and in induced muscle contractions in the lungs. The overproduction of a particular leukotriene (leukotriene D_{4}, not shown in the diagram on the previous page) is a major cause of inflammation in asthma. Some anti-asthma drugs block the production of leukotrienes.

Prostacyclin

Prostacyclin is involved in vasodilatation, inhibition of blood clotting, regulation of the contraction of smooth muscle, and inflammation.

Nonsteroidal Anti-inflammatory Drugs (NSAIDs)

NSAIDs such as aspirin, acetaminophen, and ibuprofen are taken to reduce pain, fever, and inflammation by blocking the action of the cyclooxygenase enzyme (COX) that catalyzes the conversion of arachidonic acid into prostaglandins and thromboxanes (see the eicosanoids formation diagram on the previous page).

Biological Membranes

Biological membranes are semipermeable physical barriers. Biological lipid double layer membranes not only function as cell membranes, but also exist within cells in order to form specialized compartments. For example, intracellular lipid double layer membranes surround a cell's nucleus, chloroplasts, and mitochondria. The lipid double layers in biological membranes contain components other than phospholipids and glycolipids. These other components, which include cholesterol and various proteins, are distributed throughout the lipid double layer, as illustrated below for a eukaryotic cell membrane.

The forces holding the lipids and other components together in each of the two monolayer sheets are relatively weak. For this reason, membranes are flexible, and the membrane components are not locked in place; they are able to "slide" past each other. The flexibility of membranes decreases as the chain lengths and degree of saturation of the lipid nonpolar tails increase. This is the same trend as you saw for the melting points of fatty acids and triglycerides, because it results from increasing London forces. In animals, the amount of membrane-cholesterol also regulates flexibility.

The Transport of Molecules and Ions Across Membranes

Certain compounds must be able to pass through cell membranes in order for cells to perform their biological functions.

The processes in which species are transported through membranes are classified as either
\qquad transport or transport.

Some nonpolar and amphipathic compounds can pass through a membrane because of their attraction to the phospholipids in the membrane by noncovalent interactions.

- Species that are able to move through membranes in this way are called lipophilic compounds.

The direction of the net transport of a lipophilic compound is determined by \qquad ; there will be a net transport from the side of the membrane where its concentration is greater, to the side where its concentration is less.

- Recall, from chapter 7, that we described this type of transport as "with the concentration gradient." The energetic driving force for diffusion is the potential energy of the diffusing species’ concentration gradient.
This diffusive movement of lipophilic compounds through a membrane is referred to as \qquad diffusion.

Diffusion of small ions and polar molecules, which are not lipophilic, through membranes is facilitated by protein channels that pass through the cell membrane.
This diffusion of ions and polar molecules though protein channels is referred to as \qquad diffusion.

- In facilitated diffusion, as with simple diffusion, a molecule or ion is transported from the side of the membrane where its concentration is greater to the side where its concentration is less, or "with the concentration gradient," and the energetic driving force is the potential energy of the diffusing species' concentration gradient.

Both simple diffusion and facilitated diffusion are called passive transport because they do not require an energetic input from sources other than the concentration gradient of the transported species.

- The transport of water molecules through membranes is a passive transport process, and is best described by osmosis (you learned about osmosis in chapter 7). The protein channels in which water molecules pass are called aquaporins.

In order for molecules or ions to be transported in the direction "against the concentration gradient" from the side of the membrane where their concentration is less to the side where their concentration is greater - \qquad must be supplied.

This type of transport is referred to as \qquad transport.

- Unlike the passive transport processes that are driven by the potential energy provided by the transported species' concentration gradient, in active transport, energy must be supplied by some other source.

In the active transport process, the ions or molecules cross the membrane with assistance from a
\qquad protein.

- An example of active transport is the transport of ions, amino acids, sugars, lipids, drugs, or other molecules "against their concentration gradient" through ATP binding cassette transport proteins (ABC transporters). ABC transporters use chemical energy, supplied by ATP, to transport compounds through a membrane.

Understanding Check

a) Compare and contrast simple diffusion with facilitated diffusion.
b) Describe the difference between passive transport and active transport.

1) Draw the condensed structural formula of any saturated fatty acid.
2) a) Draw the condensed structural formula of any monounsaturated fatty acid.
b) Draw the condensed structural formula of any polyunsaturated fatty acid.
3) Compare and contrast "fat" (triglycerides) and fatty acids.
4) Draw the condensed structural formula of any saturated fat (triglyceride).
5) Draw the condensed structural formula of any unsaturated fat (triglyceride).

KEY

1) Draw the condensed structural formula of any saturated fatty acid.

Carbon chain should contain 12 or more carbons and should have all single bonds.
2)
a) Draw the condensed structural formula of any monounsaturated fatty acid.

Carbon chain should contain 12 or more carbons and should have only one double bond.
b) Draw the condensed structural formula of any polyunsaturated fatty acid.

Carbon chain should contain 12 or more carbons and should have at least two double bonds.
3) Compare and contrast "fat" (triglycerides) and fatty acids.

Fatty acids are long-chain carboxylic acid molecules, typically 12-20 carbons in length. Triglycerides contain three fatty acid residues bonded to a glycerol backbone. Triglycerides can be formed by the esterification of three fatty acid molecules and one glycerol molecule.
4) Draw the condensed structural formula of any saturated fat (triglyceride).

In a saturated fat molecule all three hydrocarbon tails are saturated (contain all single bonds). You can use any three saturated fatty acid residues in your structure.

Example of a correct structure:

5) Draw the condensed structural formula of any unsaturated fat (triglyceride).

In an unsaturated fat molecule, at least one of hydrocarbon tails is unsaturated (contains at least one double bond). You can use any three fatty acid residues in your structure, so long as at least one of them is unsaturated.

Example of a correct structure:

Educational Goals

1. Describe the general bonding pattern of $\boldsymbol{\alpha}$-amino acids and understand how amino acids are classified by the polarity and charge of their side-chains.
2. Given the table of twenty common amino acids, determine the total charge of the dominant form of an amino acid (at physiological $\mathbf{p H}$, at $\mathbf{p H}<2$, and at $\mathbf{p H}>11$).
3. Understand the three-dimensional information contained in the Fischer projection of an amino acid.
4. Given a Fischer projection of an amino acid, determine if it is an \boldsymbol{L}-amino acid or \boldsymbol{D}-amino acid.
5. Understand and define the term peptide.
6. Given the table of twenty common amino acids, be able to draw the structural formula of the peptide that is obtained when two or more particular amino acids are connected by peptide bonds.
7. Given the structural formula of a peptide be able to identify the peptide bonds, the C-terminus, the \mathbf{N}-terminus, and the peptide groups.
8. Given the structural formula of a peptide and the table of twenty common amino acids, determine the total charge of the peptide's dominant form (at physiological $\mathbf{p H}$, at $\mathbf{p H}<2$, and at $\mathbf{p H}>11$).
9. Given the structure of a peptide, and the table of twenty common amino acids name a particular peptide using amino acid residue abbreviations.
10. Compare and contrast peptides and proteins.
11. Understand and define primary, secondary, tertiary, and quaternary protein structure. Name the noncovalent interactions that are responsible for each level of structure.
12. Explain what is meant by the term denaturation and list the ways to denature a protein.
13. Understand the difference between globular, fibrous, and membrane proteins.
14. Compare and contrast simple proteins and conjugated proteins.
15. Understand the terms cofactor and coenzyme.
16. Understand how enzymes work and distinguish between absolute specificity, relative specificity, and stereospecificity.
17. Understand and define the terms: essential amino acid, complete protein, incomplete protein, and complimentary protein.
18. Understand how changes in $\mathbf{p H}$ and temperature can affect the reaction rate of an enzymaticallycatalyzed reaction.
19. Understand how enzyme inhibitors and activators control enzymatic reactions, and compare and contrast reversible and irreversible inhibitors.
20. Understand how organisms regulate metabolic pathways using feedback inhibition and positive feedback.

Introduction

The \qquad of amino acids in a protein and the chemical nature of the amino acid \qquad
\qquad enable proteins to perform their functions.

- Typical protein functions:
- Catalyze Reactions (enzymes)
- Chemical Signaling (hormones)
- Storage (e.g. myoglobin stores oxygen)
- Structural (e.g. collagen in skin and tendons)
- Protective (e.g. antibodies)
- Contractile (e.g. myosin in muscle)
- Transport (e.g. hemoglobin)

Amino Acids

Structure of Amino Acids

Amino acids are organic compounds that contain a \qquad and a

For amino acids, the R-group is often called the "side-chain" or "variant group."
The side-chain can be a hydrogen atom, hydrocarbon, or various other groups of bonded atoms. Amino acids are named based on the identity of their \qquad .

- For example, if the side-chain is a hydrogen atom (H), then the amino acid is called glycine; if the side-chain is a methyl group $\left(\mathrm{CH}_{3}\right)$, then the amino acid is called alanine.

There are 23 amino acids that make up the proteins in plants and animals, 20 of them are directly specified by the genetic code in DNA.

These twenty amino acids are called the \qquad amino acids.

- All twenty common amino acids are \qquad amino acids.
- They are called $\boldsymbol{\alpha}$-amino acids because their side-chains are attached

REMINDER: The $\boldsymbol{\alpha}$-carbon is the carbon that is bonded to the carboxyl group's carbonyl carbon.

The twenty common amino acids are often referred to using three-letter abbreviations. The structures, names, and abbreviations for the twenty common amino acids are shown below. Note that they are all α-amino acids.

Name (abbreviation)	Structural Formula
Glycine (Gly)	
Alanine (Ala)	
Valine (Val)	
Leucine (Leu)	
Isoleucine (Ile)	
Proline (Pro)	
Glutamine (Gln)	
Cysteine (Cys)	

Name (abbreviation)	Structural Formula
Methionine (Met)	
Phenylalanine (Phe)	
Tryptophan (Trp)	
Aspartic Acid (Asp)	
Glutamic Acid (Glu)	
Asparagine (Asn)	

Name (abbreviation)	Structural Formula
Lysine (Lys)	
Arginine (Arg)	
Histidine (His)	
Tyrosine (Tyr)	
Serine (Ser)	
Threonine (Thr)	

Charges on Amino Acids

The structural formulas of the common amino acids all contain at least one carboxylate group and one quaternary ammonium group.

In previous chapters you learned that in aqueous solutions, the carboxylate group is in equilibrium with its \qquad , the carboxyl group:

From the \qquad relation, we know that when the $\mathbf{p H}$ is less than the $\mathbf{p} \mathbf{K}_{\mathrm{a}}$ of a carboxyl group, then the carboxylic acid form $(\mathbf{R}-\mathbf{C O O H})$ is predominant, and when the $\mathbf{p H}$ is greater than the $\mathbf{p K}_{\mathrm{a}}$, then the carboxylate ion form ($\mathbf{R}-\mathbf{C O O}^{-}$) is predominant.

Likewise, the quaternary ammonium group is in equilibrium with its conjugate, the amine group:

When the $\mathbf{p H}$ of a solution is less than the $\mathbf{p K}_{\mathrm{a}}(\sim \mathbf{9 . 5})$, then the quaternary ammonium group (acid form) is predominant, and when the $\mathbf{p H}$ is greater than the $\mathbf{p} \mathbf{K}_{\mathrm{a}}$, then the amine group (base form) is predominant.

Since amino acids involve the carboxyl group/carboxylate group conjugate pair and the quaternary ammonium group/amine group conjugate pair, then the \qquad of the predominant form of an amino acid will depend on the \qquad _.

EXAMPLE: Consider the predominant form of alanine at physiological $\mathbf{p H}(\mathbf{p H} \sim 7.4)$:

- The $\mathbf{p K}_{\mathrm{a}}$ values of amino acid carboxyl groups are between $\mathbf{2}$ and $\mathbf{5}$ (depending on which amino acid), therefore, at $\mathbf{p H}=\mathbf{7 . 4}$, the base form (carboxylate ion) is predominant.
- Quaternary ammonium groups that are attached to the $\boldsymbol{\alpha}$-carbons of amino acids have $\mathbf{p K} \mathbf{K}_{\mathrm{a}}$ values of about 9.5 , therefore, at $\mathbf{p H}=\mathbf{7 . 4}$, the quaternary ammonium group (acid form) is predominant.

The predominant form of alanine has a negative (1-) formal charge on the carboxylate group and a positive (1+) formal charge on the quaternary ammonium group, which gives it a total charge of \qquad .

predominant form of alanine at $\mathbf{p H}=\mathbf{7 . 4}$
When an amino acid has a total charge equal to zero, it is called a \qquad .

- (zwitter is German for hermaphrodite or hybrid).

The amino acid structures in the table (provided earlier) are the predominant forms at physiological $\mathbf{p H}$.

In sufficiently acidic or basic solutions, the \qquad of the predominant form of an amino acid will change from its physiological value.

EXAMPLE: Consider the total charge of the predominant form of alanine in an extremely acidic solution.
At $\mathbf{p H}=\mathbf{1 . 0}$ (an extremely acidic solution) the $\mathbf{p H}$ is \qquad than the $\mathbf{p K}_{\mathrm{a}}$ of both the carboxyl group and the quaternary ammonium group, therefore both groups exist in their acid form, as shown below.

predominant form of alanine at $\mathbf{p H}=\mathbf{1 . 0}$
The predominant form of alanine at $\mathbf{p H}=\mathbf{1 . 0}$ has an uncharged carboxyl group $(\mathbf{C O O H})$ and has a positive $(1+)$ formal charge on the nitrogen of the quaternary ammonium group, which results in a
\qquad $(1+)$ total charge.
EXAMPLE: Consider the total charge of the predominant form of alanine in an extremely basic solution.
At $\mathbf{p H}=\mathbf{1 2 . 0}$ (an extremely basic solution) the $\mathbf{p H}$ is \qquad than the $\mathbf{p K} \mathbf{K}_{\mathrm{a}}$ of both the carboxyl group and the quaternary ammonium group, therefore both groups exist in their base form, as shown below.

predominant form of alanine at $\mathbf{p H}=\mathbf{1 2 . 0}$
The predominant form of alanine at $\mathbf{p H}=\mathbf{1 2 . 0}$ has a negative (1-) formal charge on the single-bonded oxygen of the carboxylate group and an uncharged nitrogen in the amine group, which results in a (1-) total charge.

Practice Problems: The amino acid structures in the table provided earlier are the predominant forms at physiological pH.
a. Draw the predominant form of valine when the $\mathbf{p H}=7.4$
b. Draw the predominant form of valine when the $\mathbf{p H}=\mathbf{1 . 0}$
c. Draw the predominant form of valine when the $\mathbf{p H}=\mathbf{1 2 . 0}$
d. What is the total charge of the predominant form of valine when the $\mathbf{p H}=\mathbf{7 . 4}$?
e. What is the total charge of the predominant form of valine when the $\mathbf{p H}=\mathbf{1 . 0}$?
f. What is the total charge of the predominant form of valine when the $\mathbf{p H}=\mathbf{1 2 . 0}$?

Classification of Amino Acids

Amino acids are classified by the \qquad of their side-chain and the ability of their side-chain
to acquire \qquad
\qquad (at physiological $\mathbf{p H}$).

Amino Acid Class	Side Chain Polarity	Side-Chain Charge at Physiological pH
Nonpolar	nonpolar (hydrophobic side-chain)	zero
Polar neutral	polar (hydrophilic side-chain)	zero
Polar acidic	polar (hydrophilic side-chain)	negative
Polar basic	polar (hydrophilic side-chain)	positive

1) Nonpolar Amino Acids

Nonpolar amino acids have nonpolar (hydrophobic) side-chains and their predominant forms have uncharged side-chains at physiological pH .

- The nonpolar amino acids (their predominant forms at physiological $\mathbf{p H}$) are:

glycine

leucine

alanine

isoleucine

valine

methionine

proline

phenylalanine

Note that although the side-chain of tryptophan contains a few highly-polar bonds, the hydrocarbon part is so large that it dominates the interactions, making the side-chain hydrophobic. For this reason, tryptophan is put into the nonpolar class.

2) Polar Neutral Amino Acids

Polar neutral amino acids have polar (hydrophilic) side-chains and their predominant forms have uncharged side-chains at physiological pH .

- The polar neutral amino acids (their predominant forms at physiological $\mathbf{p H}$) are:

glutamine

cysteine

asparagine

serine

tyrosine

threonine

3) Polar Acidic Amino Acids

Polar acidic amino acids have polar (hydrophilic) side-chains and, their predominant forms have side-chains with negative (1-) formal charge at physiological $\mathbf{p H}$.

- This formal charge is from a \qquad group.
The polar acidic amino acids (their predominant forms at physiological $\mathbf{p H}$) are:

aspartic acid

glutamic acid

Polar acidic amino acids are given the "acidic" term in their classification because their acid forms are stronger acids than those of the polar "basic" amino acids (discussed next).

4) Polar Basic Amino Acids

Polar basic amino acids have polar (hydrophilic) side-chains and, except for histidine, their predominant forms have side-chains with positive (1+) formal charge at physiological $\mathbf{p H}$.

- This formal charge is from a quaternary ammonium group.
- The polar basic amino acids (their predominant forms at physiological $\mathbf{p H}$) are:

arginine

lysine

histidine

Properties of Amino Acids

Although some amino acids contain hydrophobic side-chains, overall they are \qquad - \qquad .

All amino acids are \qquad due both to the presence of polar covalent bonds that are capable of forming hydrogen bonds with water, and to the fact that they can carry charges ($-\mathrm{COO}^{-}$and $/$or $-\mathrm{NH}_{3}{ }^{+}$).

Acidic
pH 1

pH 7

Basic
pH 14

Stereoisomerism of Amino Acids

With the exception of glycine, all of the α-amino acids are \qquad because the α-carbon atom in each is attached to four different groups.

The presence of chiral carbons produces stereoisomers with mirror images: \qquad .

Fischer projections of amino acids have the carboxylate group on top and the side-chain on the bottom.

- L-amino acids have the $\mathrm{NH}_{3}{ }^{+}$on the \qquad .
- D-amino acids have the $\mathrm{NH}_{3}{ }^{+}$on the \qquad .

Organisms use only L-amino acids to produce proteins.

You try one: Draw Fischer projections of the
D-isomer and the L-isomer of alanine.

D-amino acid

L-amino acid

Peptides and Proteins

The Peptide Bond

Peptides and proteins consist of amino acid residues joined by \qquad (amide) bonds.

Formation of a Peptide Bond

Step 1: The two amino acids are drawn side-by-side. The single-bonded oxygen atom is removed from the carboxylate group on the left-most amino acid. Two hydrogen atoms are removed from the quaternary ammonium group on the rightmost amino acid. The oxygen atom and the two hydrogen atoms combine to form a water molecule.

Step 2: A new bond is made between the carbonyl carbon and the nitrogen.

The peptide formed in this example is called a \qquad because it contains two amino acid residues.

The new bond between the two amino acid residues is called a peptide bond.

You try one: Draw the structural formula of the dipeptide that contains two valine amino acid residues. Label the peptide bond

Formation of Larger Peptides

Larger peptides are formed by adding more amino acids, one by one, to a growing peptide.
Example: Formation of a Tripeptide

- Begin with the general form of a dipeptide and then add a new amino acid residue.
- The new peptide bond can be made using the same two steps as we used when we made a dipeptide.

Peptides are identified by the use of a common name or, by listing its amino acid residues' three-letter abbreviations in order from N -terminus to C -terminus.

Example of identifying a peptide from its amino acid residue's abbreviations: Val-Asp-Ala-Arg-Gly.

Val-Asp-Ala-Arg-Gly
I drew this pentapeptide by forming peptide bonds between the predominant forms of the amino acids at physiological $\mathbf{p H}$, therefore the resulting pentapeptide is also in the form that is predominant at physiological $\mathbf{p H}$. Note that two of the side-chains in this peptide carry a formal charge. This peptide has a total charge equal to zero because the two negative charges and two positive charges add up to zero.

You try one:

a. Draw the structural formula for the predominant form of Gly-Lys-Tyr-Ala at physiological $\mathbf{p H}$.
b. Label the peptide bonds and circle the peptide groups.

NOTE: If you correctly connect the amino acid structural formulas from the amino acid table, then the peptide that you draw will be the predominant form at physiological $\mathbf{p H}$.

Also: What is the total charge of the peptide that you drew for in the previous problem?

Examples of Biologically-Relevant Peptides

A protein consists of one or more large peptides and has a specific biological function. Although shorter peptide chains (less than about fifty amino acid residues) have specific biological functions, they are generally not classified as proteins. Short peptide chains function as chemical signaling compounds; over one hundred of them have been identified.

Endorphins are examples of chemical signaling peptides. They are natural painkillers that are produced in the body. They interact with receptors in the brain to inhibit the transmission of pain signals. Five endorphins have been found (so far). An example of an endorphin peptide is $\boldsymbol{\alpha}$-endorphin. It contains sixteen amino acid residues, which are connected in the sequence (N -terminus to C -terminus) shown below:

Tyr-Gly-Gly-Phe-Met-Thr-Ser-Glu-Lys-Ser-GIn-Thr-Pro-Leu-Val-Thr

Another example of a peptide is oxytocin. It is produced by the pituitary gland, and stimulates uterine contractions in labor. Oxytocin contains nine amino acid residue, which are connected in the sequence shown below:

Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Leu-Gly

Oxytocin was the first naturally-occurring hormone to be produced in a laboratory.

Protein Structure

The structure of proteins is understood in terms of four levels of organization:
1)
2) \qquad
3) \qquad
4) \qquad

Primary Protein Structure

The \qquad of amino acid residues in a peptide or protein is referred to as its primary structure.

- Example: The primary structure of the pentapeptide is shown below:

Primary Structure:
valine aspartic acid alanine arginine glycine
(Val-Asp-Ala-Arg-Gly)

The primary structure of peptides and proteins is analogous to the arrangement of letters in a word.

$$
\text { edit } \neq \operatorname{diet} \neq \text { tide } \neq \text { tied }
$$

Primary structure of a protein is the linear sequence of amino acids connected by peptide bonds.

- Different proteins typically contain from about 40 to over 4000 amino acids
- There are 400 distinct dipeptides $\left(20^{2}\right)$.
- There are 8000 distinct tripeptides $\left(20^{3}\right)$.
- When there are 100 amino acids in the chain, there are $20^{100}=1.27 \times 10^{130}$ distinct peptides!

Understanding Check: Write the names (using the three letter abbreviation method) of all of the tripeptides that can be made by combining one glycine (gly), one alanine (ala), and one aspartic acid (asp) residue. For example, one of the tripeptides is gly-ala-asp.

Secondary Protein Structure

The properties of proteins depend not only on their sequence of amino acid residues, but also on how they are folded, twisted, and bent.

Secondary protein structure describes the geometric patterns that occur when individual peptide chains "fold" back on themselves.

Secondary structure results from \qquad between peptide groups within an individual peptide.

There are two common types of secondary structures, the \qquad
\qquad (α helix) and the
\qquad
\qquad (β sheet).

The Alpha Helix

The alpha helix geometric pattern resembles a

The Beta Sheet

The beta sheet geometry occurs when a peptide folds back on itself in a \qquad arrangement.

Illustrative Model of a Beta Sheet

In addition to alpha helices and beta sheets, there are a few other, much less frequently seen geometries that are also categorized as secondary structures. Since these other secondary structures are relatively rare, I will not discuss their particularities.

A key feature of secondary protein structure is that it only involves hydrogen bonding between peptide groups within an individual peptide chain.

Tertiary Protein Structure

Alpha helices and/or beta sheets, along with the unorganized sections of a peptide chain, "fold" into a more compact shape.

- The \qquad shape of a peptide is called the tertiary structure.
"Ribbon models" are often used in order to visualize tertiary protein structure. These illustrative models use ribbon-like shapes to represent the geometry of secondary structures. The spring-like ribbons represent alpha helices and the flat side-by side ribbons represent beta sheets. Sometimes arrows are used at the ends of ribbons to indicate the direction (from N -terminus to C-terminus). Lines or thin tubes are used for unorganized sections of a peptide chain. The ribbon model for ribonuclease A protein (RNase A), an enzyme used to break down RNA, is shown on the right.

Of the many folding patterns (conformations) possible for a protein, there is usually only one that leads to a \qquad (biologically active) molecule.

The sequence of amino acids (primary structure) ultimately determines which folding pattern is selected, so both secondary and tertiary structure \qquad on primary structure.

Some of the interactions that are involved in tertiary structure are illustrated below.

Description of Tertiary Structure Interactions:

1) Hydrophobic Interactions

Nonpolar side-chains are attracted to other nonpolar side-chains through London forces, and form "water-free pockets" in the interior region of the folded and compacted peptide (see the illustration above).

2) Hydrogen Bonding

Hydrogen bonding in tertiary structures can occur between polar side chains (that contain the features necessary for hydrogen bonding) and/or peptide groups. See the illustration above.
3) Salt Bridges

I introduced salt bridges to you, in chapter 4, as one of the five noncovalent interactions. A salt bridge is an attractive force between the positive formal charge on polar basic amino acid residue and a negative formal charge on a polar acidic residue (see the example in the illustration above).

4) Disulfide Bridges

In a previous chapter, you learned that disulfide (covalent) bonds can be formed by the oxidation of two thiol (SH) groups. Disulfide bonds in proteins are called disulfide bridges. Each cysteine residue contains a thiol group in
 its side-chain that is capable of forming a disulfide bridge with another cysteine residue, as shown above.

5) Dipole-Dipole and Ion-Dipole Forces

Dipole-dipole attractive forces can occur between polar side-chains and/or peptide groups. These interactions are not included in the illustration on the previous page. If needed, you can review dipoledipole and ion-dipole interactions in section 6 of chapter 4.

Quaternary Structure

A large number of native proteins are a combination of
\qquad
\qquad
\qquad polypeptide chain.

Image source: Wikimedia Commons, Author: Richard Wheeler, CC-BY-SA, http://creativecommons.org/licenses/bysa/3.0/legalcode

Quaternary protein structure is the overall shape that occurs when two or more \qquad peptide chains assemble to make a protein.

In proteins composed of two or more peptide chains, the individual peptide chains are referred to as "subunits."

The quaternary structures of large proteins are sometimes depicted using space-filling models. In these models, the various subunits are often shaded with different colors or grey-scale tones.

- Example: ATP synthase

The forces that hold the subunits together in quaternary structures are the same as those involved in tertiary structures.

Understanding Check: In which of the following levels of protein structure can hydrogen bonding play a role?
a) primary structure
b) secondary structure
c) tertiary structure
d) quaternary structure

Globular, Fibrous, and Membrane Proteins

Proteins generally fall into one of three categories:

1) \qquad proteins
2) \qquad proteins
3) \qquad proteins

Globular Proteins

Globular proteins have a highly- \qquad and compact shape.

- The overall shapes of these proteins are more "sphere-like" than "string-like."
- The globular shape allows for hydrophobic side-chains to be directed to the protein's interior (forming "water-free pockets"), while polar side-chains are oriented outward to form a hydrophilic exterior. The hydrophilic exterior allows globular proteins to be more easily dispersed in solutions (intercellular and extracellular).

Globular proteins function as enzymes, chemical signaling compounds, transporters of other compounds, and antibodies.

Hemoglobin (shown on the right) is an example of a globular protein

Image source: Wikimedia Commons, Author: Richard Wheeler, CC-BY-SA, http://creativecommons.org/licenses/bysa/3.0/legalcode

Myoglobin (shown on the left) is another example of a globular protein. It is used to store oxygen $\left(\mathrm{O}_{2}\right)$ in muscle tissue, thereby allowing organisms to function while holding their breath. Myoglobin is responsible for the red color of meat. It is found in especially high concentration in diving animals, such as seals and whales. It is composed of just one peptide chain. Human myoglobin contains 153 amino acid residues and eight alpha helices. It contains a heme prosthetic group (shown in grey) that binds oxygen (shown as red spheres next to the heme group).

Albumin is another example of a globular protein.
Human albumin is the most abundant protein in human blood plasma. Its biological functions include transporting hormones, fatty acids, and other compounds, acting as a buffer, and maintaining osmotic pressure.

Antibodies, also referred to as immunoglobulins (Ig), are globular proteins.
Antibodies are able to act as protective agents by binding to specific, usually harmful, objects - called antigens. Antigens are often foreign (nonself) objects such as harmful bacteria or viruses. When an antibody binds to an antigen, it either directly neutralizes the antigen, or marks it so that the antigen can be subsequently neutralized by other components of the immune system.

The smallest antibodies are composed of a single immunoglobulin unit, called an
immunoglobulin monomer. An immunoglobulin monomer is shaped a bit like the letter "Y," and is often illustrated using a Y-shape, as shown on the right-hand side of the illustration.

Ribbon model of an immunoglobulin monomer

"Y-shape" model of of an immunoglobulin monomer

An antigen binding site, called the paratope, binds to a particular part of an antigen called the epitope.

- The binding between antigen and antibody occurs because of noncovalent attractive forces, which are maximized due to the \qquad shapes of the paratope and epitope.

Note that in the Y-shape antibody model shown on the left, the paratope will only bind with one of the two antigens - the antigen that has a complementary epitope. We say that the paratope (or antibody binding site)
is " \qquad $"$
for a particular epitope.

The immune system can produce an almost infinite variety of paratope shapes by varying the paratope region's amino acid sequence (and therefore its shape). By doing so, antibodies are produced to be specific for one particular antigen, much like a lock is specific for one key.

Some antibodies contain more than one immunoglobulin unit. Placental mammals, which includes humans, have immunoglobulin monomer, immunoglobulin dimer, and immunoglobulin pentamer antibodies. Immunoglobulin dimers are made from two immunoglobulin monomers, and immunoglobulin pentamers are made from five immunoglobulin monomers. These three types of antibody structures are illustrated below.

immunoglobulin monomer (single immunoglobulin unit)

immunoglobulin dimer

immunoglobulin pentamer

One last note on antibodies:

Antibodies have \qquad (oligosaccharides) that are covalently bound to some of their amino acid residue side-chains.

- Proteins, such as antibodies, that contain carbohydrates are called \qquad .

Fibrous Proteins

Fibrous proteins have long and narrow " \qquad -like" shapes.

- They are much less compact than globular proteins.

The narrower shape makes it difficult for hydrophobic side-chains to be oriented toward the interior region of a fibrous protein, and results in a hydrophobic exterior. For this reason, fibrous proteins tend to be water-insoluble.

Fibrous proteins play important roles in providing structural rigidity and in contractile movement (muscles).

An example of a fibrous protein is collagen. Collagen is the most abundant protein in the body. Its function is to provide structural rigidity and stiffness. It is found in skin, ligaments, tendons, and other parts of the body. An illustration of the components of collagen are shown below.

Other examples of fibrous proteins are keratins. Their primary role is to provide structural rigidity and stiffness. Keratins are some of the strongest natural materials.

- Keratins can be classified as alpha-keratins or beta-keratins.

Alpha-keratins are found in places such as hair, wool, horns, hooves, claws, and nails.
In hair, two peptide double helices are twisted around each other to form a protofibril, as shown below.
alpha helices

Protofibrils bundle together to form microfibrils. Microfibrils bundle together to form macrofibrils. Each hair cell is primarily composed of bundled macrofibrils.

A single hair consists of bundled hair \qquad .

Beta-keratins

Beta-keratins, which are also fibrous proteins, are found in places such as reptilian skin, the outer layer of human skin, bird feathers and beaks, turtle shells, silk, and the tongue.

- Beta-keratins are composed of fibers that primarily contain beta sheet secondary structures.
- The beta sheets are stacked in \qquad tertiary structures.

An example of a beta-keratin structure can be seen in silk. The stacked beta sheets, which are held together by disulfide bridges and noncovalent interactions, entwine to form a fibroin microfibril. Fibroin microfibrils assemble to form fibrils. Fibrils assemble to form fibroin filaments. Two fibroin filaments are held together by sericin protein, which acts like a glue to hold the two fibroin filaments together in a single silk fiber, as shown below.

Fibroin microfibril keratin fibers are also found in spider webs. The structure of spider's silk is illustrated below.

Fibrous Proteins in Muscles

Muscle contraction involves the interaction of fibrous proteins.
Muscles are composed of bundled muscle \qquad .

A muscle cell is a polynuclear (many nuclei) cell that contains long protein fibers called myofibrils. Myofibrils are composed of individual contractile units called sarcomeres.

Sarcomeres contain fibrous proteins called " \qquad filaments" and " \qquad filaments."

Thick filaments are composed of myosin fibrous protein.

- The myosin tail region is composed of two alpha helices that are twisted around each other.
- In the myosin head region, the individual alpha helices split apart from each other and fold into more compacted tertiary structures.

Thin filaments are composed of three proteins: actin, troponin, and tropomyosin.

Before contraction, the thick and thin filaments are in a relaxed state (non contracted), as shown in the top of the figure on the right.

During muscle contraction, the thick filaments and thin filaments "slide" past each other to shorten (contract) the overall structure, as shown in the contracted state in the bottom of the figure.

Let's now consider how and when the filaments "slide" past each other. We will begin with a small section of a thick and a thin filament in the state illustrated below.

In this initial state, adenosine triphosphate (ATP) is attached to the head region of myosin.
The chemical energy stored in \qquad is used to make the muscle contract.

- The hydrolysis of ATP reaction is capable of releasing energy:

$$
\operatorname{ATP}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftarrows \mathrm{ADP}(a q)+\mathrm{P}_{\mathrm{i}}(a q) \quad \Delta \mathbf{G}=\mathbf{- 7 , 3 0 0} \text { Joules per mole of ATP }
$$

P_{i} is an abbreviation for a phosphate group, and ADP is adenosine diphosphate.
The energy released by this reaction can be used to slide the thin and thick filaments past each other.

1) Actin contains sites to which myosin heads can bind.

In our initial state, tropomyosin
 fibers block actin's myosin binding sites so that the myosin heads are unable to attach to the thin filament, as shown in the illustration on the right.

2) Muscle contraction begins in response to an action potential (nerve impulse) that originates in the central nervous system.

- The electrical signal is transferred to a particular muscle and causes an organelle called the sarcoplasmic reticulum to release calcium ions.
- When calcium ions are released, they bind to troponin, which causes the tropomyosin fibers to move and thereby exposes the myosin binding sites.

3) ATP is hydrolyzed to ADP and P_{i}. Energy released from the hydrolysis of ATP reaction is used to change the conformation (shape) of myosin. This results in a "cocked" myosin head.

- This is analogous to "cocking the hammer" of a pistol, or pulling back on the string of a bow-and-arrow. In this step, the ADP and Pi that are produced remain attached to the "cocked" myosin head, as shown on the right.

4) The "cocked" myosin head attaches to a myosin binding site on the thin filament. This attachment is a noncovalent interaction.

5) ADP and P_{i} are released from the myosin head. This allows the myosin to bend back to its original "un-cocked" position.

- In our "cocked" pistol analogy, this step represents what happens when the trigger of a pistol is pulled: the pistol's "hammer" springs forward (to strike the bullet's cartridge).
- In our bow-and-arrow analogy, this step represents what happens when the string is released: it moves forward and accelerates the arrow.

Because the myosin head is attached to the thin filament, as the myosin bends, the thin filament "slides" past the thick filament.

6) ATP binds to the myosin head, which causes the head to detach from the thin filament. This
completes the cycle; the system is now back to its original configuration and the cycle can repeat so long as calcium and ATP are present. As this cycle repeats, the muscle can continue to shorten. Since calcium ions are constantly being transported back into the sarcoplasmic reticulum, their release must be continuously induced by central nervous system impulses in order for muscle contraction to continue.

If ATP is not present, the myosin remains bound to the thin filament. This state is observed after death, since ATP is no longer produced, and is called rigor mortis.

Membrane Proteins

Membrane proteins are proteins that are \qquad to biological membranes.

Membrane proteins function as enzymes, cell recognition markers, receptors (allowing chemical signals to be relayed between the interior and exterior of cells), and transporters of compounds in and out of cells.

Some membrane proteins extend through the \qquad membrane and are called transmembrane proteins.

Examples of transmembrane proteins include the aquaporins.

- Aquaporins function as transporter proteins; they facilitate the transport of water molecules (only) in and out of cells. There are several types of aquaporins, one of them, aquaporin-1, is illustrated on the right.

Source: The protein structure is from Wikimedia Commons, Author: Vossman CC-BY-SA, http://creativecommons.org/licenses/by-sa/3.0/legalcode

Some membrane proteins do not completely extend through the membrane; these are called
\qquad proteins.

An example of a monotopic protein is cyclooxygenase-2.

- Cyclooxygenase-2 is responsible for converting eicosanoic acid into prostoglandins, prostoscyclin, and thromboxane (you learned about this enzyme and these reactions in a previous chapter). An illustration of cyclooxygenase-2 attached to a membrane is shown on the right.

Understanding Check: Globular vs. Fibrous vs. Membrane Proteins

Do a bit of online research to determine if succinate dehydrogenase is a globular, fibrous, or membrane protein.

Prosthetic Groups: Simple vs. Conjugated Proteins

Some proteins contain only amino acid residues, these are called \qquad proteins.

Other proteins contain amino acid residues and \qquad amino acid components.

Proteins that contain non amino acid components are called \qquad proteins.

- The non amino acid components of these proteins are called \qquad groups.
- An example of a prosthetic group is the heme group, which is present in hemoglobin. The main role of hemoglobin is to transport oxygen $\left(\mathrm{O}_{2}\right)$ molecules. Heme groups contain an iron ion, to which an oxygen molecule can be quite strongly attached.

A ribbon model of human hemoglobin, with a magnification insert showing the bonding pattern in one of its four heme groups, is shown below.

Image adapted from: Wikimedia Commons, Author: Richard Wheeler, CC-BY-SA, http://creativecommons.org/licenses/by -sa/3.0/legalcode

Hemoglobin contains four heme groups (shaded green in the figure above). Each heme group is capable of binding one oxygen molecule. Heme prosthetic groups are also found in myoglobin, catalase, and other proteins.

Denaturation of Proteins

The shape of a protein is the key factor in its ability to perform its biological role. Protein shape is maintained by the attractive forces involved in secondary, tertiary, and quaternary structures. When these attractive forces are disrupted, the native shape of proteins can be changed enough that a partial or complete loss of bioactivity (function) occurs.

When a protein loses some or all of its biological activity in such a manner, this is referred to as
"protein \qquad ."

In most cases, unless the shape change is very minor, the denaturation is irreversible.
Any mechanical or chemical agent that causes the denaturation of a protein is called a \qquad .
Some of the most common denaturing agents are listed and described below:

1) \qquad The noncovalent attractive forces involved in secondary, tertiary, and quaternary structures in proteins are easily disrupted by heating. The cooking of an egg is an example of heat denaturation.
2) \qquad , which can disrupt the noncovalent attractive forces involved in secondary, tertiary, and quaternary structures. An example of denaturation of protein by mechanical agitation is the foaming that occurs during beating of raw egg (yolks removed). Chefs use this process to make meringue.
3) \qquad Some amphipathic compounds can cause denaturation by inserting their nonpolar ends into an association of hydrophobic side chains and thereby displacing some of the side chains. For example, detergents are capable of denaturing proteins.
4) \qquad Some polar solvents, such as acetone or ethanol, can interfere with hydrogen bonding, dipole-dipole, and ion-dipole interactions by competing for a protein's existing interactions.
5) \qquad , which can disrupt a protein's salt bridges and ion-dipole interactions. Near physiological pH , the predominant form of polar acidic side-chains and polar basic side-chains (except for histidine) have a formal charge. These charged side-chains help proteins maintain their tertiary and/or quaternary structure because they participate in salt bridges and ion-dipole interactions.

The Disruption of a Salt Bridge by pH Changes

At $\mathrm{pH}=7$, the predominant form of the polar acidic side-chain and the polar basic side-chain have formal charges and form a salt bridge.

Middle: Illustration of a salt bridge that can form between a polar acid and polar basic side-chain at $\mathrm{pH}=7$.
Right: When the pH is changed to a value greater than the pK_{a} of a polar basic side-chain then its uncharged base form becomes predominant. This uncharged side-chain cannot participate in salt bridge interactions.
Left: When the pH is changed to a value less than the pK_{a} of a polar acid side-chain, then its uncharged acid form becomes predominant. This uncharged side-chain cannot participate in salt bridge interactions.

- An example of the denaturation of proteins by a pH change is the use of citric acid in the marination (soaking) of fish and shellfish in a dish called ceviche. The citric acid comes from citric juices such as lemon, lime, orange, or grapefruit juice.

Essential Amino Acids: Complete, Incomplete, and Complementary Proteins

Organisms produce (synthesize) protein from dietary amino acids.
Our bodies are capable of producing \qquad of the twenty common amino acids (from other amino acids or certain other compounds.

- Therefore we do not necessarily need to obtain these eleven amino acids in our diet.

The other \qquad amino acids can only be obtained by eating proteins that contain them.

- These nine amino acids are called \qquad amino acids, and are listed below.

Histidine (His)	Methionine (Met)	Lysine (Lys)
Leucine (Leu)	Threonine (Thr)	Valine (Val)
Isoleucine (Ile)	Tryptophan (Typ)	Phenylalanine (Phe)

Foods that contain all of the essential amino acids are called \qquad proteins.

- Most animal products are complete proteins. Examples: eggs, meat, milk, fish, and poultry.

Foods that contain proteins but do not contain all of the essential amino acids are called proteins.

- These include most plant proteins.
- Examples of incomplete proteins and their missing essential amino acids are listed in on the right:

Combining of two or more incomplete proteins that are deficient in different amino acids is a dietary strategy used to ensure the intake of all nine essential

Food	Amino Acid Deficiency
rice, wheat, oats	lysine
beans	methionine, tryptophan
peas	methionine
soy	low in methionine
corn	lysine, tryptophan
almonds, walnuts	lysine, tryptophan

- For example, if you eat beans and rice, you obtain all of the essential amino acids since rice contains the amino acids that beans lack, and vice versa.
- When proteins are combined in this way, they are called \qquad proteins.

Understanding Check

Which two foods (from the table above) could each be eaten with corn as a complementary protein?

Enzymes

Catalysts are substances that increase the rates of chemical reactions. Life requires that many chemical reactions occur within organisms. The human body employs over a thousand chemical reactions. Many of these reactions would occur too slowly to be useful in the absence of a catalyst. Nature provides humans and other biological organisms with proteins that are capable of catalyzing reactions.

Protein catalysts are called \qquad .

- Among all plants and animal species, over 5,000 chemical reactions are catalyzed by enzymes.
- Enzymes are capable of increasing the rate of a chemical reaction by up to a factor of one thousand.

Scientists who specialize in studying enzymes are called enzymologists.
Enzymologists refer to the reactants of catalyzed reactions as \qquad .

- Most enzymes are composed of hundreds or thousands of amino acid residues, however only a small region of the enzyme makes contact with the substrates.

Let's take a look at a model that describes enzymatic catalysis.

The part of the enzyme that makes contact with substrates is called the " \qquad ."

In this model, we will represent an enzyme and its active site as illustrated on the right.

We will consider a reaction where two substrates (reactants) are converted to one product, as illustrated below.

Reaction to be catalyzed:

In this example, two substrates react to form one product, however this model will also apply to other cases such as one substrate compound forming two products, or two substrate compounds forming two products.

The enzymatic catalysis model is illustrated below.

In Step 1, the substrates bind to the active site of an enzyme.

- The substrates are held tightly in the active site by noncovalent attractive forces, which are maximized due to the complementary shapes of the substrates and active site.
- The particle that is formed when the substrates are bound to the enzyme is called the enzymesubstrate complex.

In Step 2, the chemical reaction occurs.

- Substrates are converted to products when covalent bonds within the substrates are broken and/or new bonds are made.
- The particle that is formed when the product is bound to the enzyme is called the enzyme-product complex.

In Step 3, the newly formed product is released.

- Note that after products are released from enzymes, the enzymes are free to accept new substrates and the cycle can repeat.

Enzymes \qquad affect the equilibrium concentrations of products and reactants (substrates), they only increase the reaction rates, and therefore equilibrium is reached more quickly.

All catalysts, including enzymes, \qquad the activation energy of a reaction and thereby increase the reaction rate.

Compare the reaction energy diagram of an enzymatically catalyzed reaction with that of an un-catalyzed reaction:

The un-catalyzed reaction is represented by the solid curve and the enzymatically catalyzed reaction is represented by the dashed curve. In catalyzed and un-catalyzed reactions, one or more of a reactant's covalent bonds and/or several noncovalent attractive interactions involving reactants are disrupted or completely broken. This process requires energy. At some point in the progress of the reaction, the energy reaches a maximum value. This state is a temporary, short-lived configuration of atoms called the transition state. In chapter 6 you learned that amount of energy required to reach the transition state is called the activation energy. As the reaction progresses, new covalent bonds and/or noncovalent attractive interactions form and generate the product; these processes release energy. The formation of the new covalent bonds and/or noncovalent attractive interactions is responsible for the decrease in energy that is seen in the diagram as the transition state changes to product.

How does an enzyme increase the rate of a reaction? When substrates bind to an enzyme's active site, interactions with the enzyme change the shape of the substrates (and enzyme) to a configuration that lowers the energy of the transition state (relative to an un-catalyzed reaction).

Understanding Check:

Determine whether each of the following statements are true or false.
a. A catalyzed reaction has a lower activation energy than an un-catalyzed reaction.
b. The greater the activation energy, the faster the reaction rate.
c. At equilibrium, a catalyzed reaction will result in a greater amount of products than would an un-catalyzed reaction.

Example of Enzymatic Catalysis

As an example of enzymatic catalysis, let's consider an enzyme called pyruvate kinase. Kinases are a class of enzyme that catalyze reactions in which a phosphate group is transferred from one compound to another.

- Pyruvate kinase catalyzes the transfer of a phosphate group from phosphoenolpyruvate (PEP) to ADP, thereby forming pyruvate and ATP:

- This is the last reaction that occurs in a series of reactions called glycolysis.

A detailed knowledge of the bonding patterns involved in this reaction is not important at this time. One of the goals of the glycolysis process is to transfer potential energy stored within glucose (from our diet) to potential energy in the form of ATP. In chapter 15, I will discuss the details of how this is done, in part, by the reaction shown above.

The illustration below depicts the three steps of our enzymatic process model for the case of catalysis.

In Step 1, the substrates, PEP and ADP, bind to the active site of the pyruvate kinase enzyme.
In Step 2, the chemical reaction occurs.

- A phosphate group is transferred from PEP to ADP to form pyruvate and ATP.

In Step 3, the products, pyruvate and ATP, are released.

- The enzyme is free to accept new substrates so that the cycle can repeat.

Enzyme Specificity

Enzymes are \qquad for particular substrates or groups of substrates.

- Their specificity is due to both the selective geometry of their active site and their ability to lower activation energy for particular substrates.

Some enzymes will only catalyze the reaction of a particular substrate; this is called \qquad specificity.

- An example of an enzyme with absolute specificity is urease. Urease is used by some plants, fungi, and bacteria to catalyze a reaction in which urea (only) is converted to ammonium and bicarbonate.

Some enzymes are less specific, and will catalyzed reactions for a particular family of substrates; this is called \qquad specificity.

- Examples of enzymes with relative specificity include proteases, which catalyze the hydrolysis of various proteins.

Many enzymes will only catalyze the reaction of, or production of one particular stereoisomer; this is called \qquad .

- An example of an enzyme with stereospecificity is stearoyl-CoA 9-desaturase, an enzyme that is involved in fatty acid metabolism and is present in every cell in the body.
- Stearoyl-CoA 9-desaturase only catalyzes the production the cis stereoisomer, as shown below.

Almost all enzyme names use the " \qquad $"$ suffix.

Enzymes are named and categorized based on their \qquad and/or the \qquad that they catalyze.
The table below lists some of the classes of enzymes, the reactions they catalyze, and some examples.

Enzyme Class	Reaction Involved	Examples
Isomerases	Catalyze rearrangement reactions: The reactant and the product contain the same atoms, only the bonding pattern changes.	Cis-trans isomerases - Convert cis to trans or vice versa.
Ligases	Use energy from ATP to form chemical bonds between substrates	DNA ligase - forms bonds between two DNA fragments.
Hydrolases	Catalyze hydrolysis reactions	- Lipases - hydrolyze ester bonds in lipids - Proteases - hydrolyze peptide bonds - Phosphatases - hydrolyze phosphoester bonds - Nucleases - hydrolyze bonds in DNA and RNA - Carbohydrases - hydrolyze glycosidic bonds
Oxidoreductases	Catalyze oxidation-reduction reactions	- Oxidases - oxidize a substrate - Reductases - reduce a substrate - Dehydrogenases - remove two hydrogens from neighboring carbons and form a double bond
Transferases	Catalyze the transfers of a group of atoms	- Kinases - transfer a phosphoryl group (PO ${ }^{-}$) - Transaminases - transfer an amino group

Understanding Check: Enzyme Specificity

Choose one of the enzyme classes (from the table above) that would catalyze each of the following reactions.
a. The conversion of a cis double bond to a trans double bond.
b. The digestion of fat.
c. The conversion of starch to D-glucose.
d. The conversion of a dipeptide into two amino acids.
e. The hydrolysis of ATP to form ADP and P_{i}.

Cofactors

A \qquad is defined as a non protein compound that must be permanently or temporarily bound to an enzyme in order for the enzyme to function.

- Example: A nickel ion $\left(\mathrm{Ni}^{2+}\right)$ must be bound to a urease enzyme in order for the enzyme to catalyze the conversion of urea to ammonium and bicarbonate.

Cofactors are either inorganic ions or organic compounds.

- When cofactors are organic compounds, they are often referred to as \qquad . In most cases, coenzymes are actually one of the \qquad in the catalyzed reaction.
- The reason that certain substrates are also referred to as coenzymes is that they are common substrates to many different enzymatic reactions in which they the donate atoms or groups of atoms to other substrates or accept atoms or groups of atoms from other substrates.
- For example, ATP and ADP are classified as coenzymes because they are involved in the transfer of phosphoryl groups $\left(-\mathrm{PO}_{3}^{-}\right)$in many different enzymatically catalyzed reactions.
- Many coenzymes are derived from dietary \qquad .

Some of the atom/group-transfer substrates that are also classified as coenzymes, and their dietary sources are listed below.

Coenzyme	Species that is Transferred		Dietary Source
ATP/ADP	phosphoryl group $=$		meat and sugars
NAD+/NADH	hydride ion (H :-) or electrons		niacin (vitamin B_{3})
FAD/FADH ${ }_{2}$	hydride ion ($\mathrm{H}:=$) or electrons		riboflavin (vitamin B_{2})
coenzyme A	acyl group $=$ \square		pantothenic acid (vitamin B_{5})

Effect of Temperature on the Rates of Enzymatically Catalyzed Reactions

A typical graph of the rate of an enzymatically catalyzed reaction vs. temperature is shown below.
The temperature at which the rate of the reaction is greatest is called the enzyme's \qquad temperature.
The reason that the reaction rate does not continue to increase after reaching the optimum temperature is that the enzyme begins to denature at the higher temperature.
An enzyme's optimum temperature is usually very close to the normal temperature of the organism in which it exists.

- For example, the optimum temperature of most human enzymes is at normal body temperature (~ 37 ${ }^{\circ} \mathrm{C}$), as depicted in the graph.

Effect of $\mathbf{p H}$ on the Rates of Enzymatically Catalyzed Reactions

A typical graph of the rate of an enzymatically catalyzed reaction vs. pH is shown below.
The pH at which the rate of an enzymatically catalyzed reaction is greatest is called the enzyme's
\qquad $\mathbf{p H}$.
An enzyme's optimum pH is usually very close to the normal pH of the region of an organism in which the enzyme exists.

- For example, the normal pH in most regions of the body is about 7.4 (physiological pH), so the optimum pH for enzymes found in these regions is also near 7.4 (as depicted in the graph).
As the pH increases or decreases from its optimum pH value, the reaction rate decreases because of enzyme
 denaturation.
Not all parts of the body have a normal pH near 7.4. The stomach has a normal pH range of 1 to 3 . It is not surprising that the digestive enzyme called pepsin, which functions in the stomach, has an optimum pH of 2 .

Control of Enzymatic Reactions

All life forms employ reaction regulation mechanisms that involve controlling enzymatically-catalyzed reactions by processes called enzyme \qquad and enzyme \qquad .
The body uses chemical feedback systems that can increase or decrease an enzyme's ability to catalyze a reaction.

The amount of substrate that an enzyme converts to product (per second) is referred to as the enzyme's " \qquad ."

1) Enzyme Inhibition

When a particular molecule (or ion) forms a covalent or noncovalent bond with an enzyme, it can result in a decrease in the enzyme's activity.
A species that decreases a particular enzyme's activity is called an \qquad .

- Unlike temperature, pH , and denaturing agents, which affect all types of enzymes, inhibitors will only affect specific enzymes.
Enzyme inhibition can be classified as \qquad inhibition or \qquad inhibition.

i) Irreversible inhibition

Irreversible inhibition occurs when an inhibitor reacts with an enzyme, forming a new and \qquad covalent bond to the enzyme.

- In almost all cases of irreversible inhibition, the new bond is made to the enzyme's active site, which results in complete and permanent loss of the enzyme's activity.
- In order to re-initiate catalysis, an organism must produce new enzymes (in the absence of the inhibitor).

An example of irreversible inhibition is aspirin's mode of operation. Aspirin irreversibly inhibits the cyclooxygenase (COX) enzyme, which catalyzes one of the reactions involved in prostaglandin production. Prostaglandins have a wide range of biological effects, including causing pain, inflammation, and fever. In order to prevent pain, inflammation, and fever, we use aspirin (or other nonsteroidal anti inflammatory drugs (NSAIDs)).

Irreversible inhibition occurs when aspirin reacts with an amino acid side-chain in the COX enzyme's active site, as illustrated below.

In this reaction, an acetyl group from aspirin is exchanged for a hydrogen atom (\mathbf{H}) from a particular side-chain in the COX enzyme's active site. When an acetyl group is bonded to the enzyme's active site, it is no longer possible for substrates to bind to the enzyme, and therefore the enzyme is permanently inactivated.

Another example of irreversible inhibition can be seen in the mode of action of the antibiotic drug called penicillin. The structural formulas of the intravenously-administered penicillin G and the orallyadministered penicillin V are shown below.

penicillin G
(given intravenously)

penicillin V
(given orally)

Penicillins are a class of antibiotics that work by irreversibly inhibiting a bacterial enzyme called DDtranspetidase. This enzyme is involved in constructing cell walls in some types of bacteria. If the cell wall cannot be correctly assembled, then the bacteria cannot divide (reproduce), and therefore do not persist. Penicillin is specific for the DD-transpetidase enzyme's active site because the shapes of the penicillins are quite similar to the shape of the substrate that is normally catalyzed by the enzyme. Once a penicillin is in the active site of this enzyme, a chemical reaction occurs in which penicillin forms a covalent bond to a particular side-chain in the active site. The reaction is irreversible and results in the complete loss of the enzyme's activity.
Some bacteria develop a resistance to penicillin G and V. In response, medical researchers have developed penicillin derivatives to which most bacteria have not yet developed a resistance. The structural formulas for a couple of these penicillin derivatives, ampicillin and amoxicillin, are shown below.

ampicillin

amoxicillin

ii) Reversible Inhibition

\qquad inhibition occurs when an inhibitor is weakly bound to an enzyme and decreases its activity.

- This type of inhibitor is called a reversible inhibitor.

Reversible inhibitors do not form covalent bonds to the enzyme, therefore they repeatedly attach to and detach from enzymes. When a reversible inhibitor detaches from an enzyme, the enzyme's activity is completely restored. The greater concentration of the inhibitor, the more frequently it will attach to enzymes, and the greater the reduction in enzyme activity. Reversible inhibitors decrease an enzyme's activity by attaching to either an enzyme's active site or to a region of an enzyme other than the active site.

An example of a reversible inhibitor is the antibacterial drug called sulfanilamide. Sulfanilamide, like most reversible inhibitors, reversibly binds to an enzyme's active site, forcing the enzyme's substrate to compete for access. Binding of reversible inhibitors to the active sites of enzymes can occur because the inhibitors' shapes often resemble the shapes of substrates, and are therefore complementary to the active sites. Sulfanilamide inhibits a bacterial enzyme that catalyzes the production of a compound that is essential for bacterial growth.

sulfanilamide (antibacterial drug)

As shown below, sulfanilamide very closely resembles p-aminobenzoate ion, which is the bacterial enzyme's substrate.

sulfanilamide
(antibacterial drug)

p-aminobenzoate ion (substrate)

Sulfanilamide was first used extensively as an antibacterial agent in World War II. Since then, many other antibacterial agents have been synthesized by exchanging the amino group (that is bound to the sulfur) with other organic groups. These sulfanilamide analogs are called antibacterial sulfa drugs.

Organisms often use several reactions in series (one after another) in order to carry out the chemical changes they require to meet their physiological needs.

- These reaction series are referred to as \qquad .
- Examples: Photosynthesis, glycolysis, and the citric acid cycle.

Many of the reactions in metabolic pathways require enzymes; therefore organisms can regulate (slow down) a metabolic process, according to their needs, by \qquad one (or more) of the enzymes involved in the metabolic pathway.

The \qquad of a reaction in a metabolic pathway often acts as a reversible inhibitor for one (or more) of the reactions in the pathway.
This biological strategy makes sense because when there is a relatively high concentration of a product in a metabolic pathway, it would be inefficient, and in some cases harmful, to continue its production. For example, consider the following hypothetical metabolic pathway that involves four enzymaticallycatalyzed reactions and eventually converts compound "A" into compound "E."

When the concentration of compound \mathbf{E} is high enough to meet the organism's needs, it would be inefficient, and in some cases dangerous, for the metabolic pathway to proceed. For this reason, compound \mathbf{E} acts as a reversible inhibitor of enzyme 1:

If compound \mathbf{E} is not present, or is present in relatively low concentration, the reactions proceed, and therefore compound \mathbf{E} is produced at a significant rate.

If compound \mathbf{E} is produced at a greater rate than the organism uses it, then excess \mathbf{E} is available to bind to and inhibit, enzyme 1.

- This decreases the production of $\mathbf{B}, \mathbf{C}, \mathbf{D}$, and, ultimately, a decrease in the production of \mathbf{E}.

Until the organism uses or breaks down a significant amount of compound \mathbf{E}, compound \mathbf{E} will continue to inhibit its own production.

The regulation of a metabolic pathway by the inhibition of an enzyme is called

inhibition.

An example of feedback inhibition is the regulation of glycolysis. Glycolysis is a metabolic pathway that involves a series of ten chemical reactions. It is used by organisms to convert glucose to ATP, NADH, and pyruvate. If the concentrations of these products are sufficient, it would be inefficient and potentially harmful to continue to produce them. Each of the ten reactions in the glycolysis pathway requires an enzyme. Three of the enzymes in the pathway are regulated by inhibitors in the feedback inhibition process.

2) Enzyme Activation

Enzyme activation can occur when an "activator" binds to an enzyme and \qquad its activity.

Binding of the activator species to an enzyme induces changes in the active site that increases the enzyme's activity.
Just like the substrates and enzyme inhibitors, enzyme activators are specific for a particular enzyme or group of enzymes.

Enzyme activators can regulate metabolic pathways by activating one or more of the pathway's enzymes.

- Increasing the production of a metabolic pathway by an enzyme activator is called feedback.
- An example of positive feedback is the activation of pyruvate kinase, an enzyme used in one of the glycolysis reactions. Pyruvate kinase is activated by PEP, which is also one of its own substrates (PEP).

One last note on the control of enzyme activity: In this section, I discussed how enzyme activity could be decreased or increased by the binding of inhibitors or activators (respectively). Nature employs additional strategies in order to increase or decrease enzyme activity. In some cases, one enzyme catalyzes the breaking of chemical bonds, or the formation of new bonds, in a second enzyme in order to activate or deactivate the second enzyme. The details of these processes are beyond the scope of this course, however, you should know that this type of activation and deactivation is commonly employed by organisms to regulate metabolic pathways.

Examples of the Involvement of Enzymes in Disease

The underproduction or overproduction of enzymes, or the inability of an organism to control enzymes can lead to \qquad . When such diseases result from a defect (mutation) in a gene that is responsible for the production of a particular enzyme, they are categorized as genetic diseases. In the next chapter, you will learn details of how the information in DNA is used to produce proteins (including enzymes). There are thousands of different types of enzymes that are produced in the body, and the inability to correctly produce or control just one type of enzyme could result in death. You may recall that I discussed Tay-sach's and other sphingolipidosis genetic diseases that result from a deficiency of the enzymes responsible for the breakdown of sphingolipids. Although some forms of sphingolipidosis are treatable with enzyme replacement therapy, most sphingolipidosis cases result in death before five years of age. Enzyme replacement therapy is also used to treat other enzyme deficiencies, such as lactose intolerance (deficient lactase enzyme activity) and exocrine pancreatic deficiency (insufficient pancreatic production of digestive enzymes).

Another example of disease that is related to enzymes occurs when DNA is replicated. Before a cell divides, a duplicate copy of its DNA must be made. The new DNA is "proofread" for errors and then repaired. DNA repair enzymes catalyze the repair of mistakes made in the DNA replication process. If an individual's DNA repair enzymes are not functional, this results in an accumulation of new mutations, and leads to various types cancer.

Phenylketonuria (PKU) is an enzyme-related disease that can be controlled by a special diet. PKU is caused by deficient activity of the phenylalanine hydroxylase enzyme (PAH). This enzyme is responsible for breaking down excess phenylalanine (an amino acid). When the PAH enzyme is not fully functional, high levels of phenylalanine result, which affects brain development and causes intellectual disabilities, seizures, and other medical issues. If PKU is diagnosed and treated early, the damaging effects can be minimized and normal mental development can occur. For individuals with PKU, the consumption of foods rich in phenylalanine residues, such as meats and nuts, can be poisonous. Treatment of PKU is a strict life-time diet that restricts phenylalanine-containing foods, and includes dietary supplementation of the non phenylalanine amino acids, and other nutrients. Individuals with PKU must be careful not to consume the artificial sweetener called aspartame (NutraSweet) because phenylalanine is produced when aspartame is broken down in the body.

1) Draw the structures of glycine, aspartic acid, and lysine structures that would be predominant at $\mathbf{p H}=7$.

	aspartic acid	lysine

2) Draw the structures of glycine, aspartic acid, and lysine structures that would be predominant at $\mathbf{p H}=1$

	aspartic acid	lysine

3) Draw the structures of glycine, aspartic acid, and lysine structures that would be predominant at pH $=14$

glycine	aspartic acid	lysine

4. Circle the peptide bonds and draw a star above the chiral carbons in the peptide below:

5. Define the following:
a) peptide
b) peptide bond
c) peptide group
d) L-amino acid
e) D-amino acid
f) primary protein structure
g) secondary protein structure
h) tertiary protein structure
i) quaternary protein structure
j) enzyme
k) enzyme specificity (list the different types of enzyme specificities)
1) enzyme inhibition (compare and contrast reversible and irreversible inhibitors)
m) enzyme activation
n) active site
6. Draw the structures of peptide Val-Gly that would be predominant at $\mathrm{pH}=1,7$, and 14 . $\mathrm{pH}=1$
$\mathbf{p H}=7$
$\mathrm{pH}=14$
7. List the attractive interactions involved in secondary, tertiary, and quaternary protein structure.

Protein Structure	
secondary	
tertiary	
quaternary	

KEY

1) Draw the structures of glycine, aspartic acid, and lysine structures that would be predominant at $\mathbf{p H}=7$.

 glycine		

2) Draw the structures of glycine, aspartic acid, and lysine structures that would be predominant at $\mathbf{p H}=1$

3) Draw the structures of glycine, aspartic acid, and lysine structures that would be predominant at pH $=14$

 glycine	 aspartic acid	

4. Circle the peptide bonds and draw a star above the chiral carbons in the peptide below:

5. Define the following:

SEE YOUR LECTURE NOTES AND/OR TEXTBOOK TO CHECK THE DEFINITIONS

6. Draw the structure of peptide Val-Gly that would be predominant at $\mathrm{pH}=1,7$, and 14 .

7. List the attractive interactions involved in secondary, tertiary, and quaternary protein structure.

Protein Structure	Attractive Interaction
secondary	hydrogen bonding
tertiary	hydrogen bonding, hydrophobic interactions, dipole-dipole, ion-dipole, disulfide bridges, and salt bridges
quaternary	same as tertiary: hydrogen bonding, hydrophobic interactions, dipole-dipole, ion-dipole, disulfide bridges, and salt bridges

Chapter 14 Lecture Notes: Nucleic Acids

Educational Goals

1. Know the three chemical components of a nucleotide: a monosaccharide residue (either ribose or deoxyribose), at least one phosphate group, and an "organic base."
2. Identify phosphoester bonding patterns and \boldsymbol{N}-glycosidic bonds within nucleotides.
3. Compare and contrast ribonucleotides and deoxyribonucleotides.
4. Understand the bonding patterns within nucleotide diphosphates and nucleotide triphosphates.
5. Predict the products for the hydrolysis of ATP and ADP.
6. Describe the bonding patterns within cyclic nucleotides.
7. Describe the chemical structure of polynucleotides (DNA and RNA) and identify the phosphodiester bonding patterns within polynucleotides.
8. Draw the structural formula of a dinucleotide that is formed by combining two specified nucleotides.
9. Compare and contrast the monosaccharide residues present in DNA vs. RNA.
10. Know the names of the organic bases that are present in DNA and RNA.
11. Given the structure of a DNA or RNA strand, identify the sugar-phosphate backbone, the 3' terminus, and the 5 ' terminus.
12. Describe the DNA double helix structure, and understand and define the term "complementary base pairing."
13. Understand how DNA folds back on itself and wraps around histones to form chromatin. Define, compare, and contrast chromatin, genes, and chromosomes.
14. Understand and explain how DNA replication takes place and how DNA polymerase is involved in the replication process.
15. Describe the polymerase chain reaction.
16. Know how DNA fingerprinting works and how it is used in forensic science.
17. Understand and explain transcription and how RNA polymerase is involved in the transcription process.
18. Understand and explain translation and define the term "codon."
19. Given the primary structure of DNA or mRNA, use the genetic code table to predict the sequence of amino acids in the polypeptide that would be produced in translation.
20. Describe the three types of RNA and understand the role of each in translation.
21. Define the term "gene expression."
22. Define the term "operon." Describe how the lac operon is regulated in order to control gene expression in E. coli.
23. Describe the structure of viruses and understand the way in which they can cause infections/diseases. Understand how the reverse transcriptase enzyme is used by HIV viruses.
24. Define and understand the terms "mutation," "genome," and "gene therapy." Explain how mutations can lead to genetic diseases. Give an example of a monogenic disease.
25. Define the terms: recombinant DNA, genetically modified organism (GMO), transfection, and bioethics.
deoxyribonucleic acid (DNA) and ribonucleic acid (RNA).

- Nucleic acids are polymers that consist of \qquad residues.

Nucleotides

A nucleotide is formed from three chemical components:

1) at least one \qquad
(hydrogen phosphate ion)
2) a
(either D-ribose or D-2-deoxyribose)
3) an \qquad base

nucleotides contain one of these monosaccharides

nucleotides contain one organic base (the five most common organic bases are shown)

Example: a deoxyribonucleotide

I used adenine as the organic base and deoxyribose as the monosaccharide.

The \qquad bonding pattern occurs when a monosaccharide bonds with the phosphate group.

An \qquad is made when the monosaccharide bonds to a nitrogen in the organic base.

In this example, the phosphate residue is bonded to the carbon in position number 5' of the monosaccharide ring.

a nucleotide

deoxyadenosine 5'-monophosphate

Because this nucleotide is formed from one phosphate residue, a deoxyribose residue, and an adenine organic base, we write its name as "deoxyadenosine 5'-monophosphate."

It is common to use abbreviations when naming nucleotides. In this case, we would abbreviate the name as " 5 '-dAMP," the lowercase "d" indicates "deoxy."
Organisms synthesize DNA from $\mathbf{5}^{\mathbf{5}}$-nucleotides.

Deoxyribonucleotides

The nucleotides that make up DNA contain a
\qquad residue, a phosphate residue, and either adenine, guanine, cytosine, or thymine organic base residues.

Ribonucleotides

The nucleotides that make up RNA contain a \qquad residue, a phosphate residue, and either adenine, guanine, cytosine, or uracil organic base residues.

These 5 '-nucleotides are so frequently encountered in biology that the " 5 -" is usually omitted in the names and abbreviations. 3'-nucleotides do exist, but they are rare.

Both DNA and RNA have adenine, guanine, and cytosine organic bases, however thymine is present only in DNA and uracil is present only in RNA.

Nucleotide Diphosphates and Triphosphates

Nucleotides have biological roles other than forming DNA and RNA.
One of these roles involves \qquad
\qquad .

The two most important energy-transfer nucleotides are adenosine triphosphate (ATP) and adenosine diphosphate (ADP).

ATP contains more chemical potential energy than does ADP.
Organisms obtain energy from their environment (sunlight or chemical potential energy in food) when they use it to convert ADP to ATP.

Energy is released from ATP when it is converted to back to ADP.

- Organisms can do mechanical work, or drive chemical reactions that require energy by converting ATP to ADP. This is analogous to burning fuel in order to move a car, or discharging a battery while powering an electrical device. One way that energy can be released from ATP is by reacting it with $\mathrm{H}_{2} \mathrm{O}$ to form ADP, hydrogen phosphate (abbreviated as P_{i}), and an H^{+}ion. The chemical equation for this reaction is shown below.

Cyclic Nucleotides

Another biological role of nucleotides is to act as \qquad compounds.

A type of nucleotide, called a \qquad nucleotide, is often used for this purpose.
Cyclic nucleotides are nucleotides that contain a phosphate group that bonds to the monosaccharide residue at two locations, thereby forming a phosphorus-containing ring.
The lower-case "c" in the abbreviation (cAMP) indicates that it is a cyclic nucleotide.

cyclic adenosine monophosphate (cAMP)

Understanding Check: Draw the structural formula of cyclic guanosine monophosphate (cGMP) by making the phosphoester bonds to the 3^{\prime} carbon and the 5^{\prime} carbon of the ribose monosaccharide residue. Also, label the N -glycosidic bond.
HINT: Look at the image of guanosine monophosphate (below) to see how guanine is connected to ribose.

guanosine 5'-monophosphate (5'-GMP)
Polynucleotides: DNA and RNA
A \qquad is a polymer made from nucleotide residues.

A chain of covalently bonded nucleotides is referred to as a " \qquad ."

Example: A Dinucleotide

Nucleotides are covalently bonded to each other by a _ bonding pattern between a $\mathbf{3}^{\text {, }}$ carbon on one monosaccharide and $\mathbf{5}^{\prime}$, carbon on the other monosaccharide.

- We call this bonding pattern a $3^{\prime} \rightarrow 5^{\prime}$ phosphodiester because the phosphate group is between the 3' and 5' carbons.

Understanding Check: Starting with the dinucleotide, draw a trinucleotide by adding another nucleotide to the 3' carbon of the bottom nucleotide residue. Highlight the phosphodiester bonding patterns. You may use a circle to represent the organic base structures, as I did in the dinucleotide.

DNA Structure

DNA contains the "information" needed for life. This information enables cells to grow and divide. It is responsible for your physical characteristics, such as your height, skin tone, and eye color. Human DNA contains about three million deoxyribonucleotide residues. Eukaryotic cells, which are cells having membrane-bound nuclei, have most of their DNA in the nucleus, and small amounts in other organelles such as chloroplasts and mitochondria. The DNA of prokaryotic cells is contained in the cytoplasm.

Genetic information, the information used to make the various proteins and thereby enabling life, is contained in the \qquad of nucleotides in DNA.

The sequence of nucleotides in DNA is referred to as DNA's \qquad .

DNA is composed of a combination of deoxyribonucleotides that contain either adenine, guanine, thymine, or cytosine organic bases.

For example:

Nucleotides are given a one-letter abbreviation based on the first letter in the name of their organic base, as shown in structure on the left.

In order to describe the primary structure of a DNA strand, it is customary to list the nucleotides' one-letter abbreviations in the order that the nucleotide residues appear in the strand.

For example, the primary structure of the DNA strand drawn on the left is written as:

$$
5^{\prime}-T G C A-3^{\prime}
$$

Another common method used to represent the primary structure of DNA and RNA is to draw the oneletter abbreviations of the organic bases branching from a line that represents the phosphate-sugar backbone. For example, the DNA strand shown above is represented as:

DNA exists as a \qquad , which is made from two polynucleotide strands.

Guanine (G) bases hydrogen bond with cytosine (C) bases.

The reason for the strong hydrogen bonding between these organic base pairs is that they have
\qquad shapes.

The hydrogen bonding between these pairs of organic bases is referred to as \qquad
\qquad or complementary base pairing.

- We say that the two polynucleotide strands in a double-stranded DNA particle are "complementary."

Example: Find the complement to this short DNA strand.

Solution:

The sugar-phosphate backbones for each of the two DNA strands are illustrated as blue ribbons.

The two DNA strands of a DNA double helix have their 5 ' terminuses and $\mathbf{3}^{\prime}$ terminuses with opposite orientations. We call this opposing orientations of the DNA strands an "antiparallel" arrangement.

The two DNA strands are held together by especially strong \qquad
\qquad between specific pairs of organic bases.

Adenine (A) bases hydrogen bond with thymine (T) bases.

Understanding Check: Fill in the missing one-letter abbreviations for the organic bases in the image below to show the correct complementary base pairing.

DNA Structure: Chromatin and Chromosomes

In eukaryotic organisms (plants, animals, and fungi), the DNA double helix coils into a more compact structure, as illustrated in the figure on the right.

In the coiling process, the double helix wraps around
\qquad proteins, as shown in figure on the right.

The DNA/histone further condenses into a fiber that is called \qquad .

Depending on the cell life cycle, chromatin can undergo further coiling. For example, before a cell divides chromatin is coiled into its tightest, most compact shape, which is called a
\qquad .

The amount of chromosomes that a cell contains

Before a cell divides, chromatin condenses into a particle called a chromosome. depends on the organism. Humans have a total of 46 chromosomes per cell, 23 from each parent. Dogs have a total of 78 chromosomes, 39 from each parent. Fruit flies have a total of 8 chromosomes. The smallest human chromosome contains about 50 million base pairs, and the largest one contains about 250 million base pairs.

Bacterial DNA

In bacteria, which do not have nuclei, chromosomes exist as circular units, called
\qquad chromosomes, (illustrated on the left).

- Circular chromosomes can twist/fold into more compact shapes.

In addition to circular chromosomes, bacteria contain smaller, yet still circular, double-stranded DNA units called \qquad .

Denaturation of the DNA Double Helix

Disruption of hydrogen bonding between complementary base pairs is called \qquad
\qquad .

- If enough disruption occurs, the DNA strands of a double helix will completely \qquad from each other.
- DNA can be denatured by the same agents that are responsible for the denaturation of proteins.

Unlike protein denaturation, when $D N A$ is denatured by heat and then allowed to cool to room temperature, the DNA strands will \qquad into the original double helix shape.

- When complementary DNA strands re-form their double helix structure, it is referred to as \qquad .
- Annealing of DNA strands is possible because of complementary base pairing.

RNA Primary Structure

RNA is a polynucleotide that contains ribose residues, phosphate groups, and adenine, guanine, cytosine and uracil organic bases.

The sequence of nucleotides in RNA is referred to as RNA's primary structure.
The primary structure of a small section of RNA is shown below.

3^{\prime} terminus
DNA contains thymine organic bases, however RNA does not; it contains \qquad organic bases instead.
DNA has just one function - storing genetic information; RNA has \qquad functions.

- The overall shape of an RNA particle depends on its \qquad .
- You will learn about the three types of RNA that are involved in protein synthesis in a later section of this chapter.

Differences Between the Two Classes of Polynucleotides: RNA vs. DNA

DNA Replication

When a cell divides, the original cell, called the parent cell, forms two new cells that are called the daughter cells.

Before a somatic cell (non germ/sex cell) physically splits into two daughter cells, an exact \qquad of all of the parent cell's DNA must be made so that a copy can be placed in each daughter cell.

The process in which a duplicate copy of a DNA double helix is made is called \qquad - \qquad .

In DNA replication, each of the two original DNA strands (called the parent strands) is used as a "template" for the formation of a new " \qquad
\qquad .$"$

- In eukaryotic cells, proteins called "helicases" unwind and then open sections of the double helices by disrupting the hydrogen bonds between base pairs.

Once a double helix has opened, DNA polymerase enzymes catalyze the formation of complementary daughter strands on \qquad of the parent strands.

The daughter strands are formed by adding \qquad deoxyribonucleotides, one-by-one to the growing daughter strands.

Because each daughter strand is assembled, nucleotide by nucleotide, with organic bases that are complementary to one of the parent strands, then both of the double-stranded DNA particles that result from the replication process are identical to the original DNA particle.

DNA polymerase enzymes catalyze the addition of complimentary nucleotides to the \qquad terminus of the growing daughter strand.
In order to do this, DNA polymerase moves along the parent (template) strand in the direction from 3' terminus to $\mathbf{5}^{\prime}$ terminus of the parent strand.

- In plants and animals, this process occurs simultaneously at multiple places along each parent strand. Although not shown in the image on the previous page, these multiple sections of a daughter strand are linked/bonded together with the help of DNA ligase enzymes.

Chemical Bonding in DNA Replication

DNA polymerase enzymes catalyze the formation of \qquad bonds between free nucleotide triphosphates and the $\mathbf{3}$ ' terminus of a growing daughter strand.

The daughter strands that are produced are \qquad to their template parent strands because DNA polymerase directs the addition of nucleotide triphosphates that are complementary to the adjacent parent strand bases.

- In the image shown above, a triphosphate with the cytosine (C) base was added because of the adjacent complementary guanine (G) base in the template parent strand.

Proofreading and Repair

When adding new deoxyribonucleotides to a growing DNA strand, DNA polymerase inserts the wrong residue slightly less than once every 10,000 times.

The enzyme proofreads its work to see if the correct deoxyribonucleotide residue has been added; if a mistake has been made, DNA polymerase clips the residue and tries again.

If proofreading does not catch the error, then other DNA repair enzymes are likely to catch the problem. After proofreading and repair, the error rate during replication falls to less than one in 1 billion bases.

Understanding Check: Using the illustration on shown in the viewgraph, name the next nucleotide triphosphate that would be added to the growing daughter strand.

Understanding Check: Label each of the statements below as either TRUE or FALSE.
a. A double helix can be converted to two identical double helices.
b. If the sequence within a parent template strand is $\mathbf{5}^{\prime}$-CGCGTTA- $\mathbf{3}^{\prime}$, then the sequence of its daughter strand would be 5^{\prime}-GCGCAAT- 3^{\prime}.
c. If the sequence within a parent template strand is $\mathbf{5}^{\prime}$-CGCGTTA- $\mathbf{3}^{\prime}$, then the sequence of its daughter strand would be 3^{\prime}-GCGCAAT-5’.
d. One of the double helices produced in DNA replication contains the two parent strands, and the other double helix contains the two daughter fragments.
e. The two parent strands are complementary to each other and therefore, the two daughter strands are complementary to each other.
f. DNA polymerase moves in the direction from 5' terminus of the parent (template) DNA strands toward the $\mathbf{3}^{\prime}$ terminus of the parent strands.
g. DNA polymerase catalyzes the addition of nucleotides to the $\mathbf{3}^{\prime}$ terminus of the growing daughter strand.

Protein Synthesis

The information contained in the sequence of DNA nucleotides is used to generate proteins. This process is central to the existence of all known life forms because proteins are critical in directing and controlling cell growth and function, and in regulating an organism's metabolism.

The process of making proteins from the information in DNA is called \qquad
\qquad or \qquad .

Protein synthesis can be divided into two sequential processes: transcription and translation.

Transcription: DNA to RNA

A \qquad is generally defined as a region of DNA that carries the information needed to produce a protein.

- Human DNA contains about $\underline{25,000}$ genes.

The first step in protein synthesis is called \qquad .
In the transcription process, the information (sequence of nucleotides) in a gene is used to create a specific sequence of ribonucleotides in a single-stranded \qquad (mRNA) particle.

The transcription process is similar to DNA replication, with three main differences:

1) RNA is produced in transcription, whereas DNA is produced in DNA replication.
2) In transcription, only one of the DNA double helix strands is used as a template to produce one mRNA strand, whereas in DNA replication, each of the two DNA strands in a double helix produce a daughter strand.
3) Different enzymes are used.

Transcription begins when an \qquad enzyme binds to a "promoter site" on the gene.

- Promoter sites are specific sequences of nucleotides at the beginning of a gene. When RNA polymerase binds to the promoter site, the hydrogen bonding between base pairs within the DNA double helix is disrupted. This unwinds and opens a section of the gene's double helix.

Next, RNA polymerase moves along one strand of the gene while catalyzing the addition of free ribonucleotides, that are complementary to the DNA template, to the \qquad end of a growing mRNA strand.

The DNA-to-RNA base pairing is a bit different from the DNA-to-DNA base pairing because RNA contains uracil (U) and does not contain thymine (T).

- Adenine (A) DNA organic bases base pair with uracil (U) RNA bases.
- DNA organic bases C,G, and T, base pair with RNA bases G, C, and A, respectively.

When the RNA polymerase reaches a nucleotide sequence in the gene, called the termination site, the mRNA strand is \qquad .

Transcription occurs in the \qquad of eukaryotic cells and in the \qquad of prokaryotic cells.

Although not shown in the illustration on the previous page, in eukaryotic cells, there are regions of RNA that undergo additions and deletions of nucleotides in a process called co-transcriptional modifications. A discussion of the details of co-transcriptional modifications is beyond the scope of this course.
Messenger RNA contains the \qquad (message) from a gene that is required to produce a protein.
In eukaryotic cells, mRNA exits the nucleus through pores in the nuclear membrane and enters the cytoplasm where the protein synthesis process will be completed.
About 1.5% of human DNA is in the form of a gene; the remaining 98.5% is called noncoding DNA. Until recently, the noncoding DNA was called "junk DNA." It was thought that all noncoding DNA is extraneous DNA that has been passed down, through evolution, from ancestral species. More recently, research has shown that not all noncoding DNA is "junk." For example, noncoding DNA has been found to play a role in the regulation of transcription.

Translation: mRNA to Protein

The next step in protein synthesis is called \qquad .

- In this process, the information that was in a gene and is now contained in mRNA is used to construct the polypeptide chains that make up proteins.
In translation, the sequence of nucleotides in mRNA, is converted (translated) to a sequence of residues in a polypeptide.
This is done using the \qquad
\qquad .
The genetic code is based on three-nucleotide sequences, called \qquad .
A codon directs the addition of a \qquad amino acid residue to a polypeptide that is being formed.
The genetic code was completely known by the late 1950's and is shown in the table below.
- Example: the mRNA three-nucleotide sequence (codon) GAU codes for the addition of an aspartic acid (Asp) amino acid residue to a growing polypeptide chain.
Genetic Code Table: The mRNA Codons and the Amino Acids for which they Code

first mRNA codon base	second (middle) mRNA codon base				third mRNA codon base
	U	C	A	G	
U	UUU $\}$		$\left.\begin{array}{l} \mathrm{UAU} \\ \mathrm{UAC} \\ \mathrm{UAA} \\ \mathrm{UAG} \end{array}\right\} \mathrm{Tyr}$	$\left.\begin{array}{l} \mathrm{UGU} \\ \mathrm{UGC} \end{array}\right\} \mathrm{Cys}$	U
	UUC $\}$ Phe				C
	UUA $\}$ Leu			UGA $=$ STOP	A
	UUG ${ }^{\text {Leu }}$			UGG $=$ Trp	G
C	CUU	$\left.\begin{array}{l} \mathrm{CCU} \\ \mathrm{CCC} \\ \mathrm{CCA} \\ \mathrm{CCG} \end{array}\right\}$	$\left.\begin{array}{l} \mathrm{CAU} \\ \mathrm{CAC} \end{array}\right\} \text { His }$	$\left.\begin{array}{l} \mathrm{CGU} \\ \mathrm{CGC} \\ \mathrm{CGA} \\ \mathrm{CGG} \end{array}\right\} \mathrm{Arg}$	U
	CUC				C
	CUA $\}^{\text {Leu }}$				A
	CUG				G
A	AUU	$\left.\begin{array}{l} \mathrm{ACU} \\ \mathrm{ACC} \\ \mathrm{ACA} \\ \mathrm{ACG} \end{array}\right\}$	$\left.\begin{array}{l} \mathrm{AAU} \\ \mathrm{AAC} \end{array}\right\} \text { Asn }$	$\left.\begin{array}{l} \mathrm{AGU} \\ \mathrm{AGC} \end{array}\right\} \mathrm{Ser}$	U
	AUC $\}$ Ile				C
	AUA		$\left.\begin{array}{l} \text { AAA } \\ \text { AAG } \end{array}\right\} \text { Lys }$	$\left.\begin{array}{l} \mathrm{AGA} \\ \mathrm{AGG} \end{array}\right\} \mathrm{Arg}$	A
	AUG $=$ Met/START				G
G	GUU	$\left.\begin{array}{l} \text { GCU } \\ \text { GCC } \\ \text { GCA } \\ \text { GCG } \end{array}\right\}$	$\left.\begin{array}{l} \mathrm{GAU} \\ \mathrm{GAC} \end{array}\right\} \text { Asp }$	$\left.\begin{array}{l} \text { GGU } \\ \text { GGC } \\ \text { GGA } \\ \text { GGG } \end{array}\right\} \text { Gly }$	U
					C
	GUA Val				A
	GUG				G

The mRNA nucleotide sequences in the codons are listed in the direction of the mRNA 5' terminus toward the 3' terminus.

Since there are twenty-one common amino acids, and only four types of RNA nucleotides ($\mathbf{C}, \mathbf{G}, \mathbf{A}, \mathbf{U}$), it was necessary for nature to use three nucleotides per codon. If there were only one nucleotide per codon, then only four amino acids could have been specified. If there were only two nucleotides per codon, then only sixteen amino acids could have been specified.

In nature, mRNA sequences contain hundreds to many thousands of nucleotide residues, however, for simplicity, I will use a very short mRNA sequence in the following example.

The "start" codon (AUG) determines the first amino acid residue to be used in the polypeptide.
Peptides are synthesized in the direction from their \mathbf{N}-terminus to their \mathbf{C}-terminus.

Nucleotides are added to the growing peptide chain until the stop codon is reached.

Understanding Check: Write the three-letter abbreviations for the amino acid residues, in order from \mathbf{N}-terminus to \mathbf{C}-terminus, of the polypeptide that would be produced in the translation of the mRNA shown below.

- Recall that in translation, polypeptides are formed in the direction from their \mathbf{N}-terminus to the C-terminus.

The Role of Transfer RNA (tRNA) in Translation

In order for you to understand how the codon information is used to direct the addition of specific amino acids to a growing peptide chain, we will consider another type of RNA, called transfer RNA (tRNA).

The function of a tRNA particle is to \qquad and then \qquad the amino acid that is specified by an mRNA codon to a growing peptide chain.

A ribbon model and a simplified representation of a tRNA particle are shown below.

tRNA particles are single-stranded polynucleotides that contains 73 to 93 ribonucleotides. Base pairing causes the single tRNA strand to fold back on itself. Hydrogen bonding between tRNA base pairs is represented by the dotted lines that are highlighted in the simplified tRNA representation.

One region of tRNA has a site that attaches to an amino acid residue, and another region contains a threenucleotide sequence called an \qquad .

The particular amino acid that a tRNA carries depends on the three-nucleotide sequence in its anticodon.
Anticodons are \qquad to mRNA codons (as illustrated in the bottom-right of the image above).

In the illustration above, the mRNA codon (in the $\mathbf{5}^{\prime}$ to $\mathbf{3}^{\prime}$ direction) is CGA, therefore the tRNA anticodon (in the $\mathbf{3}^{\prime}$, to $\mathbf{5}^{\prime}$ direction) is $\mathbf{G C U}$. Using the mRNA codon in this example (CGA), and the genetic code table, we find that this tRNA would carry an arginine (Arg) amino acid residue.

The Translation Mechanism

Translation occurs in three steps:
\qquad
1)
2) \qquad 3) \qquad

1) Initiation

Once the messenger $R N A$ leaves the nucleus and enters the cytoplasm, a \qquad attaches to its "start" codon (AUG).

Ribosomes are relatively large particles that contain protein and very long RNA strands called ribosomal RNA (\qquad).

- The function of ribosomes is to provide a structure upon which polypeptides can be produced.

Next, a transfer RNA with a " \qquad "" anticodon (UAC) binds to the mRNA start codon to form a ribosome/mRNA/tRNA complex. The formation of this complex, as illustrated below, is called the initiation step.

2) Elongation

Elongation begins when a second tRNA binds to the ribosome/mRNA/tRNA complex (as illustrated below).

- The second tRNA delivers the amino acid that corresponds to the codon that follows the start codon. In this example, the second tRNA delivers an asparagine (Asn) amino acid.
In elongation, a polypeptide chain is made by the formation of \qquad bonds between the amino acid residues that are specified by the genetic code in mRNA.

A part of the ribosome, called the transferase center, catalyzes the formation of peptide bonds between the amino acid residues.
Next, the ribosome moves a distance of three bases (a codon) along the mRNA strand in the $\mathbf{5}^{\prime}$ to $\mathbf{3}^{\prime}$ direction. The tRNA that was attached to the first amino acid detaches from the mRNA and diffuses throughout the cytoplasm where it will encounter an enzyme that catalyzes its reattachment to an amino acid that matches its anticodon.

This entire process is repeated when a third amino acid binds to the next mRNA codon, as illustrated below.

Peptides are synthesized in the direction from the \mathbf{N}-terminus to the \mathbf{C}-terminus because the new amino acid residues form peptide bonds with the \mathbf{C}-terminus of a growing peptide chain.

After many cycles of amino acid addition, the ribosome will reach a "stop" codon as illustrated below.

3) Termination

The termination step occurs when the ribosome reaches a \qquad codon (UAA, UGA, or UAG).

When this happens, the polypeptide, mRNA, tRNA, and ribosome become separated, as illustrated below.

In some cases, the polypeptide that is produced in translation is a fully-functional protein. In other cases, the polypeptides undergo further folding to acquire the secondary and tertiary structures that they need in order to function. In many cases, multiple polypeptide subunits must assemble into a quaternary structure in order to form a fully-functional protein.

Some proteins require covalent bonding modifications, called post-translational modifications, after they are translated. An example of a post-translational modification is the addition of heme groups to heme-containing proteins, such as hemoglobin and myoglobin.

Although not discussed in this section, there are some differences in how prokaryotic and eukaryotic cells synthesize proteins. Many antibiotics take advantage of these differences in order to inhibit protein synthesis in prokaryotic pathogens while not harming the human (or animal) hosts. The table below lists some of these antibiotics and their effects on prokaryotic protein synthesis.

Antibiotic	Mode of Action
chloroamphenicol	inhibits peptide bond formation
erythromycin	prevents ribosome from moving along mRNA
streptomycin	inhibits initiation and cause misreading of mRNA
tetracycline	inhibits the binding of tRNA to mRNA/ribosome

Understanding Check: Write the three-letter abbreviations for the amino acid residues, in order from \mathbf{N}-terminus to C-terminus, of the polypeptide that would be produced by the transcription and translation of DNA with a sequence of $\mathbf{3}^{\prime}$-TACGGGGTACACACT-5'.

- CAUTION: In this question, you were given the sequence of DNA, not mRNA.

Control of Gene Expression

\qquad is another term used for protein synthesis

The DNA of each living thing contains thousands of genes.
These genes are not continually \qquad (read to make proteins), because the production of unneeded proteins would be an inefficient use of resources.
In chapter 13, you learned how organisms often use several reactions in series, called metabolic pathways, in order to carry out the chemical changes they require to meet their physiological needs. You also learned that many of the reactions in metabolic pathways require enzymes and that organisms can regulate (slow down or speed up) a metabolic process, according to their needs, by inhibiting or activating one (or more) of the enzymes involved in the metabolic pathway.
Another way to control metabolic pathways, or other conditions that involve proteins, is to regulate the
\qquad
\qquad
\qquad of a protein/enzyme.

This is called \qquad gene expression.

Increasing the rate of gene expression is called \qquad of the gene; decreasing the rate of gene expression is called \qquad of the gene.

Example: Control of the lac operon.

Recall that transcription, the creation of mRNA from the information in a DNA, involves the $R N A$ polymerase enzyme. In order for transcription to begin, RNA polymerase must bind to a "promoter site" on the DNA to be transcribed.

Sometimes, several genes are transcribed from the same promoter site.
A section of DNA made up from genes that are transcribed from the same promoter site is called an
\qquad -

Escherichia coli (E. coli) contain an operon comprised of three genes that code for proteins involved in the metabolism or transport of lactose.

This operon is called the lac operon.
The three genes of the lac operon are called $\operatorname{lac} \mathrm{Z}, \operatorname{lac} \mathrm{Y}$, and $\operatorname{lac} \mathrm{A}$. The lac operon is preceded by a lac regulator (lacl) gene, as illustrated below.

In the presence of glucose, lactose is not needed as an energy source and almost zero lactose is allowed into the bacterial cell, therefore it is not necessary for the genes of the lac operon to be expressed. It is for this reason that nature has provided a regulator gene (lacI gene).

The lacI gene produces an \qquad repressor protein, which binds to a segment of DNA called an operator site, as illustrated below.

When the active repressor protein is bound to the operator site, RNA polymerase is \qquad from moving along the lac operon to transcribe the lacZ, lacY, and lacA genes.

- Under normal conditions (glucose present), this is ideal for the E. coli because there is plenty of glucose present, and lactose is not being taken in, therefore the bacteria do not need the lactose metabolism or transport proteins that the genes of the lac operon express.
Let's consider the scenario in which lactose is present in the absence of glucose. In this case, lactose is allowed to enter the E. coli. Whenever lactose is present in the bacteria, some of it is converted to a compound called allolactose.

Allolactose will bind to, and thereby \qquad the repressor protein.

The inactive repressor protein cannot \qquad to the operator site, therefore RNA polymerase is no longer blocked and will move along the lac operon to transcribe the lac operon genes, as illustrated below.

The mRNAs from the lac operon genes are translated to the three proteins: β-galactosidase, permease, and transacetylase.

- $\quad \beta$-galactosidase is an enzyme involved in lactose metabolism.
- Permease is a transmembrane protein that transports lactose into cells.
- Transacetylase is an enzyme thought to be involved in the breakdown of some non lactose species that are transported into cells by permease.

The presence of lactose within E. coli, and the subsequent presence of allolactose, upregulate the genes of the lac operon. Allolactose and lactose are continuously being used up by the bacteria. Whenever lactose is no longer obtained from the surroundings, the concentration of allolactose within the cells will decrease, and then active regulator proteins become available again to downregulate the lac operon.

Understanding Check: Determine whether each of the following conditions would result in the genes of the lac operon being upregulated or downregulated.
a. RNA polymerase is blocked from moving along the lac operon
b. Allolactose binds to the repressor protein
c. Lactose concentration within a cell is decreased
d. Allolactose concentration within a cell is increased
e. Active repressor proteins are present in the absence of allolactose
f. Glucose is available.

Viruses

Viruses are small particles that are not able to \qquad on their own.

- A typical virus is about $1 / 100$ the size of a bacteria.

In order for a virus to reproduce, it must invade a cell of another organism.
A cell that is invaded by a virus is called a \qquad cell.

Viruses have much less-complicated structures and contents than do cells; they do not have the components, such as nucleotides and certain enzymes, that are needed in order to self-replicate. Viruses come in a variety of shapes.

All viruses have a protein shell that encapsulates either \qquad or \qquad , and some viruses contain a small set of enzymes.

- A virus that contains DNA is called a DNA virus. A virus that contains RNA is called an RNA virus. Some viruses have a lipid coating that surrounds their protein shell.

All forms of life can have their cells invaded by viruses.

When viruses take over plant or animal cells, we call this a
\qquad infection.

- Several human infectious diseases, some of which are chronic diseases, are caused by viral infection. Some of these diseases, the location of the infections, and the most common viral species involved are shown on the right.

Viruses infect cells by introducing their DNA or RNA and, in some cases, a few types of enzymes, into the host cell. This is done in various ways depending on the particular virus. Once the viral DNA or RNA is introduced to the host cell, enzymes, nucleic acids, and amino acids from the host cell are employed to make more viral DNA or viral RNA, and viral proteins. The viral DNA or RNA and viral proteins are reassembled into multiple, new virus particles within the host cell. These new viral particles cause the host cell to burst or release the viral particles using the exocytosis process. The infection spreads as the new viruses infect other cells.

Viral DNA or RNA self-replicates and expresses viral proteins in several different ways, depending of the type of virus. A detailed description of each of these processes is beyond the scope of this course. Instead, I will give one example by describing how the human immunodeficiency virus (HIV) infects cells.

Viral infection example: the human immunodeficiency virus (HIV)

HIV is in a category of viruses called retroviruses. When taken into the host cell, the information in the retroviral RNA is converted to complementary DNA. This is called reverse transcription and is catalyzed by a viral enzyme called reverse transcriptase. The name "reverse transcriptase" is applied because the chemical process is the reverse of transcription. The newly formed DNA is inserted into the host cell's DNA, and then transcribed into new retroviral RNA and viral proteins during the host cell's normal gene expression. The retroviral RNA and viral proteins are assembled into multiple retroviruses and then released from the cell. This process is illustrated below.

Animals are capable of producing immune responses that eliminate most viral infections. Vaccinations are effective as anti-viral agents because they allow vaccinated individuals to produce artificially acquired immune responses to many viral infections. Some viruses, such as HIV, herpes simplex virus (HSV), and hepatitis C virus (HCV), are capable of evading immune responses and therefore result in chronic (persistent or long-lasting) disease.

Understanding Check: Enzymes Involved in DNA and RNA Formation

Which enzyme (DNA polymerase, RNA polymerase, or reverse transcriptase) is involved in each of the processes below:
a. Transcription
b. Replication
c. Using a DNA template to make RNA
d. Using an RNA template to make DNA

Genetics

\qquad is the study of genes, variation in genes, and heredity.
The information contained in the DNA of an organism is called its \qquad .

Individuals, other than identical twins, have different \qquad
\qquad because the DNA of each person is not exactly the same as that of another person.

- Even identical twins have about one hundred incidents of differences in nucleotide sequences in their genome, although that is not enough to make differences in their appearances. Small differences in the appearances of identical twins are attributed to environmental, not genetic, differences.
- Examples of inherited traits in humans include eye, skin, and hair color.
- Sometimes, \qquad result from an abnormal DNA sequence in a parent being passed to the next generation.

Any permanent change in the primary structure of (sequence of nucleotide residues in) DNA is called a .

- Mutations might involve the switching of one base pair for another or the addition or deletion of base pairs.
- Changes in the nucleic acid sequence of a gene (a mutation) can result in changes in the
\qquad sequence of the protein that is expressed, and can thereby give rise to partially or completely nonfunctional proteins.
- A chemical or physical agent that induces mutations is called a \qquad .
- Errors in replication and exposure to mutagens (including x-rays, UV radiation, nuclear radiation, and chemicals) are the common causes of mutations.
- If the mutated gene results in a partially or completely nonfunctional protein that is important for an individual to function, the health of the individual may be diminished. Some mutations result in premature death.

Types of Mutations

Mutations that occur in multicellular organisms can be categorized as either \qquad mutations
or \qquad mutations.

Somatic mutations, also called acquired mutations, are mutations that occur within cell types that are not involved in reproduction (somatic cells).

- When a mutation arises in a somatic cell, then the mutation is limited to that cell or any of its celldivision descendants within the organism. Cancer is a disease that results from somatic mutations in genes that are responsible for cell growth or cell differentiation. Such mutations cause the formation of a mass of mutated cells (cancer cells) called a tumor. For example, a skin cell can acquire a mutation, very often from exposure to UV radiation, which causes it to begin to rapidly divide/replicate and form a tumor.

Germ line mutations are mutations that occur within germ line cells.

- Germ line cells are the cells that are involved in reproduction (e.g. sperm and ovarian cells).
- If a mutated germ line cell is passed to an offspring, then it results in a
\qquad mutation, which is a mutation occurring in the nuclei of every cell of the offspring.
- When a constitutional mutation causes a negative health condition, it is referred to as a
\qquad .
- Note that mutations in germ line cells can be transmitted to offspring, whereas somatic cell mutations cannot.

Small-Scale Mutations vs. Large-Scale Mutations

Mutations can be classified as small-scale or large-scale, depending on the \qquad of nucleotides involved in the mutation.

- Small-scale mutations involve a change in a small number of nucleotides (usually one to three nucleotides) within a single gene.
- Large-scale mutations, sometimes called chromosomal mutations, involve changes in large sections of chromosomes.

Small-Scale Mutations:

1) Point: A single, incorrect nucleotide takes the place of the original nucleotide. This often happens during DNA replication.
2) Insertions: One or more extra nucleotides are inserted between two of the original nucleotides in a gene.
3) Deletions: A single nucleotide or a short sequence (usually 2 or 3 nucleotides) are removed from a gene.

Large-Scale Mutations:

Large-scale mutations involving a single chromosome (illustrated on the right):

1) Deletions: A large section of DNA within a single chromosome is removed/deleted.
2) Duplication: A large section of DNA within a single chromosome is duplicated and reinserted.
3) Inversion: A large section of DNA within a single chromosome is inverted (3^{\prime} and 5^{\prime} directions reversed).

Large-scale mutations involving two different chromosomes:

1) Insertion: A large section of DNA within one chromosome is inserted into another chromosome (illustrated below, left).
2) Translocation: Large sections of DNA in two different chromosomes are exchanged (illustrated below, right).

Human Genetic Diseases

The inheritance of one or more mutated genes can result in a genetic disease.

- Some genetic diseases involve a particular gene, others involve multiple genes.

Normally, individuals have two copies of each gene in the nucleus of every somatic cell in their bodies. One copy of the gene was inherited from mother, and one copy from father.

A \qquad disease occurs when one or both copies of a particular gene contains a harmful mutation.

- "Dominant diseases" are monogenic diseases that occur when \qquad copies of a gene are mutated.
- "Recessive diseases" are monogenic diseases that occur when \qquad copy of the gene is not mutated and
\qquad copy is mutated.
- The exceptions to these dominant/recessive disease definitions are some genes on the human X chromosome.
- Example of a monogenic recessive disease: cystic fibrosis

More than 7,000 different monogenic diseases have been identified. Despite this large number of diseases, monogenic diseases are quite rare. The table on the right lists some monogenic diseases and their prevalences.

Approximate Prevalence of Some Monogenic Diseases

monogenic disease	prevalence
familial hypercholesterolemia	1 in 500
polycystic kidney disease	1 in 1,250
Huntington's disease	1 in 15,000
sickle cell disease	1 in 625
cystic fibrosis	1 in 2,000
Tay-Sachs disease	1 in 3,000
Phenylketonuria (PKU)	1 in 12,000
glycogen storage diseases	1 in 50,000
Duchenne muscular dystrophy	1 in 7,000
hemophilia	1 in 10,000

The prevalences shown here are approximate values and can vary significantly between populations with different ancestral ethnicities as well as gender.

A \qquad disease occurs when one or both copies of multiple, different genes contain a harmful mutation.

- Examples: hypertension, coronary heart disease, and diabetes.

Treating Genetic Diseases: Gene Therapy

Some genetic diseases can be treated by
\qquad
\qquad , which involves the delivery of functional (unmutated) genes to the cells of an individual who has a monogenic disease.

In some cases, the genes are introduced to the body by "infecting" the patient with inert DNA viruses that have had their genomes replaced with the gene that is to be delivered. A biological agent (a virus in this case) that is used to artificially deliver DNA to a cell is called a "vector." An overview of this process is illustrated on the right.

Recombinant DNA: Genetically Modified Organisms

It is possible to extract copies of a gene from one organism and then insert that gene into another organism's genome.

- This process forms " \qquad DNA," which is DNA made from two or more sources.
- An organism that contains recombinant DNA is called a genetically modified organism (\qquad) or a \qquad .

GMO Examples:

1) Glyphosate Resistant Crops
2) Human Insulin from Bacteria
3) Measuring Gene Expression using Green Fluorescent Protein Mutants

Bioethics: Using What We Know

\qquad is a term used to describe the study of ethical issues that arise from biological technologies.
Some of the bioethical concerns that involve human genetics include the following questions:

- What individuals or corporate entities can have access to personal genetic information?
- Is genetic information something that can be patented and owned?
- Who should be genetically tested and at what age should genetic testing be performed?
- Should we re-engineer the genes we pass on to our children?

These are complicated questions. The best solutions for complicated questions are usually not found by simple yes/no, or "one-size-fits-all" approaches. Furthermore, new research and emerging technologies make it necessary to frequently reconsider prior policies. Complicated questions often require complicated solutions. In order to reasonably address these bioethical questions, it is necessary to have an understanding of the fundaments of genetics and nucleic acid chemistry. It was my intention to provide you with such an understanding in this chapter.

Chapter 15 Lecture Notes: Metabolism

Educational Goals

1. Define the terms metabolism, metabolic pathway, catabolism, and anabolism.
2. Understand how ATP is formed from ADP and inorganic phosphate ($\mathbf{P}_{\mathbf{i}}$), and vice versa.
3. Understand how Coenzyme-A is used to transfer acyl groups.
4. Understand the roles of the NAD $/$ /NADH and $\mathbf{F A D} / \mathbf{F A D H}_{2}$ coenzymes in the transfer of electrons. Identify the oxidized and reduced form of each of these pairs.
5. Understand the differences between linear, circular, and spiral metabolic pathways and give an example of each.
6. Name the products formed during the digestion of polysaccharides, triglycerides, and proteins, and know the part(s) of the digestive track where each occurs.
7. Identify the initial reactant and final products of glycolysis, and understand how this pathway is controlled.
8. Understand and compare glycolysis and gluconeogenesis pathways.
9. Know the fate of pyruvate under aerobic and anaerobic conditions.
10. Define the terms hyperglycemic and hypoglycemic.
11. Understand how the body controls blood glucose concentration by the release of insulin or glucagon into the bloodstream.
12. Understand and compare glycogenesis and glycogenolysis. Understand how these processes are involved in maintaining normal blood glucose concentration.
13. Understand and compare type I, type II, and gestational diabetes.
14. Identify the initial reactant and final products of the citric acid cycle; understand how this pathway is controlled.
15. Understand how the oxidation of coenzymes during oxidative phosphorylation is used to produce ATP.
16. Compare the malate-aspartate shuttle and the glycerol 3-phosphate shuttle and understand their significance in affecting the amount of ATP that can be produced from glucose.
17. Predict how many ATP are formed when acetyl-CoA undergoes stages $\mathbf{3}$ and $\mathbf{4}$ of catabolism.
18. Describe the catabolism of triglycerides, the $\boldsymbol{\beta}$-oxidation spiral, and how β-oxidation differs from fatty acid anabolism (biosynthesis).
19. Given the structure of a fatty acid, predict how many ATP are formed when it undergoes the $\boldsymbol{\beta}$-oxidation spiral.
20. Understand and compare lipolysis and fatty acid synthesis.
21. Explain the biological origins of ketosis and ketoacidosis.
22. Understand how transamination and oxidative deamination are involved in the catabolism of amino acids.
23. Given the structure of an amino acid and $\boldsymbol{\alpha}$-ketoglutarate, predict the products of a transamination reaction.
24. Explain how quaternary ammonium groups $\left(-\mathrm{NH}_{3}{ }^{+}\right)$are removed from amino acids and eliminated from the body.

An Overview of Metabolism

\qquad is defined as the entire set of life-sustaining chemical reactions that occur in organisms.

- These reactions number in the thousands and include reactions such as those responsible for getting energy from food, processing and removal of waste, building up muscles, growth, photosynthesis in plants, cell division, and reproduction.

The entire set of metabolic reactions is organized into smaller sets of sequential reactions called metabolic \qquad .

The species produced in the various reactions of a metabolic pathway are sometimes referred to as
\qquad -

Many of the reactions in metabolic pathways require enzymes; therefore organisms can control (accelerate or suppress) metabolic pathways, according to their current needs, by upregulating, downregulating, inhibiting, or activating one or more of the enzymes involved in the pathway.

Metabolic pathways can usually be classified as catabolic (catabolism) or anabolic (anabolism).

- Catabolic pathways involve the \qquad of larger organic compounds into smaller compounds.
- Anabolic pathways involve \qquad
\qquad of larger organic compounds from smaller ones.

In this chapter, you will learn about the pathways that are involved in the metabolism of carbohydrates, proteins, and fats.

- An ultimate goal of these reactions is to convert the chemical potential energy contained in food into chemical potential energy in the form of \qquad .

The Coenzymes Involved in Metabolism

A coenzyme is a species that must bind to an enzyme in order for the enzyme to function.

- In most cases, a coenzyme is actually one of the substrates (reactants) in the catalyzed reaction.
- The reason that certain substrates are also referred to as coenzymes is that these substrates are common substrates in many different enzymatic reactions in which they donate electrons, atoms, or groups of atoms to other substrates, or accept electrons, atoms or groups of atoms from other substrates.
- The five group-transfer coenzymes that are central to the metabolism of food, along with the species each transfers are listed in the table on the right.

Coenzyme	Species that is Transferred
ADP/ATP	
NAD+/NADH	hydride ion (H:-) or electrons
FAD/FADH ${ }_{2}$	hydride ion ($\mathrm{H}:-)$ or electrons
coenzyme A	
coenzyme Q	hydride ion ($\mathrm{H}:-)$ or electrons

Phosphoryl Group-Transfer Coenzymes: ATP and ADP

ATP and ADP are classified as coenzymes because they are involved in the transfer of \qquad groups ($\mathrm{PO}_{3}{ }^{-}$) in many different enzymatically catalyzed reactions.

- When a compound gains/accepts a phosphoryl group in a reaction, we say that the compound became "phosphorylated."
- When a compound loses/donates a phosphoryl group in a reaction, we say that it was "dephosphorylated."

ATP and ADP are interconverted by the transfer of a phosphoryl group, as shown below.

- Adding a phosphoryl group to ADP \qquad energy.
- Removing a phosphoryl group from ATP \qquad energy.

ATP is often formed by the reaction of ADP with hydrogen phosphate $\left(\mathrm{HPO}_{4}{ }^{2-}\right)$ and an \mathbf{H}^{+}ion, as shown below.

Biological literature refers to hydrogen phosphate as " \qquad phosphate" (abbreviated as $\mathbf{P}_{\mathbf{i}}$).

Another way that organisms convert ADP to ATP is by the reaction of ADP with an molecule that contains a phosphoryl group. In this case, a phosphoryl group is transferred from the organic molecule to ADP, as shown in the chemical equation below.

You will see hydrogen ions $\left(\mathbf{H}^{+}\right)$as reactants in many of the reactions in this chapter. Because these reactions occur in aqueous solutions, \mathbf{H}^{+}is readily available from $\mathbf{H}_{\mathbf{2}} \mathbf{O}$, and can also come from $\mathbf{H}_{3} \mathbf{O}^{+}$or the acid forms of other species that are present.

Energy is released from ATP when it is converted to ADP. This energy is used by organisms to drive energy-requiring reactions or physical processes that would otherwise not occur spontaneously. One way that energy can be released from ATP is by reacting it with $\mathbf{H}_{2} \mathbf{O}$ to form ADP, inorganic phosphate, and an \mathbf{H}^{+}ion. Although this reaction is spontaneous ($\Delta \mathrm{G}$ is negative), the reaction rate is quite slow, therefore organisms employ enzymes in order for the reaction to proceed at a useful rate. The chemical equation for this reaction is shown below.

$\Delta G=\mathbf{- 7 3 0 0}$ Joules per mole of ATP
Note that \mathbf{H}^{+}is produced in this reaction. You will see \mathbf{H}^{+}ions as products in many of the reactions in this chapter. Keep in mind that the \mathbf{H}^{+}ions that are produced in aqueous solutions do not remain solvated as isolated ions; they quickly react with water to form $\mathbf{H}_{\mathbf{3}} \mathbf{O}^{+}$. Alternatively, \mathbf{H}^{+}can react with $\mathbf{O H}{ }^{-}$or the base form of another species that is present.

Another way that organisms extract energy from ATP is to "energize" organic compounds by transferring a phosphoryl group directly to the compound. In this reaction, ATP is dephosphorylated and an organic compound is phosphorylated, as shown in the reaction below:
$\mathbf{A T P}+$ organic compound $\rightleftarrows \mathbf{A D P}+$ phosphorylated organic compound $+\mathbf{H}^{+}$
Chemical potential energy released by the conversion of ATP to ADP is transferred to the phosphorylated organic product.

- It is for this reason that we say "the organic compound is energized" in the reaction.

Example:

In this particular reaction, the reverse reaction occurs so slowly that it is negligible.

- In such cases, we refer to the reaction as an " \qquad reaction."
When writing a chemical equation for an irreversible reaction, only a forward (left to right) arrow is used, as shown above.

Biochemical literature often uses an alternative chemical equation format. For example, the reaction shown above is often written as:

Electron-Transfer Coenzymes and Their Role as Oxidizing and Reducing Agents

Oxidation-reduction reactions, which involve the transfer of one or more electrons, are quite common in organisms.
Many of these reactions involve the transfer of an electron by way of the hydride ion (H:-).
A reduction occurs when a \qquad ion forms a bond with an organic compound.

- The transfer of a hydride ion is a reduction because of hydride's "extra" electron.

For example, aldehydes or ketones are reduced when a hydride ion forms a bond with them.
H^{+}(an H^{+}from the solution)

An \qquad occurs when a hydride ion ($\mathbf{H}:^{-}$) and an \mathbf{H}^{+}ion are removed from an organic compound.

- For example, 2° alcohols can be oxidized to ketones, as shown in the chemical equation below.

- This is considered an oxidation because the hydride ion carries away the "extra" electron.
$\underline{\text { Nicotinamide }} \underline{\text { adenine }} \underline{\text { dinucleotide }}\left(\mathbf{N A D}^{+}\right)$and $\underline{\text { flavin }} \underline{\text { adenine dinucleotide (}} \mathbf{(F A D)}$ are classified as coenzymes because they are common substrates, involved in the transfer of \qquad in many different enzymatically catalyzed reactions.

Nicotinamide Adenine Dinucleotide (NAD ${ }^{+}$)

The structural formula of $\mathbf{N A D}^{+}$is shown on the left. $\mathbf{N A D}^{+}$ contains two nucleotide residues. One of the nucleotides has an adenine base, and the other contains a nicotinamide base.

When $\mathbf{N A D}^{+}$accepts a hydride ion from another species, it is reduced to NADH.

- It is for this reason that NADH is referred to as a reduced form of the coenzyme or a" \qquad
\qquad ."
- The reduction of $\mathbf{N A D}^{+}$requires energy.

When NADH donates a hydride ion (to another species) it is oxidized to $\mathbf{N A D}^{+}$.

- NAD^{+}is referred to as the oxidized form of the coenzyme or an " \qquad .$"$
- Oxidation of NADH releases energy.

Example: The oxidation of an organic compound using $\mathbf{N A D}^{+}$as the oxidizing agent:

- In this reaction, malate is oxidized and $\mathbf{N A D}^{+}$is reduced.

Flavin Adenine Dinucleotide (FAD)

When FAD accepts a hydride ion from another species (and an \mathbf{H}^{+}from solution), it is reduced to FADH_{2}.

- The reduction of FAD requires energy.

FADH $_{\mathbf{2}}$ is oxidized to FAD by donating two electrons (and two \mathbf{H}^{+}ions) to other species.

- The oxidation of $\mathbf{F A D H}_{2}$ releases energy.

Much like $\mathbf{N A D}^{+} / \mathbf{N A D H}$ and $\mathbf{F A D} / \mathbf{F A D H}_{2}$, Coenzyme $^{\mathbf{Q}}$ (not shown), transfers electrons and hydrogen ions when it cycles between its oxidized and reduced forms.

Acyl Group-Transfer Coenzyme: Coenzyme A

Coenzyme $\mathbf{A}(\mathbf{H}-\mathbf{C o A})$ is used in many metabolic reactions. Its structural formula is shown below.

Coenzyme A is classified as a coenzyme because it is involved in the transfer of an \qquad group in many different enzymatically catalyzed reactions.

- An acyl group consists of a carbonyl group bonded to an organic group (R), as shown on the right.
- When coenzyme A (H-CoA) accepts an acyl group, the acyl group replaces the left-most hydrogen in the coenzyme A structure.

an acyl group

An acyl group that is central to the metabolism of food is the \qquad group.

- Acetyl groups are donated and accepted by coenzyme A, as shown below:

Carbohydrate Metabolism

The energy that is contained in food can be traced back to the \qquad .

- Energy from sunlight is captured by plants during photosynthesis as they convert CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ into glucose and O_{2}.
- Without energy from sunlight, the reaction of CO_{2} with $\mathrm{H}_{2} \mathrm{O}$ to produce glucose and O_{2} is not spontaneous.
- The input of energy from sunlight provides the energy that is required to convert CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ to glucose and O_{2}.

In photosynthesis, energy from the sun's light does not vanish; it is converted to
\qquad
\qquad
\qquad within \qquad .

- Plants store excess glucose as starch.

Organisms, including humans, use a series of catabolic chemical reactions to slowly carbohydrates and other food, eventually converting it back to CO_{2} and $\mathrm{H}_{2} \mathrm{O}$.

Energy that is released in these oxidations is converted to chemical potential energy within \qquad .

All three classes of macronutrients in food, carbohydrates, triglycerides (fats), and proteins, are catabolized in four stages:

Stage 1: \qquad
Stage 2: \qquad
Stage 3: \qquad
Stage 4: \qquad

Stage 1: Digestion of Carbohydrates

Digestion is the process in which the body breaks down carbohydrate, protein, and triglyceride polymers into their \qquad residues.

- For example, carbohydrate polymers are converted to monosaccharides.

Digestion occurs in the digestive system.
The digestive system, sometimes referred to as the digestive track or gastrointestinal (GI) track, includes the organs that are responsible for digesting food and eliminating the undigestible components of food. The major organs of the human digestive system are shown on the right.

Major Organs of the Human Digestive System

Image Source: Wikimedia Commons, Author: Blausen.com staff.
"Blausen gallery 2014". Wikiversity Journal of Medicine.
DOI:10.15347/wjm/2014.010. ISSN 20018762. CC-BY-SA, https://creativecommons.org/licenses/by-sa/4.0/deed.en

During the digestion of carbohydrate polymers, most oligosaccharides (2-10 monosaccharide residues) and polysaccharides (> 10 monosaccharide residues) can be broken down to \qquad .

- These reactions are catalyzed by \qquad
\qquad .

Approximately 50% of our dietary carbohydrates are in the form of starch.

- Starch has two components, amylose and amylopectin, both of which are composed entirely of
\qquad residues.

Digestion of amylose and amylopectin (starch) begins in the \qquad .
Saliva contains \qquad
\qquad enzymes, which catalyze the hydrolysis of some of the $\alpha-(1 \rightarrow 4)$ glycosidic bonds in amylose and amylopectin.

In the hydrolysis of carbohydrates, water molecules are used to lyse (break) \qquad bonds.

An Illustrative Overview of the Digestion of Carbohydrates

Salivary amylase catalyzes the hydrolysis of amylose and amylopectin to form maltose (an $\boldsymbol{\alpha}$ ($\mathbf{1} \rightarrow \mathbf{4}$) glucose-glucose disaccharide) and small oligosaccharides called dextrins.

Dextrins are oligosaccharides that generally contain between three and eight glucose residues.

The maltose, dextrins, and other nonstarch dietary carbohydrates then pass through the stomach, where carbohydrate digestion temporarily stops because the salivary amylase is denatured by the stomach's low pH (very acidic) environment.
Digestion continues in the small intestine with the help of more digestive enzymes.
Pancreatic amylase catalyzes the hydrolysis of dextrins to form maltose and isomaltose. Isomaltose is an $\boldsymbol{\alpha}-(\mathbf{1} \rightarrow \mathbf{6})$ glucose-glucose disaccharide that comes from the branching points in amylopectin.
Maltase and isomaltase enzymes catalyze the hydrolysis of maltose and isomaltose (respectively) into glucose.

The non starch dietary carbohydrates, lactose and sucrose, are converted to monosaccharides with the help of lactase and sucrase enzymes, respectively.

- Lactose is hydrolyzed to galactose and glucose.
- Sucrose is hydrolyzed to fructose and glucose.

It is critical that oligosaccharides and polysaccharides be converted to monosaccharides in order for the sugars to pass through the intestine wall and into the bloodstream so that they are available to cells throughout the body.
Monosaccharides are transported into the cells by passive diffusion through transmembrane proteins.
Not all dietary carbohydrates can be digested.

- For example, cellulose cannot be digested because humans do not have a dietary enzyme capable of hydrolyzing $\boldsymbol{\beta - (1 \rightarrow 4)}$ glucose-glucose glycosidic bonds. Cellulose cannot pass through the small intestine and therefore passes through the digestive track until it is excreted in feces.

Stage 2: Acetyl-Coenzyme A Production

When glucose enters a cell, it can then undergo stages 2, 3, and $\mathbf{4}$ of catabolism.
In stage $\mathbf{2}$ of carbohydrate catabolism, glucose is converted into acetyl-coenzyme $\mathbf{A}, \mathrm{CO}_{2}$, and $\mathrm{H}_{2} \mathrm{O}$.
This process begins with a catabolic pathway called \qquad .

Glycolysis is a series of \qquad sequential reactions that ultimately converts one glucose molecule to two pyruvate ions and two $\mathrm{H}_{2} \mathrm{O}$ molecules.

NOTE: I want to minimize any possible student anxiety by informing you that is not my intention for you to memorize these reactions, the names of the intermediates, or the names of the enzymes that are involved.

The reactions of glycolysis:

glucose

fructose 6-phosphate

fructose 1,6-biphosphate

Notice that one glyceraldehyde 3-phosphate is produced in reaction 4 and a second glyceraldehyde 3-phosphate is produced in reaction 5. Therefore, each of the subsequent reactions in the pathway will occur twice for each molecule of glucose that undergoes glycolysis.

It is for this reason the reactants and products in the chemical equations that follow have a stoichiometric coefficient of " 2 ."

glyceraldehyde 3-phosphate

2

1,3-biphosphoglycerate

Reaction 6) In this reaction, glyceraldehyde 3-phosphate is oxidized. An oxidation cannot occur without a reduction. In this case, $\mathbf{N A D}^{+}$is reduced to NADH. This occurs when a hydride ion ($\mathbf{H}:^{-}$) is transferred from glyceraldehyde 3-phosphate's carbonyl carbon to $\mathbf{N A D}^{+}$. The reduction of $\mathbf{N A D}^{+}$to NADH requires energy, that energy comes from glyceraldehyde 3-phosphate.

The energy that is acquired by NADH can later be used to convert ADP to ATP.

- You will learn how that happens when I discuss stage 4 of metabolism.

The reactions of glycolysis result in a net gain of two ATP and two NADH.

When there is a sufficiently high concentration of ATP, pyruvate, or other pathway products, then the rate of glycolysis can be slowed down. If the ATP concentration becomes low, then glycolysis can be accelerated. The rate of the glycolysis pathway is controlled by enzyme inhibitors and enzyme activators of the enzymes involved in the irreversible reactions (1,3 , and 10).

- For example, ATP and phosphoenol pyruvate (the product of reaction 9) act as inhibitors of the phosphofructokinase enzyme that catalyzes reaction 3.

Summary of Glycolysis

The chemical equation for the overall glycolysis pathway is:

$$
\text { glucose }+2 \mathbf{A D P}+2 \mathbf{P}_{\mathbf{i}}+2 \mathbf{N A D}^{+} \rightleftarrows 2 \text { pyruvate ions }+2 \mathbf{A T P}+2 \mathbf{N A D H}+2 \mathbf{H}_{2} \mathbf{O}+2 \mathbf{H}^{+}
$$

The ten reactions of glycolysis result in a net gain of \qquad ATP and \qquad NADH.

Not all of the energy from glucose is transferred to the ATP and NADH formed in glycolysis.

- Some energy was lost as heat during the reactions, however, most of glucose's chemical potential energy remains in the two pyruvate ions.
Glycolysis is characterized as a \qquad metabolic pathway.
- A linear metabolic pathway is a series of reactions that are not repeated.

Understanding Check:
a. How many ATP are produced when six glucose molecules undergo glycolysis?
b. How many NADH are produced when six glucose molecules undergo glycolysis?

Before we take a look at the fate of the pyruvate that is produced in glycolysis, let's consider how non glucose monosaccharides are metabolized.

The Entry of Non Glucose Monosaccharides into Glycolysis

Although glucose is the major product of carbohydrate digestion, it is not the only monosaccharide that is produced.

Other monosaccharides can be catabolized when they are converted to \qquad in the glycolysis pathway.

- For example, fructose, galactose, and mannose monosaccharides are produced in carbohydrate digestion and can be converted to the glycolysis intermediates as shown on the right.

The Fate of Pyruvate

The fate of the pyruvate that is produced by aerobic organisms (organisms that require O_{2} to grow), such as humans and most other organisms, depends on the availability of \qquad in cells.

During strenuous physical activity, the oxygen in muscle cells becomes depleted (anaerobic condition).

- When this occurs, the pyruvate that is made in glycolysis remains in the cytoplasm and is converted (reduced) to \qquad , as shown in the reaction below.

The presence of lactate in a muscle causes the muscle to tire and feel sore.
Lactate is released by muscle cells into the circulatory system and then taken up by \qquad cells. In the liver, lactate can be cycled back to pyruvate.

After lactate is transformed back to pyruvate, it can be converted to glucose and stored for future use.

The conversion of non carbohydrate species to glucose is called

- The conversion of lactate and pyruvate to glucose is an example of gluconeogenesis.

The gluconeogenesis and glycolysis pathways share many reactions. The differences occur at the three irreversible glycolysis reactions (reactions 1,3 , and 10), as shown in the figure on the left.
Gluconeogenesis does not use reaction 10 of glycolysis, and it uses different enzymes in order to enable the reverse of reactions 1 and 3 of glycolysis.

Gluconeogenesis takes place primarily in the liver.

In the figure above, glycolysis proceeds in the downward direction, and gluconeogenesis proceeds in the upward direction.
\qquad conditions), much more energy can be derived from pyruvate.

Under aerobic conditions, pyruvate passes from the cytoplasm into the \qquad and is then converted to acetyl-coenzyme \boldsymbol{A} and CO_{2} (as shown in the equation below).

In this reaction, pyruvate is oxidized and decarboxylated.

- The decarboxylation produces $\mathbf{C O}_{2}$.
- In the oxidation process, electrons from pyruvate are passed through intermediate compounds (not shown), until they are eventually transferred, along with a hydrogen, to NAD ${ }^{+}$.
- Energy released by the oxidation of pyruvate is transferred to NADH.
- \qquad is produced.

The acetyl groups are relatively high-energy because they still contain much of the energy that was originally in glucose.

In the next stage of catabolism (the citric acid cycle), the energy contained in the acetyl groups is used to produce more NADH and more ATP.

Summary of Stage 2 of Carbohydrate Catabolism and the Fate of Pyruvate

In Stage 2 of carbohydrate catabolism, under aerobic conditions, one glucose molecule has produced two acetyl-coenzyme \boldsymbol{A} ions, and provided the energy for the formation of four NADH and two ATP.

Stage 3: The Citric Acid Cycle

The citric acid cycle is also referred to as the Krebs Cycle because it was H. A. Krebs who, in 1937, discovered these reactions and recognized their significance in energy-transfer reactions.
NOTE: you do not need to memorize these reactions, the names of the intermediates, or the names of the enzymes that are involved.

The citric acid cycle is characterized as a \qquad metabolic pathway.

- A circular pathway is a repeating series of reactions in which the final product is \qquad an initial reactant.
- In the first reaction, acetyl-coenzyme A (acetyl-CoA) reacts with oxaloacetate. In the citric acid cycle, oxaloacetate is not only a reactant in the first reaction; it is also the product of the last reaction.

Acetyl-CoA brings two carbons in its acetyl group (these carbons are shown in red font in the video).
When one acetyl-CoA is completely processed in the citric acid cycle, \qquad NADH, \qquad FADH_{2},
\qquad ATP, and two CO_{2} molecules are produced.

In this process, energy that was originally contained in acetyl-CoA is converted to chemical potential energy within NADH, FADH 2 and ATP.

Reactions of the Citric Acid Cycle

Reaction	Type of Reaction	Enzyme	Energy Transferred to:	Notes
1	acetyl group transfer	citrate synthase		An acetyl group is transferred to oxaloacetate.
2	isomerization	aconitase		The product and reactant are constitutional isomers.
3	oxidation/reduction and decarboxylation	isocitrate dehydrogenase	NADH	This reaction is irreversible. Isocitrate is decarboxylated and its hydroxyl group is oxidized to a carbonyl group. A hydride ion ($\mathrm{H}:-$:) is transferred from isocitrate to NAD^{+}, thereby reducing NAD ${ }^{+}$to NADH. This reaction is the body's main regulation point for the citric acid cycle. When cells are "energy rich," ATP and NADH concentrations are high. ATP and NADH inhibit the isocitrate dehydrogenase enzyme. When energy is in demand, ADP and NAD+ concentrations are high. ADP and NAD ${ }^{+}$activate isocitrate dehydrogenase.
4	oxidation/reduction and decarboxylation	a-ketogulutarate dehydrogenase	NADH	This irreversible process has multiple steps (not shown). Two electrons are transferred from a-ketogulutarate to an intermediate species. Ultimately, the two electrons and a \mathbf{H}^{+}ion are transferred from an intermediate to NAD+ to form NADH.
5	acyl group transfer and phosphorylation	succinyl-CoA synthase	ATP	Humans have a succinyl-CoA synthase enzyme that produces GTP (guanosine triphosphate). Energy in GTP is used to produce an ATP. We have another succinyl-CoA synthase enzyme that produces ATP directly.
6	oxidation/reduction	succinate dehydrogenase	FADH2	$-\mathrm{CH}_{2}-\mathrm{CH}_{2}$ - is oxidized to $-\mathrm{CH}=\mathrm{CH}$ - FAD is reduced to FADH_{2}. The FAD/FADH ${ }_{2}$ coenzyme is permanently bound to the succinate dehydrogenase enzyme.
7	hydration	fumarase		Hydration of an alkene.
8	oxidation/reduction	malate dehydrogenase	NADH	Malate's 2° alcohol is oxidized to a ketone. NAD ${ }^{+}$is reduced to NADH.

Summary of the Citric Acid Cycle

The overall chemical equation for the citric acid cycle metabolic pathway is:

$$
\text { acetyl-CoA }+3 \mathbf{N A D}^{+}+\mathbf{F A D}+\mathrm{ADP}+\mathbf{P}_{\mathbf{i}}+2 \mathbf{H}_{2} \mathrm{O} \leftrightarrows 2 \mathbf{C O}_{2}+\mathbf{3} \mathbf{N A D H}+\mathbf{F A D H}_{2}+\mathbf{A T P}+\mathbf{H}-\mathbf{C o A}+\mathbf{3} \mathbf{H}^{+}
$$

Potential energy from an acetyl-CoA that undergoes the citric acid cycle is converted to potential energy in three NADH, one FADH $_{2}$, and one ATP. Some energy is lost as heat.

The CO_{2} produced in the citric acid cycle and in stage 2 of metabolism, is one of the end-products of food metabolism.

- CO_{2} is the most-oxidized form of carbon in organic compounds, and therefore has a very low energy content.
- Energy that was present in the food and food metabolites that contained these carbons has been extracted in the catabolism process.

Understanding Check: Calculate the net gain of $\mathrm{NADH}, \mathrm{FADH}_{2}$, and ATP from one glucose molecule that undergoes the first three stages of catabolism.

- Keep in mind that glycolysis produces two pyruvate ions, which results in the production of two acetyl-CoA.

Stage 4: Oxidative Phosphorylation

Glycolysis occurs in the \qquad of the cell.

The reactions of the citric acid cycle occur in the \qquad .

The Structure of the Cell and a Magnification of an Individual Mitochondrion.

A mitochondrion consists of an \qquad membrane bilayer and an \qquad membrane bilayer.

The region between the outer and inner membranes is called the \qquad
\qquad .

The region within the inner membrane is called the \qquad .
Pyruvate oxidation/decarboxylation and the reactions of the citric acid cycle occur in the matrix region.

The pyruvate that is produced in glycolysis is able to pass from the cytoplasm, through both the inner and outer mitochondrial membranes, into the matrix region.

The next stage of carbohydrate catabolism, oxidative phosphorylation (stage 4), requires that \qquad be located within the mitochondrial matrix.

- Since pyruvate oxidation/decarboxylation and the reactions of the citric acid cycle occur in the mitochondrial matrix, the NADH created in those processes can immediately undergo oxidative phosphorylation.
- The NADH that is produced by glycolysis is able to pass through the outer mitochondrial membrane and enter the intermembrane space; however, it is not able to pass through the inner mitochondrial membrane to enter the matrix region.
- In order for the energy from these NADH to be utilized, they must be processed through an "NADH \qquad ."

The two most important NADH shuttles are the malate-aspartate shuttle and the glycerol 3-phosphate shuttle.

- The malate-aspartate shuttle works by oxidizing the NADH to $\mathbf{N A D}^{+}$in the intermembrane space, then transferring the electrons through the inner mitochondrial matrix to an $\mathbf{N A D}^{+}$that is
\qquad inside the matrix, thereby producing an NADH that can undergo oxidative phosphorylation.
- In the glycerol 3-phosphate shuttle, NADH is oxidized in the intermembrane space by transferring electrons to an inner mitochondrial membrane-bound FAD, thereby producing an $\mathbf{F A D H}_{2}$ that can undergo oxidative phosphorylation.

Example Problem: From one glucose molecule, determine how many NADH and $\mathbf{F A D H}_{2}$ would be available for oxidative phosphorylation (stage 4 of metabolism). Assume that both NADH formed in glycolysis use the malate-aspartate shuttle.

Solution: Start this problem with the amount of NADH and $\mathbf{F A D H}_{2}$ that are formed from one glucose molecule in stages 1 to 3 of glucose catabolism. In the previous UNDERSTANDING CHECK problem (chapter 15, part 5), you found that 10 NADH , and $2 \mathrm{FADH}_{2}$ are produced from one glucose molecule.

The $\boldsymbol{t} \boldsymbol{w} \boldsymbol{w}$ NADH that are produced in glycolysis cannot pass through the inner mitochondrial membrane and enter the matrix region where oxidative phosphorylation takes place. Therefore, it is necessary that "NADH shuttles" be used. In the malate-aspartate shuttle, each NADH produced in glycolysis results in one NADH that can undergo oxidative phosphorylation. In this case, there would be $\mathbf{1 0}$ NADH and $2 \mathbf{F A D H}_{2}$ available for oxidative phosphorylation.

You try one: From one glucose molecule, determine how many NADH and FADH_{2} would be available for oxidative phosphorylation (stage 4 of metabolism). Assume that both NADH formed in glycolysis use the glycerol 3-phosphate shuttle.

The primary goal of food catabolism is the production of ATP.

At this point in my narrative of carbohydrate catabolism:

- Only four ATP have been produced from one glucose so far.
- Most of the chemical potential energy that has been extracted from glucose is still in the form of
\qquad
\qquad (NADH and FADH $_{2}$).

In stage 4 of catabolism (oxidative phosphorylation), chemical potential energy contained in the reduced coenzymes is \qquad to ATP.

Oxidative phosphorylation is the process in which \qquad from NADH or $\mathbf{F A D H}_{\mathbf{2}}$ are transferred, through a series of electron transfer intermediates, to dissolved oxygen $\left(\mathrm{O}_{2}\right)$ in order to provide the energy required to produce ATP.

In this process, ADP and an inorganic phosphate $\left(\mathrm{P}_{\mathrm{i}}\right)$ are converted to ATP.
The formation of ATP from ADP and P_{i} would not occur spontaneously without the input of energy that is provided when electrons are transferred to O_{2}.

Because of the availability of H^{+}in solution (from $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{3} \mathrm{O}^{+}$, or the acid form of any other species present), when electrons are transferred to oxygen, the following reaction occurs:

$$
\mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \text { electrons } \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

In the reaction above, O_{2} is \qquad ; it gains electrons
O_{2} is the final \qquad of electrons in food catabolism.

The energy released by the transfer of electrons from NADH or
$\mathbf{F A D H}_{2}$, through the electron transfer intermediates, to O_{2} is not immediately used to drive the production of ATP.
Instead, this energy is used to move hydrogen ions from a region of lower hydrogen ion concentration (the mitochondrial matrix) to a region of higher hydrogen ion concentration (the intermembrane space).

By doing so, the energy that is released by the transfer of electrons is converted to
potential
energy.

- Physically, this is very similar
 to "charging" a battery
Oxidative phosphorylation does not happen in exactly the same way for NADH as it does for FADH ${ }_{2}$.

Electron Transfers and Hydrogen Ion Transport From NADH Oxidation

The process begins with the \qquad of NADH in the matrix region.

The electrons that are released in the oxidation of NADH are sequentially passed between electron transfer intermediates (shaded green) along the path that is indicated by the dashed red curve.

- Two of the electron transfer intermediates, coenzyme $\boldsymbol{Q}(\mathbf{C o Q})$ and cytochrome $\boldsymbol{C}(\mathbf{C y t} \mathbf{c})$, are quite mobile.
- The other electron transfer intermediates are transmembrane proteins complexes (labeled I, III, and IV).

In order for the electrons to "move through" these protein complexes, they are transferred within the complexes by sequential oxidations and reductions of neighboring prosthetic groups or cofactors (not shown in the figure).
The movement of electrons through the protein complexes releases energy (analogous to water being released from a dam).

This energy is used by the complexes to \qquad hydrogen ions from a region of
\qquad hydrogen ion concentration (the mitochondrial matrix) to a region of \qquad hydrogen ion concentration (the intermembrane space), as indicated in the figure by the arrows in the figure on the previous page.

Electrons are ultimately transferred to, and thereby reduce O_{2}.

Electron Transfers and Hydrogen Ion Transport from FADH 2 Oxidation

FADH_{2} is produced in \qquad of the citric acid cycle.

- The enzyme that catalyzes this reaction is part of an electron transfer intermediate called complex II.

In oxidative phosphorylation, $\mathbf{F A D H}_{2}$ is oxidized and its electrons are sequentially passed between electron transfer intermediates, along the path that is indicated by the dashed curve, and then finally transferred to O_{2}.

The movement of electrons through protein complexes III and IV releases energy.
This energy is used by these complexes to actively transport hydrogen ions through the inner mitochondrial membrane into the intermembrane space.

Summary of the Oxidation of NADH and FADH_{2} During Oxidative Phosphorylation

When NADH and $\mathbf{F A D H}_{2}$ are oxidized, their electrons are transferred, through intermediates, to O_{2}.
As electrons move through complexes I, III, and IV, energy is released.
This energy is used by the complexes to actively transport hydrogen ions from a region of lower hydrogen ion concentration (the mitochondrial matrix) to a region of higher hydrogen ion concentration (the intermembrane space).

In doing so, the energy from NADH and FADH $_{2}$ (that was originally in food) is converted to electrochemical energy within mitochondria.

This part of oxidative phosphorylation is often referred to as \qquad .

The electron transfer intermediates (shaded green in the previous figures) that are involved in electron transport are sometimes called "the electron transport chain."

Next, you will learn how electrochemical energy within mitochondria is used to drive the production of ATP.

ATP Production in Oxidative Phosphorylation

When there are unequal concentrations of a species on opposite sides of a membrane, we say that a "concentration \qquad " exists.

The creation of electrochemical potential energy in the form of an \mathbf{H}^{+}concentration gradient was like charging a battery.

As with any dissolved species, hydrogen ions will \qquad diffuse from areas of high concentration to areas of low concentration.

- It is lower in energy for the hydrogen ions to be in the matrix region (low concentration) than it is for them to be in the intermembrane space (higher concentration).

The only path between these regions in which hydrogen ions can passively diffuse is through the enzyme, as illustrated below.

Much like electrical current passing through an electric motor does work, the passing of hydrogen ion current through an ATP synthase does work.

- This work is done by forcing the enzyme to change its shape and thereby supply the energy needed to form a bond between an inorganic phosphate $\left(\mathbf{P}_{\mathbf{i}}\right)$ and ADP, to produce ATP.

The ATP synthase enzyme not only catalyzes the reaction for the synthesis of ATP, it also plays a role in delivering the energy needed to make ATP synthesis occur spontaneously.

The number of ATP that can be produced from NADH or $\mathbf{F A D H}_{2}$ depends on the cell and its current conditions.

The latest research indicates that, on average, one NADH produces about \qquad ATP, and one FADH_{2} produces about \qquad ATP.

Let's calculate how many ATP can be produced from the catabolism of one glucose molecule.

- For this calculation, we will assume that each NADH produces 2.5 ATP, and each $\mathbf{F A D H}_{2}$ produces 1.5 ATP, and that NADH produced in glycolysis use the malate-aspartate shuttle.

Solution:

Stage 2: In glycolysis, glucose is converted to two pyruvate ions. In this process, two NADH and two ATP are formed. The two NADH undergo the malate aspartate shuttle and result in the formation of two NADH within the mitochondrial matrix.

The pyruvate ions can diffuse past both mitochondrial membranes, and enter the matrix region. There, the pyruvate ions undergo an oxidation/decarboxylation reaction. In this process, two NADH and two acetylCoA are formed.

Stage 3: In the citric acid cycle, the two acetyl-CoA produce a total of six NADH, two $\mathbf{F A D H}_{2}$, and two ATP.

Stage 4: In oxidative phosphorylation, the ten NADH and two $\mathbf{F A D H}_{2}$ produced in stages 2 and $\mathbf{3}$ are oxidized in order to produce ATP.
This gives total of 32 ATP, as shown in the illustration below.

Understanding Check: Calculate how many ATP can be produced from the catabolism of one glucose molecule when the two NADH from glycolysis use the glycerol 3-phosphate shuttle.

- Assume that each NADH that undergoes oxidative phosphorylation produces 2.5 ATP, and each FADH_{2} produces 1.5 ATP.

Summary of Carbohydrate Catabolism

In the four stages of carbohydrate catabolism, chemical potential energy in carbohydrates is converted to chemical potential energy in ATP, a substance that can be used immediately by all cells to do cellular work.

The carbon, hydrogen, and oxygen atoms in carbohydrates, along with the oxygen we inhale, are converted to $\mathrm{H}_{2} \mathrm{O}$ and CO_{2}.

Regulation of Blood Glucose Concentration

It is important for human blood glucose concentration (sometimes called blood sugar level) to remain within a "normal" range.

- The normal range of glucose concentration in the blood is about 80 to 110 mg per dL of blood.

Long term effects of having higher than normal blood glucose concentration (\qquad) can include damage to kidneys, the neurological system, the cardiovascular system, eyes, feet, and legs.

Between meals or during starvation, blood glucose levels fall below the normal range (\qquad).

- This can result in confusion, loss of coordination, difficulties in speaking, a loss of consciousness, seizures, and even death. Symptoms can come on quite quickly and include hunger, shaking, sweating, and weakness.

In the "fed" state, which occurs soon after a meal when blood glucose levels are high, liver and muscle cells (primarily) take in extra glucose and store it in the form of \qquad .

- The chemical structure of glycogen is very similar to that of amylopectin; the only exception is that glycogen branches more frequently. For a review of glycogen and amylopectin structures, see chapter 12, section 6.
- The conversion of glucose to glycogen is called \qquad .
- Glycogenesis is an anabolic pathway in which glucose residues, with the help of enzymes, are connected to each other through glycosidic bonds to form glycogen.

In the "fasting state," which occurs several hours after a meal, blood glucose levels become low, and glycogen is converted back to glucose in a process called \qquad .

- Glycogenolysis occurs primarily in liver and muscle cells.
- It is the opposite of glycogenesis. In glycogenolysis, the glycosidic bonds between glucose residues are hydrolyzed.

Roles of Glycogenesis and Glycogenolysis in the Regulation of Blood Glucose Concentration

The body regulates blood glucose levels by releasing hormones that result in the production of compounds that inhibit and activate key enzymes in the glycogenesis and glycogenolysis pathways.

In response to increased blood glucose concentration (in the fed state), the pancreas releases a protein hormone called \qquad into the blood stream.

- When insulin binds to liver and muscle cell receptors, it triggers a series of events that result in the activation of an enzyme in the glycogenesis pathway and the inhibition of an enzyme in the glycogenolysis pathway.
- Accelerating glycogenesis will result in decreasing the blood glucose concentration by increasing the rate of the conversion of glucose to glycogen.
- Suppressing glycogenolysis helps in maintaining normal blood glucose concentration as the conversion of glycogen to glucose is inhibited.
- Another way that insulin is involved in lowering blood glucose concentration is by initiating a process that increases facilitated diffusion of glucose from
 the bloodstream into all cell types.

In response to decreased blood sugar levels (in the "fasting state"), the pancreas releases a protein hormone called \qquad into the blood stream.

- Glucagon has the \qquad effect of insulin on liver cells; it accelerates glycogenolysis and suppresses glycogenesis.
- Accelerating glycogenolysis will result in increasing the blood glucose concentration as glucose produced during glycogenolysis is transported from liver cells into the bloodstream.
- Suppressing glycogenesis helps in maintaining normal blood glucose concentration by suppressing the conversion of glucose to glycogen.
- Glucagon also increases blood glucose concentration by accelerating gluconeogenesis (the production of glucose from non carbohydrate species).

Diabetes

Diabetes Mellitus (DM), commonly referred to as diabetes, is a disease caused by chronic \qquad .

There are three types of diabetes mellitus: type I, type II, and gestational diabetes.

- In diabetes type I, also called insulin-dependent diabetes, the pancreas produces too little \qquad .
This can be a result of genetic disease, viral infection, or damage to the pancreas. Diabetes type I can be treated with insulin injections. Individuals must use a glucometer to frequently measure the concentration of glucose in their blood, and then inject insulin when elevated glucose levels are observed. Because diabetes type I often begins in childhood, it is sometimes referred to as
\qquad diabetes.
- Diabetes type II, also called insulin- \qquad diabetes, occurs when sufficient insulin is produced, however the insulin receptors are unable to respond appropriately. About 90% of diabetes cases are type II. This type of diabetes can be even more difficult to manage than type I diabetes because it does not respond to insulin injections. Diabetes type II occurs after childhood and is therefore sometimes referred to as \qquad -onset diabetes.
- Gestational diabetes occurs during \qquad in individuals without a previous diagnosis of diabetes. It is thought to be caused by pregnancy-related factors that affect insulin receptors. It is usually manageable with special diets and exercise; however, some individuals require antidiabetic drugs.

Triglyceride Metabolism

Dietary triglycerides, regardless of whether they came from plant or animal sources, are often referred to as \qquad .
When triglycerides are catabolized, their chemical potential energy is converted to chemical potential energy in ATP.

- This process begins with the digestion of triglycerides.
- Triglycerides are also used in the formation of phospholipids and glycolipids, and as cellular signaling compounds.
The body can store significant amounts of triglycerides, mostly in \qquad cells (also called fat cells).

Digestion of Triglycerides

In order for triglycerides to pass through the intestine wall so that they can be used by the body, they must first undergo partial hydrolysis to produce \qquad
\qquad and \qquad .

Triglycerides are first hydrolyzed to \qquad , then to \qquad .

Each one of these reactions produces a fatty acid (as shown below).

This is referred to as " \qquad hydrolysis" because one of the fatty acid residues remains
bound to carbon number 2 of glycerol in the monoglyceride.

Triglyceride digestion begins in the \qquad where lingual lipase catalyzes the partial hydrolysis of a very small percentage of triglycerides.

The majority of dietary triglycerides are digested in the \qquad .

Large hydrophobic (insoluble) globules, that are composed mostly of triglycerides and a small amount of diglycerides, monoglycerides, and fatty acids, enter the small intestine. In the small intestine, bile salts disassemble these large hydrophobic globules and emulsify them into small micelles.

When emulsified by bile salts, the ester bonds of the glycerides are oriented toward the surface of the micelle. This enables pancreatic lipase to catalyze the partial hydrolysis of emulsified triglycerides and diglycerides to produce fatty acids and monoglycerides.
The fatty acids and monoglycerides that are formed inside the intestine can pass into the walls of the intestine. After being absorbed into the intestine walls, the fatty acids and monoglycerides are then reassembled back into triglycerides.
Since lymph, blood, and intercellular fluids are aqueous mixtures, and triglycerides are hydrophobic, the triglycerides must be emulsified in order to be transported throughout the body. This is done by chylomicrons. Chylomicrons are small lipoproteins that are composed of a core that contains emulsified triglycerides (and some cholesterol and hydrophobic vitamins) surrounded by a lipid monolayer.
Triglycerides are emulsified in chylomicrons while in the wall of the intestine. The chylomicrons are then transferred into the lymph system, and then into the bloodstream. Triglycerides are released by the chylomicrons, and once again hydrolyzed to monoglycerides and fatty acids
 upon the inner surface of blood vessels. This occurs primarily at blood vessels located in adipose (fat) tissue and muscles. The monoglycerides and fatty acids can enter cells, where they are, once again, reassembled to triglycerides.

Adipose (fat) cells are the major repository for triglycerides; their primary function is to \qquad triglycerides.

Peripheral (other) cells/tissues can access this stored energy, as needed, when adipose cells completely hydrolyze the triglycerides to fatty acids and glycerol in a process called \qquad .

The fatty acids are released from the adipose cells into the blood, and carried by serum albumin protein to other cells.

These fatty acids can then be \qquad to produce ATP.

Catabolism of Fatty Acids

Fatty acids are catabolized in order to convert their potential energy into potential energy in NADH, FADH_{2}, and acetyl-CoA.

The first reaction in the catabolism of fatty acids is called \qquad .

- In this reaction, the \qquad group of a fatty acid is transferred to coenzyme A.

The fatty acid is converted to a \qquad .

This reaction does not occur spontaneously without the external energy input provided from the hydrolysis of two inorganic phosphates from ATP.

- In this case, ATP is converted to AMP and two inorganic phosphate $\left(\mathbf{P}_{\mathrm{i}}\right)$ ions.

The activation reaction is necessary in order for the acyl group from fatty acids to pass through the inner mitochondrial membrane and enter the matrix, where the subsequent reactions of fatty acid catabolism occur.

When fatty acyl-CoA enters the mitochondrial matrix, it undergoes a catabolic pathway called
\qquad - \qquad (β-oxidation).

In $\boldsymbol{\beta}$-oxidation, a fatty acyl-CoA, goes through a repeated series of four reactions, each time losing two of its \qquad .

The carbon that is next to a fatty acyl's carbonyl group is designated as the " α-carbon," and the carbon that is two carbons away from the carbonyl group is designated as the " $\boldsymbol{\beta}$-carbon."

In reaction 1 of $\boldsymbol{\beta}$-oxidation, the $\boldsymbol{\alpha}$ - and $\boldsymbol{\beta}$-carbons are \qquad (they lose hydrogens and electrons).

- The hydrogens and electrons are transferred to FAD to produce FADH2.

In reaction $\mathbf{2}$ the double bond between the $\boldsymbol{\alpha}$ - and $\boldsymbol{\beta}$-carbons is hydrated.
In reaction 3, the $\boldsymbol{\beta}$-carbon is oxidized.

- In this oxidation, a hydrogen and electron are transferred to $\mathbf{N A D}^{+}$, reducing it to $\mathbf{N A D H}$.

In reaction 4, the bond between the $\boldsymbol{\alpha}$ - and $\boldsymbol{\beta}$-carbon is broken.

- A hydrogen forms a bond to what was formerly the $\boldsymbol{\alpha}$-carbon, thereby producing acetyl-CoA.
- The acyl group, containing what was formerly the $\boldsymbol{\beta}$-carbon, is transferred to coenzyme A , thereby forming a \qquad fatty acyl-CoA.

The new fatty acyl-CoA is \qquad carbons shorter than the original one.

The new fatty acyl-CoA can undergo the $\boldsymbol{\beta}$-oxidation reactions.

For example, an eight-carbon fatty acyl-CoA will undergo three cycles of the $\boldsymbol{\beta}$-oxidation reactions.

When the original fatty acyl-CoA undergoes the $\boldsymbol{\beta}$-oxidation reactions series, one acetyl-CoA, one NADH, and one $\mathbf{F A D H}_{2}$ are produced.
A new fatty acyl-CoA is also produced.
Each successive (new) fatty acyl-CoA undergoes the series of four reactions to produce more acetyl-CoA, NADH, and FADH 2 .

The acyl group's length is decreased by two carbons with each successive $\boldsymbol{\beta}$-oxidation reaction series. When the fatty acyl-CoA contains \qquad carbons, then it will undergo the reaction series one final time.

- In the final cycle, reaction 4 produces two acetyl-CoA.

If "N" equals the number of carbons that are contained in a fatty acyl-CoA, then it will undergo $[(\mathbf{N} / \mathbf{2})-1]$ $\boldsymbol{\beta}$-oxidation cycles.
$\boldsymbol{\beta}$ - oxidation is classified a " \qquad " metabolic pathway.

- A spiral pathway is a metabolic pathway in which a series of repeated reactions is used to break down (or build up) a compound.

Understanding Check: How many cycles of the $\boldsymbol{\beta}$-oxidation spiral will occur for a twelve-carbon fatty acyl-CoA?

Understanding Check: For the twelve-carbon fatty acyl-CoA in the previous problem:

- How many acetyl-CoA are produced after all of the $\boldsymbol{\beta}$-oxidation cycles?
- How many NADH are produced after all of the $\boldsymbol{\beta}$-oxidation cycles?
- How many FADH_{2} are produced after all of the $\boldsymbol{\beta}$-oxidation cycles?

ATP Production from Fatty Acids

As was the case for carbohydrate catabolism, the catabolism of triglycerides converts potential energy in food into the form of chemical potential energy that is most useful in cells - ATP.
Because $\boldsymbol{\beta}$-oxidation occurs in the mitochondrial matrix, each acetyl-CoA that is produced can undergo the reactions of the citric acid cycle to produce an ATP, three $\mathbf{N A D H}$, and one $\mathbf{F A D H}_{2}$.

More ATP is produced when the NADH and $\mathbf{F A D H}_{2}$ formed in the $\boldsymbol{\beta}$-oxidation cycles, along with the NADH and $\mathbf{F A D H}_{\mathbf{2}}$ formed in the citric acid cycle, undergo oxidative phosphorylation.

Let's consider how many ATP are produced from the catabolism of a typical fatty acid, myristate, which contains 14 carbon atoms (assume that oxidative phosphorylation produces, on average, 2.5 ATP per NADH and $1.5 \mathbf{A T P}$ per $\mathbf{F A D H}_{\mathbf{2}}$).
First, myristate is activated to produce a 14 -carbon fatty acyl-CoA. The activation consumes one ATP. The net gain of ATP from can be calculated as shown in the illustration below.

Each of the first five cycles of the $\boldsymbol{\beta}$-oxidation spiral produces one acetyl-CoA, one NADH, and one $\mathbf{F A D H}_{2}$. The final cycle of the spiral produces two acetyl-CoA, one NADH, and one $\mathbf{F A D H}_{2}$. The acetyl-CoA are processed through the citric acid cycle, producing ATP and more reduced coenzymes. The $\mathbf{N A D H}$ and $\mathbf{F A D H}_{\mathbf{2}}$ formed in $\boldsymbol{\beta}$-oxidation and the $\mathbf{N A D H}$, and $\mathbf{F A D H}_{\mathbf{2}}$ formed in the citric acid cycle undergo oxidative phosphorylation. Since one ATP was consumed in the activation reaction, it is subtracted when calculating the net gain of ATP. $\boldsymbol{\beta}$-oxidation of myristate, on average, results in a net gain of 93 ATP.

Understanding Check: What is the net gain in ATP for $\boldsymbol{\beta}$-oxidation of a twelve-carbon fatty acid? Assume that oxidative phosphorylation produces, on average, 2.5 ATP per NADH and 1.5 ATP per FADH_{2}.

Remember to subtract one ATP to account for the ATP that was consumed in the activation step.

Catabolism of Unsaturated Fatty Acids

Unsaturated fatty acids (derived from unsaturated fat) have double bonds in their hydrocarbon tails. Depending on the location of these double bonds, extra steps may be required to transform the double bonds in order to produce fatty acyl-CoA that can undergo $\boldsymbol{\beta}$-oxidation.

Ketone Bodies

Catabolism of large quantities of triglycerides will result in high concentrations of acetyl-CoA.
Acetyl-CoA that is produced in excess of the amount that can be metabolized in the citric acid cycle results in a high concentration of acetyl-CoA in the mitochondrial matrix.

When this occurs, acetyl-CoA reacts with other acetyl-CoA to produce the three compounds that are referred to as \qquad .

This process is referred to as \qquad .

Ketone bodies are water-soluble, therefore easily dispersed from the liver to other parts of the body. Most cells, with liver cells being the notable exception, are capable of converting ketone bodies back into acetyl-CoA, and then metabolizing it in the citric acid cycle. Converting ketone bodies back to acetylCoA is the reverse of ketogenesis (different enzymes are involved). Some cell types rely on ketone bodies for ATP production more than others. Heart muscles and the renal cortex use ketone bodies more readily than glucose. The brain's primary energy source is glucose, but it is unable to store glucose and does not allow fatty acid salts (or amino acids) to enter. In the case of starvation, when there is very little glucose present, the brain gets 75% of its energy from ketone bodies.

When individuals diet, they begin to metabolize the triglycerides that are stored in fat cells. This leads to ketogenesis.
In cases of starvation, poorly treated diabetes, and conditions related to alcoholic binge drinking, the cells cannot get glucose and extremely high rates of fatty acid salt catabolism results in dangerous, and even fatal levels of ketone bodies.

- $\boldsymbol{\beta}$-hydroxybutyric acid and acetoacetic acid (the acid forms of $\boldsymbol{\beta}$-hydroxybutyrate and acetoacetate, respectively) have significant acid strength.
- Their production results in a higher concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$, which can overcome the blood's buffering capacity.
- When this occurs, the blood becomes acidic.

When blood pH is less than the normal range (7.35-7.45), the condition is called \qquad .

- Acidosis can result in tissue dysfunctions and is especially damaging to the central nervous system.
- When acidosis is caused by excess ketone bodies, the condition is called \qquad .

Fatty Acid Anabolism

Fatty acids are produced by a spiral metabolic pathway that operates in the opposite direction as $\boldsymbol{\beta}$-oxidation; it builds-up fatty acyl-CoA by a repeating series of reactions that add acetyl-CoA to a growing fatty acyl-CoA structure.

This anabolic process of synthesizing fatty acids from acetyl-CoA is called fatty acid \qquad .

Fatty acid synthesis occurs primarily in adipose and liver cells.
The body can synthesize almost all of the fatty acids it needs except for linoleic and linolenic acid.

- Linoleic and linolenic acid can only be obtained through dietary triglycerides, and are therefore classified as essential fatty acids.

Protein Metabolism

When dietary proteins are digested, they are converted to amino acids. The amino acids are then used in various metabolic pathways.

- In an anabolic process, they are used to build proteins and peptides according to the body's needs. You learned about this process in chapter 14 when I discussed how proteins are synthesized in the translation process.
- Amino acids are also used as nitrogen sources for the biosynthesis of other amino acids and other nitrogen-containing compounds, such as nucleotide bases.

Amino acids that are ingested in excess of what is needed for these biosynthesis needs are catabolized to produce ATP.

Digestion of Proteins

In the digestion process, dietary proteins are converted to amino acids by the hydrolysis of their
\qquad .

When a peptide bond is hydrolyzed, the peptide bond is broken and an oxygen is added to the carbonyl carbon and two hydrogens to the nitrogen.

Protein digestion begins in the \qquad and continues in the small intestine.

In the stomach, an acidic environment and proteolytic enzymes (primarily pepsin) catalyze the hydrolysis of proteins to amino acids and oligopeptides.

As these species move though the small intestine and enter the intestinal cells, the oligopeptides are further hydrolyzed to amino acids. This is done with the help of dietary enzymes called peptidases.

The amino acids are released from the intestinal cells into the blood stream, and then transported to other cells.

Understanding Check: Draw the structural formulas of the three amino acids that are produced when all of the peptide bonds in the tripeptide shown below are hydrolyzed.

Catabolism of Amino Acids

Some of the amino acids produced in digestion are used for the synthesis of proteins, the synthesis of other amino acids, and the synthesis of other nitrogen-containing compounds.

Amino acids that are ingested in surplus of these biosynthesis needs are \qquad as fuel for the production of ATP.

This is done by transforming them into intermediate metabolites that can be converted to \qquad ,
\qquad
\qquad , or undergo the \qquad
\qquad
\qquad -.

The entry points of amino acids into the various metabolic pathways are indicated in the figure below.

I do not expect students to memorize this table; however, there are a couple of important concepts that I want you to know:

1) Amino acids can be converted to pyruvate, acetyl-CoA, acetoacetyl-CoA, or some citric acid cycle intermediates. These compounds are then converted to glucose, ketone bodies, or undergo the citric acid cycle.
2) All twenty common amino acids can be converted into either pyruvate, acetyl-CoA, acetoacetyl-CoA, or a citric acid cycle intermediate.

- The details of how the twenty common amino acids are converted into the metabolic intermediates are far beyond the scope of this course.
- What is important to understand is that these conversions involve one or both of two important amino acid reactions: \qquad and \qquad .

Transamination

Transamination involves the \qquad of a quaternary ammonium group $\left(\mathbf{N H}_{\mathbf{3}}{ }^{+}\right)$.

The $\mathbf{N H}_{3}{ }^{+}$that is bound to the $\boldsymbol{\alpha}$-carbon of an amino acid is transferred to an $\boldsymbol{\alpha}$-keto acid.

- An $\boldsymbol{\alpha}$-keto acid is a carboxylic acid that has a carbonyl group $(\mathbf{C}=\mathbf{O})$ at the $\boldsymbol{\alpha}$-carbon.

In a transamination reaction, an amino acid and an $\boldsymbol{\alpha}$-keto acid are converted to a new amino acid and a new $\boldsymbol{\alpha}$-keto acid. The general form of the transamination reaction is shown below.

In transamination reactions, the $\mathbf{N H}_{3}{ }^{+}$from an amino acid is usually transferred to $\boldsymbol{\alpha}$-ketoglutarate (an $\boldsymbol{\alpha}$-keto acid).

Example:

In this reaction, alanine is converted to pyruvate.
Another example of a transamination reaction is the conversion of aspartic acid to oxaloacetate, as shown below.

In transamination reactions, $\boldsymbol{\alpha}$-ketoglutarate is converted to glutamic acid. We will now take a look at how glutamic acid is recycled back to α-ketoglutarate in the oxidative deamination reaction.

Oxidative Deamination

In oxidative deamination, a quaternary ammonium group $\left(-\mathbf{N H}_{3}{ }^{+}\right)$is \qquad from glutamic acid, thereby producing an ammonium ion $\left(\mathbf{N H}_{\mathbf{4}}{ }^{+}\right)$and $\boldsymbol{\alpha}$-ketoglutarate.

In addition to the removal of a quaternary ammonium group, glutamic acid's $\boldsymbol{\alpha}$-carbon is oxidized (gains an oxygen and loses a hydrogen). This oxidation is accompanied by the reduction of NAD ${ }^{+}$.
The α-ketoglutarate that is produced in the reaction is now free to accept a \qquad quaternary ammonium group from another amino acid in a transamination reaction, as illustrated below.

The free ammonium ions $\left(\mathbf{N H}_{4}{ }^{+}\right)$that are produced in oxidative deamination are toxic at elevated concentrations.

Humans and most other terrestrial vertebrates are capable of converting the ammonium ions to \qquad .

- This occurs in a series of reactions called the urea cycle.

Urea is filtered, by the \qquad , into the urinary track and then removed from the body during urination.
Kidney disease can result in the build up of dangerous amounts of urea.

In cases of end-stage renal (kidney) failure, safe blood urea levels are exceeded, and patients must undergo
\qquad treatments.

Dialysis involves artificial methods of urea removal.
The most common of these is called hemodialysis. Hemodialysis takes several hours and is usually done multiple times per week. This process is not only timeconsuming, but far from ideal because of many complications and side effects. Bedside nocturnal dialyzers are now available.

In otherwise healthy patients with kidney failure, kidney transplants are possible. Kidney donations are fairly common since most humans have two kidneys, and one kidney is usually sufficient to eliminate urea.

Understanding Check: Identify the following reaction as either a transamination or an oxidative deamination reaction.

Summary of Metabolism

The body is able to build proteins, carbohydrates, and triglycerides from smaller organic compounds in anabolic processes.

- Anabolic processes generally require the input of external energy.
- This energy often comes from chemical potential energy in ATP.

The body is able to break down proteins, carbohydrates, and triglycerides into smaller organic compounds in catabolic processes.

- Catabolic processes typically release energy.
- This energy is often used by the body to produce ATP.

The metabolic strategy behind the production of ATP is that ATP is an energy source that can be instantaneously used by organisms to do cellular work and to provide the energy required for lifesustaining reactions that would otherwise not occur spontaneously.

The metabolic strategies of catabolism and anabolism are summarized in the illustration below.

Catabolism

The catabolism of food is summarized in the image below:

In the four stages of food catabolism, chemical potential energy in food is converted to chemical potential energy in ATP, NADH, and FADH2.

- The NADH and FADH_{2} can then be converted to electrochemical energy in the form of a hydrogen ion gradient.
- The electrochemical potential in this gradient is used to drive the production of ATP.

The catabolic processes discussed in this chapter are digestion, glycolysis, pyruvate oxidation/decarboxylation, the citric acid cycle, glycogenolysis, lipolysis, β-oxidation, and oxidative deamination.

These catabolic processes are listed and briefly described in the table below.
The Catabolic Processes in Chapter 15

Name	Description	Notes
digestion	Carbohydrates are hydrolyzed to monosaccharides. Triglycerides are "partially" hydrolyzed to fatty acid salts and monoglyceride. Proteins are hydrolyzed to amino acids.	
glycolysis	A linear metabolic pathway in which glucose is converted into two pyruvate ions.	High concentrations of ATP, pyruvate, or other pathway products suppress this process.
pyruvate oxidation/ decarboxylation	Pyruvate is oxidized and decarboxylated to produce acetyl-CoA.	
citric acid cycle	A circular metabolic pathway in which acety/-CoA is metabolized to produce ATP, NADH, and FADH ${ }_{2}$.	
glycogenolysis	Glycogen is converted to glucose. Glycogenolysis occurs primarily in liver and muscle cells. Liver cells will release the glucose into the bloodstream so that it can be taken in by other types of cells.	Low blood glucose and glucagon accelerate this process. High blood glucose and insulin suppress this process.
β-oxidation	A spiral metabolic pathway in which fatty acids are converted to acetyl-CoA, NADH and FADH 2 .	
lipolysis	Triglycerides that are stored primarily in adipose (fat) cells and muscle cells are broken down into fatty acids and glycerol. Liver cells can release the fatty acids and glycerol into the bloodstream so that they can be taken in by other types of cells.	
oxidative deamination	A quaternary ammonium group $\left(-\mathrm{NH}_{3}{ }^{+}\right)$is removed from glutamic acid, thereby producing ammonium $\left(\mathbf{N H}_{4}{ }^{+}\right)$and a-ketoglutarate.	

Anabolism

The anabolic processes discussed in this chapter are gluconeogenesis, glycogenesis, fatty acid synthesis, and protein synthesis.

These anabolic processes are listed and briefly described in the table below.

The Anabolic Processes in Chapter 15

Name	Description	Notes
gluconeogenesis	The conversion of non-carbohydrate species into glucose. This process is similar to the reverse of glycolysis. Gluconeogenesis occurs primarily in the liver. It increases blood glucose levels because liver cells can release the glucose that is produced into the bloodstream.	Low blood glucose and glucagon accelerate this process.
glycogenesis	Glucose is converted to glycogen. Glycogenesis occurs primarily in liver and muscle cells. Glycogenesis lowers blood glucose levels because glucose is taken up by liver and muscle cells and then converted to glycogen.	High blood glucose and insulin accelerate this process. Low blood glucose and glucagon suppress this process.
fatty acid synthesis	Fatty acids are produced by a spiral pathway that works in the opposite direction of $\boldsymbol{\beta}$-oxidation; it builds up fatty acyl-CoA by a repeating series of reactions that add acetyl-CoA to a growing fatty acyl-CoA structure. Fatty acid synthesis occurs primarily in adipose and liver cells.	
protein synthesis	Amino acids are converted to proteins.	This process was mentioned briefly in this chapter; however, it was thoroughly discussed chapter 14.

Chapter 15 Review Worksheet and Key

NOTE: You can view the key in the back of the document

1. Define the term metabolic pathway.
2. Explain how it is possible that the initial reactant in glycolysis (glucose) has six carbons, but the product (pyruvate) has three carbons.
3. What effect will an enzyme have on the value of ΔG for the reaction?
4. What provides the energy used to produce ATP from ADP and P_{i}, anabolism or catabolism?
5. Define the term reduction and explain how it applies to the difference in the structures of $N A D^{+}$and $N A D H$.
6. How does anabolism differ from catabolism in terms of the relative size of the reactants that enter a particular pathway and the products that leave it?
7. Write a reaction equation for the hydrolysis of ATP to produce P_{i}.
8. Where (in the mouth, the stomach, or the small intestine) does digestion of each begin?
a. polysaccharides
b. triglycerides
c. proteins
9. How do the structures of amylose and amylopectin, the two homopolysaccharides that make up starch, differ?
10. What is the role of glycolysis?
11. What compound acts as an inhibitor of glycolysis?
12. a. What products are formed when pyruvate undergoes alcoholic fermentation?
13. a. Is the conversion of pyruvate to lactate an oxidation or a reduction?
b. When this reaction takes place in a cell, what is the oxidizing agent?
c. What is the reducing agent?
14. Is the conversion of pyruvate into acetyl-CoA an oxidation or a reduction?
15. Glycolysis can be described as a process in which energy is invested "up front" in exchange for a greater return of energy later on. Which steps in glycolysis involve investment of energy?
16. Which three steps in glycolysis cannot be directly reversed during gluconeogenesis?
17. In the citric acid cycle, is the alcohol group in isocitrate oxidized, or reduced? Explain.
18. What is the net change in $A T P, N A D H$, and FADH_{2} from the passage of two acetyl-CoA through the citric acid cycle?
19. a. Which two compounds donate their electrons to electron transport chain?
b. Which molecule is the final electron acceptor of the electron transport chain?
20. H^{+}moves from the intermembrane space, through ATP synthase, and into the mitochondrial matrix. Which term best describes this process: facilitated diffusion or active transport?
21. Oxidative phosphorylation typically generates how many ATP from 1 NADH?
22. Account for the 30-32 ATPs generated when one glucose molecule is catabolized by glycolysis and the citric acid cycle.
23. Describe how fatty acid salts are activated in order to undergo β oxidation.
24. In one pass through the β oxidation spiral a fatty acyl-CoA is shortened by two carbon atoms. What other products are formed?
25. Calculate the net number of ATPs produced when one 18-carbon fatty acid salt is activated, enters the mitochondrion, and undergoes complete β oxidation.

Include the ATP formed from acetyl-CoA in the citric acid cycle, and ATP from all of the reduced coenzymes that are produced.
26. a. Name the three ketone bodies.
b. Are they all ketones?
27. What is the source of NH_{4}^{+}produced during amino acid catabolism?
38. Oxidative deamination of glutamate produces which compound besides $\mathrm{NH}_{4}{ }^{+}$?

Chapter 15 Review Worksheet KEY

1. Define the term metabolic pathway.

A metabolic pathway is a series of biochemical reactions.
2. Explain how it is possible that the initial reactant in glycolysis (glucose) has six carbons, but the product (pyruvate) has three carbons.

Because glucose is split into two 3-carbon compound in steps 4 and 5 of glycolysis. Ultimately, two pyruvate ions are formed.
3. What effect will the enzyme have on the value of ΔG for the reaction?

No effect. An enzyme increases the rate of a reaction, but it has no effect on ΔG.
4. What provides the energy used to produce ATP from ADP and P_{i}, anabolism or catabolism?

Catabolism
5. Define the term reduction and explain how it applies to the difference in the structures of $N A D^{+}$and $N A D H$.

Reduction is the gain of electrons. In organic and biochemical molecules, a gain of hydrogen and /or a loss of oxygen is indication that reduction has taken place. NADH, the reduced form of the coenzyme, has one more hydrogen atom than NAD^{+}, the oxidized form of the coenzyme.
6. How does anabolism differ from catabolism in terms of the relative size of the reactants that enter a particular pathway and the products that leave it?

During anabolism small molecules are combined to make larger ones. In catabolism larger molecules are broken down into smaller ones.
7. Write a reaction equation for the hydrolysis of ATP to produce P_{i}.

$$
\mathrm{ATP}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{ADP}+\mathrm{P}_{\mathrm{i}}+\mathrm{H}^{+}
$$

8. Where in the body does the digestion of each begin?
a. polysaccharides

Mouth
b. triglycerides

Mouth
c. proteins

Stomach
9. How do the structures of amylose and amylopectin, the two homopolysaccharides that make up starch, differ?

Amylopectin contains $\alpha-(1 \rightarrow 6)$ glycosidic bonds. Amylose does not.
10. What is the role of glycolysis?

Glycolysis converts a glucose molecule into 2 pyruvate ions with accompanying production of 2 ATP and 2 NADH.
11. What compound acts as an inhibitor of glycolysis?

ATP
12. a. What products are formed when pyruvate undergoes alcoholic fermentation?

Ethanol and CO_{2}.
13. a. Is the conversion of pyruvate to lactate an oxidation or a reduction?

In Figure 15.9, the conversion of pyruvate to lactate shows a ketone being converted to an alcohol by addition of hydrogen. This indicates reduction has occurred.

Reduction

b. When this reaction takes place in a cell, what is the oxidizing agent?

The oxidizing agent in a reaction is the substance that is reduced. Therefore, pyruvate is the oxidizing agent.

Pyruvate
c. What is the reducing agent?

The NADH is losing hydrogen and an electron. In doing so, it reduces the pyruvate and it is therefore the reducing agent.

NADH
14. Is the conversion of pyruvate into acetyl-CoA an oxidation or a reduction?

Oxidation: Organic oxidation is observed as the loss of hydrogen or the gain of oxygen. The conversion of pyruvate to acetyl-CoA results in the pyruvate losing hydrogen and an electron to NAD^{+}. Therefore the pyruvate is oxidized.
15. Glycolysis can be described as a process in which energy is invested "up front" in exchange for a greater return of energy later on. Which steps in glycolysis involve investment of energy?

Steps 1 and 3 involve "investment" or input of energy through coupling of the reaction with ATP hydrolysis.
16. Which three steps in glycolysis cannot be directly reversed during gluconeogenesis?

Steps 1, 3, and 10 .
17. In the citric acid cycle, is the alcohol group in isocitrate oxidized, or reduced?

The alcohol is oxidized; it loses hydrogens.
18. What is the net change in $A T P, N A D H$, and FADH_{2} from the passage of two acetyl-CoA through the citric acid cycle?

The passage of two acetyl-CoA through the citric cycle creates 2 ATP, 6 NADH , and $2 \mathrm{FADH}_{2}$.
19. a. Which two compounds donate their electrons to electron transport chain?

NADH and FADH_{2}
b. Which molecule is the final electron acceptor of the electron transport chain?

The O_{2} molecule.
20. H^{+}moves from the intermembrane space, through ATP synthase, and into the mitochondrial matrix. Which term best describes this process: facilitated diffusion or active transport?

Facilitated diffusion is the process of ions or molecules moving through a membrane assisted by a protein. The hydrogens move through this enzyme because of the concentration gradient. No additional external energy is required.

Facilitated diffusion
21. Oxidative phosphorylation typically generates how many ATP from 1 NADH?

2.5 ATP

22. Account for the 30-32 ATPs generated when one glucose molecule is catabolized by glycolysis and the citric acid cycle.

In glycolysis, one glucose molecule yields 2 pyruvates, 2 ATP and 2 NADH. Depending on the system used to shuttle the electrons from NADH into mitochondria, these 2 NADH become 2 NADH or $2 \mathrm{FADH}_{2}$. Converting the 2 pyruvates into 2 acetyl-CoA's produces 2 NADH .

Two passes through the citric acid cycle starting with acetyl-CoA produces 2 ATP, $2 \mathrm{FADH}_{2}$, and 6 NADH .

In the electron transport chain, each FADH_{2} generates 1.5 ATP and each NADH generates 2.5 ATP.
23. Describe how fatty acid salts are activated in order to undergo β oxidation.

Fatty acid salts are activated by the attachment of a coenzyme A (CoA) residue to produce fatty acyl-CoA.
24. In one pass through the β oxidation spiral a fatty acyl-CoA is shortened by two carbon atoms. What other products are formed?

One acetyl-CoA, one FADH_{2}, and one NADH
25. Calculate the net number of ATPs produced when one 18-carbon fatty acid salt is activated, enters the mitochondrion, and undergoes complete β oxidation. Include the ATP formed from acetyl-CoA in the citric acid cycle, and ATP from all of the reduced coenzymes that are produced.

Activation in the first step consumes on ATP. Each step in the spiral produces one FADH_{2}, one NADH and one acetyl-CoA. The number of passes $=$ (number of carbons -2$) / 2$ so for an 18 -carbon fatty acid salt there are $(18-2) / 2=8$. The NADH and FADH_{2} produced in these passes produces ATP as follows:

$$
\begin{array}{cc}
\mathrm{FADH}_{2} & \mathrm{NADH} \\
8 \times 1.5=12 \text { ATP } & 8 \times 2.5=20 \text { ATP }
\end{array}
$$

Total from β oxidation reactions $=32$ ATP
Then, since two ATPs are generated in the final cycle, a total of 9 acetyl-CoA enter the citric cycle.

The ATP produced as these 9 acetyl-CoA undergo the reactions of the citric acid cycle is calculated as follows:

9 Acetyl-CoA (1 ATP per citric acid cycle) $=9$ ATP

$$
\begin{array}{cc}
\text { NADH } & \mathrm{FADH}_{2} \\
(9 \times 3) \times 2.5=67.5 \mathrm{ATP} & 9 \times 1.5=13.5 \mathrm{ATP}
\end{array}
$$

Total ATP produced from acetyl $\mathrm{CoA}=(9+67.5+13.5)=90$ ATP
Total ATP for reaction =
Total from β oxidation reactions + Total of citric cycle - Activation

$$
\begin{aligned}
& =32 \mathrm{ATP}+90 \mathrm{ATP}-1 \mathrm{ATP} \\
& =121 \mathrm{ATP}
\end{aligned}
$$

Total ATPs produced $=121$
26. a. Name the three ketone bodies.

Acetoacetate, 3-hydroxybutyrate, and acetone
b. Are they all ketones?

No. 3-Hydroxybutyrate contains does not contain the ketone bonding pattern.
27. What is the source of NH_{4}^{+}produced during amino acid catabolism?

The release of $\mathrm{NH}_{4}{ }^{+}$from amino acids commonly requires two reactions. The first is transamination, wherein an amino group from an amino acid is transferred to an α-keto acid. The second is oxidative deamination, wherein the amino group is replaced by a carbonyl group. The amino group is released as $\mathrm{NH}_{4}{ }^{+}$.

Oxidative deamination
38. \quad Oxidative deamination of glutamate produces which compound besides $\mathrm{NH}_{4}{ }^{+}$?
α-ketoglutarate

[^0]: Lipid and lipoprotein concentrations are measured in milligrams (mg) of substance per deciliter (dL) of blood. *The LDL desirable values are lower than those shown in the table for persons at risk of heart attack.
 Source: National Institutes of Health, Medline Plus (2012). Volume 7 Number 2 Page 6-7)

